Introduction

model distinction from sound-wave and free-streaming sources Gravitational waves from first-order phase transitions:

Ryusuke Jinno (Kobe Univ.)

w/ Chiara Caprini, Thomas Konstandin, Alberto Roper Pol, Henrique Rubira, Bibhushan Shakya, Isak Stomberg, Jorinde van de Vis

Hearing BSM with Cosmic Sources of GWs @ICTS, 2024/12/31

free-streaming sources GWs from

sources

sound-wave

GWs from

UNIVERSITY

[RJ, Konstandin, Rubira 2010.00971] [RJ, Konstandin, Rubira, Stomberg 2209.04369]

[RJ, Shakya, van de Vis 2211.06405] [Caprini, RJ, Konstandin, Roper Pol, Rubira, Stomberg 2409.03651]

Summary

model distinction from sound-wave and free-streaming sources Gravitational waves from first-order phase transitions:

Ryusuke Jinno (Kobe Univ.)

w/ Chiara Caprini, Thomas Konstandin, Alberto Roper Pol, Henrique Rubira, Bibhushan Shakya, Isak Stomberg, Jorinde van de Vis

Hearing BSM with Cosmic Sources of GWs @ICTS, 2024/12/31

free-streaming sources GWs from

sources

sound-wave

GWs from

UNIVERSITY

[RJ, Konstandin, Rubira 2010.00971] [RJ, Konstandin, Rubira, Stomberg 2209.04369]

[RJ, Shakya, van de Vis 2211.06405] [Caprini, RJ, Konstandin, Roper Pol, Rubira, Stomberg 2409.03651]

Summary

PHASE TRANSITIONS

➤ Classification of phase transitions (a la Landau)

THERMAL HISTORY OF THE UNIVERSE

➤ Two candidates for FOPTs in the Standard Model (SM)

Electroweak phase transition & QCD phase transition

see also

- [Kajantie, Laine, Rummukainen, Shaposhnikov '96]
- [Karsch, Neuhaus, Patkós, Rank '97]

 \rightarrow Unfortunately both are crossover

THERMAL HISTORY OF THE UNIVERSE

➤ Two candidates for FOPTs in the Standard Model (SM)

Electroweak phase transition & QCD phase transition

see also

[Kajantie, Laine, Rummukainen, Shaposhnikov '96]

[Karsch, Neuhaus, Patkós, Rank '97]

 \rightarrow Unfortunately both are crossover

WHY DO WE CONSIDER FIRST-ORDER PHASE TRANSITIONS?

- from inflation ($\leq 10^{15}$ GeV) to the present (~ 10⁻⁴eV) ➤ The vast energy scale the Universe might have experienced
- ➤ Spontaneous symmetry breaking that might have happened
	- Breaking of the GUT group
- Breaking of Peccei-Quinn symmetry $U(1)_{\text{PQ}}$
- − Breaking of B-L symmetry $U(1)_{B-L}$
	- Breaking of dark groups
- ➤ Testable in the coming 10-20 yrs with GWs

OVERVIEW

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 04 / 36

TUNNELING IN QUANTUM MECHANICS AND QFT

Quantum mechanics

Quantum field theory

TUNNELING IN QUANTUM MECHANICS AND QFT

Quantum mechanics

Quantum field theory

TUNNELING IN QUANTUM MECHANICS AND QFT

Quantum mechanics Cuantum field theory

tunneling (nucleation, 核生成)

BUBBLE EXPANSION

➤ "Pressure vs. Friction" determines the behavior:

(1) Pressure: wall is pushed by the released energy

Determined by $\alpha \equiv \rho_{\text{vac}}/\rho_{\text{plasma}}$

Giese et al. '20]

see e.g. [Espinosa et al. '10,

Hindmarsh et al. '15,

(2) Friction: wall is pushed back by plasma particles

BUBBLE EXPANSION

➤ "Pressure vs. Friction" determines the behavior:

(1) Pressure: wall is pushed by the released energy

Determined by $\alpha \equiv \rho_{\text{vac}}/\rho_{\text{plasma}}$

(2) Friction: wall is pushed back by plasma particles

➤ Different types of bubble expansion

false true

 $∼$ ρ _{vac}

α

see e.g. [Espinosa et al. '10,

Hindmarsh et al. '15,

Giese et al. '20]

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $06 / 36$

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 06 / 36

Youtube "Explosions: 100 ton test detonation"

07 / 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651

GRAVITATIONAL WAVES: A NEW PROBE TO THE UNIVERSE

[See Subhendra's lecture]

➤ Einstein equation:

$$
R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}
$$

"Spacetime tells matter how to move. Matter tells spacetime how to curve."

Gravitational waves: transverse-traceless part of the metric

$$
ds^2 = -dt^2 + a^2(\delta_{ij} + h_{ij})dx^i dx^j \qquad \partial_i h_{ij} = h_{ii} = 0
$$

➤ After expanding the Einstein equation,

GWs obey a wave equation sourced by energy-momentum tensor

 \Box $h_{ij} = 16\pi G \Lambda_{ij,kl} T_{kl}$

➤ LIGO/Virgo detected GWs from binary black holes for the first time in 2015

 $36M_{\odot} + 29M_{\odot} \rightarrow 62M_{\odot} + 3M_{\odot}$ (GWs)

BUBBLE COLLISION & FLUID DYNAMICS

▶ Bubbles collide, and fluid dynamics sets in (example for $|$

GWS AS A PROBE OF THE EARLY UNIVERSE

➤ Cosmic Microwave Background (CMB) vs. Gravitational Waves (GWs)

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $10/36$

PRESENT & FUTURE OBSERVATIONS

LISA (LASER INTERFEROMETER SPACE ANTENNA)

[LISA Mission L3 Proposal, https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf] [Auclair et al. '22]

- ➤ Mission led by *ESA* and *NASA*
- ➤ Launch is planned *in the mid 2030's*
- ➤ *3 satellites* forming an equilateral triangle in an Earth-trailing orbit
- \blacktriangleright Distance between satellites = 2.5×10^6 km
- ➤ Nominal mission of *4.5 years*, with a duty cycle of *82%*

[LISA Red book] [https://www.britannica.com/science/physics-science/The-study-of-gravitation]

TRANSITION (≒ **THERMODYNAMIC) PARAMETERS**

- ➤ Remind the spirit of thermodynamics
	- Only a few parameters determine macroscopic properties

TRANSITION (≒ **THERMODYNAMIC) PARAMETERS**

- ➤ Remind the spirit of thermodynamics
	- Only a few parameters determine macroscopic properties
- ➤ What are parameters that describe the present macroscopic system?

Particle physics	Francation parameters	Prediction on GWs
Lagrangian	α : transition strength	GW spectrum Ω_{GW}
β : nucleation rate parameter	GW non-Gaussianity ...	
v_w : wall velocity	T_* : transition temperature	

- $▶$ Transition strength $α \equiv ρ_{\text{vac}}/ρ_{\text{plasma}}$
	- How much energy (= latent heat) is released in comparison to the plasma energy
- The numerator $\rho_{\text{vac}} = \rho_{\text{vac,false}} \rho_{\text{vac,true}}$ is calculated from the Helmholtz

free energy, through the relation
$$
U = F + TS = F - T \left(\frac{\partial F}{\partial T}\right)_V
$$
 as

$$
\rho_{\text{vac,true}} = V_{\text{eff}}(\phi_{\text{true}}, T) - T\left(\frac{\partial V_{\text{eff}}(\phi_{\text{true}}, T)}{\partial T}\right)
$$

$$
\rho_{\text{vac,false}} = V_{\text{eff}}(\phi_{\text{false}}, T) - T\left(\frac{\partial V_{\text{eff}}(\phi_{\text{false}}, T)}{\partial T}\right)
$$

- ➤ Nucleation rate parameter *β*
- Taylor-expansion coefficient of the exponent of nucleation rate $\Gamma(t) \propto e^{\beta(t-t_*)+\cdots}$

(per unit time & vol.) around the typical transition time $t = t_*$

- Thermal field theory is used to calculate $\Gamma(T)$, which is then converted into $\Gamma(t)$
- Its inverse (precisely, v_w/β) gives the typical bubble size at the time of collision

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $15/36$

TRANSITION (≒ **THERMODYNAMIC) PARAMETERS**

 \blacktriangleright Wall velocity v_w

- Determined from "pressure vs. friction"

- Should in principle be obtained from Boltzmann eq.,

but in reality often put by hand

(regarded as trade-off btwn. coupling \Leftrightarrow velocity)

- ► Transition temperature T*
	- Determined from your microphysical theory

[Caprini et al. '20]

see e.g. [Caprini et al. '16]

 \bigcirc \equiv

BUBBLE COLLISION & FLUID DYNAMICS

▶ Bubbles collide, and fluid dynamics sets in (example for $|$

➤ Bubble collision

GRAVITATIONAL WAVE SOURCES

- Kinetic & gradient energy of the scalar field
	- (= order parameter field)
- Dominant when the transition is extremely strong and the walls runaway

Sound waves

- Compression mode of the fluid motion
- Dominant unless the transition is extremely strong
- ► Turbulence [See Alberto's talk]
	- Turbulent motion caused by fluid nonlinearity
	- Expected to develop at a later stage important at later stage

GRAVITATIONAL WAVE SPECTRUM

ROUGH ESTIMATE ON GW PRODUCTION

[See Subhendra's lecture

- ➤ Big & relativistic objects radiate more GWs
	- Integrate the GW equation of motion over the sourcing time Δ*t*

 $\rho_{\rm GW} \sim G^{-1} \, \dot{h}_{ij}^2 \propto T_{ij}^2 \Delta t^2$ - GW energy density $\rho_{\rm GW}\sim G^{-1}\,h_{ii}^2\,\propto T_{ii}^2\Delta t^2$ Note but: GWs from sound waves behave differently

- 1. Relativistic objects have larger $T_{ii} \propto \alpha$
- 2. Big bubbles typically have longer sourcing time $\Delta t \propto \beta^{-1}$

GRAVITATIONAL WAVES FROM SOUND WAVES

➤ Sound shells continue to propagate inside other bubbles

➤ Shell overlap creates random velocity fields, continuously sourcing GWs

[Hindmarsh, Huber, Rummukainen, Weir '14, '15, '17] [Hindmarsh '15, +Hijazi '19]

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $19/3$

SOUND WAVE SIMULATIONS

- ➤ Fluid 3d simulation is a bit hard
	- Shock waves
	- Numerical viscosity →
	- Computational resources
- currently 2 groups working on sound wave & GW production simulations
- ▶ Our proposal: the Higgsless scheme [Thomas's talk]

[RJ, Konstandin, Rubira '21] [RJ, Konstandin, Rubira, Stomberg '22]

[Caprini, RJ, Konstandin, Roper Pol, Rubira, Stomberg '24]

- We do *not* solve both the scalar field and fluid

but rather "integrate out" the scalar field

(= treat the scalar field as non-dynamical boundary)

HOW TO "INTEGRATE OUT" THE HIGGS

➤ The fluid evolution is determined from

 \bigcirc Energy-momentum conservation of the fluid $\partial_{\mu}T^{\mu\nu} = 0$

 \bigcup $\textcircled{2}$ Energy injection at the wall, parametrized by $\epsilon_{\text{vac}} =$ *ϵf* ϵ_t (false vac.) (true vac.)

➤ How to implement fluid evolution in simulations

 \bigcup Assume relativistic perfect fluid $T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - g^{\mu\nu}p$

 \mathcal{D} Define $K^{\mu} \equiv T^{\mu 0}$, then $\partial_{\mu}T^{\mu \nu} = 0$ reduces to $\left\{$ $\partial_0 K^0 + \partial_i K^i = 0$ $\partial_0 K^i + \partial_j T^{ij} (K^0, K^i) = 0$

 \mathcal{D} The effect of energy injection appears in $T^{ij}(K^0, K^i)$

$$
T^{ij}(K^0, K^i) = \frac{3}{2} \frac{K^i K^j}{(K^0 - \epsilon_{\text{vac}}) + \sqrt{(K^0 - \epsilon_{\text{vac}})^2 - \frac{3}{4} K^i K^i}}
$$

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $21/36$

RECIPE FOR THE HIGGSLESS SIMULATION

➤ We first numerically generate nucleation points,

and determine the false-true boundary of the bubbles

➤ We then evolve the fluid in this box according to

$$
\begin{cases} \partial_0 K^0 + \partial_i K^i = 0\\ \partial_0 K^i + \partial_j T^{ij}(K^0, K^i) = 0 \end{cases}
$$

 \rightarrow Fluid automatically develops profiles

RECIPE FOR THE HIGGSLESS SIMULATION

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $23/36$

RECIPE FOR THE HIGGSLESS SIMULATION

fluid kinetic energy

time

SUMMARY (PART 1)

➤ The Higgsless simulation is now one of the largest simulations (spatial resolution: $N^3 = 256^3$ or 512^3 grids; simulation time: $T = 32/\beta$)

► We are now able to simulate the strong transition regime $\alpha \sim 1$, which was previously difficult due to shocks and numerical viscosities

➤ Numerical data suggest that we might be observing sound waves developing into turbulence

GW PRODUCTION: THE STANDARD LORE & BEYOND

➤ GW sources

Bubble walls (dominant in case ④)

Energy released accumulates in the walls $(= scalar field kinetic \& gradient).$

Fluid (dominant in case $\mathbb{O}(2\mathbb{C})$) = Sound waves & Turbulence

Particles in the broken phase frequently interact and can be described by fluid picture.

Aren't we missing one possibility?

GW PRODUCTION: THE STANDARD LORE & BEYOND

➤ GW sources

Bubble walls (dominant in case ④)

Energy released accumulates in the walls $(= scalar field kinetic \& gradient).$

Fluid (dominant in case $\mathbb{O}(2\mathbb{C})$) = Sound waves & Turbulence

Particles in the broken phase frequently interact and can be described by fluid picture.

Feebly-interacting particles

Particles in the broken phase are only feebly interacting and free-stream.

GW PRODUCTION: THE STANDARD LORE & BEYOND

➤ Particle dynamics seen in the wall rest frame

FLUID VS. FREE-STREAMING PARTICLES

➤ Evolution of the system for fluid and free-streaming sources

Fluid

Free-streaming

HOW TO CALCULATE GW PRODUCTION

➤ To calculate the GW spectrum,

we propose a new calculation scheme − "sprinkler picture"

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $29/36$

GW SPECTRUM FOR SOUND-WAVE SOURCE

➤ How to calculate the GW spectrum for sound waves

① Calculate the time evolution of the system without GWs

 $\textcircled{2}$ Calculate GWs from $\textcircled{1} h_{ij} ∼ G\Lambda_{ij,kl} T_{kl}$ using FFT

➤ Basically there is no shortcut, essentially because of nonlinarity: Sound waves are linear phenomena $(\partial_t^2 - c_s^2 \nabla^2) \vec{v}_{\text{fluid}} \simeq 0$, $\overline{}$

but GW production is nonlinear in \vec{v}_{fluid} because $\Box h_{ij} \sim T_{ij} \sim (v_{\text{fluid}})_i (v_{\text{fluid}})_j$ $\overline{}$

GW SPECTRUM FOR FREE-STREAMING SOURCE

➤ However, for free-streaming particles, GW production is linear

in each free-streaming particle

$$
h_{ij} \sim T_{ij} \sim \sum_{\text{particle } p} T_{ij}^{(p)}
$$

➤ Thus we propose "sprinkler picture"

① Imagine each grid point has a sprinkler that splashes free-streaming particles when hit by the wall

② Sprinklers are universal:

their only difference is when and in which direction they are hit

③ GW production from one sprinkler is easily calculable,

and the contributions from different sprinklers $(=$ grids) are linearly superposed

RESULT

GW spectral shape is universal \blacktriangleright (after normalizing by some factor)

GW spectral shape is clearly different from sound-wave sources: it stretches over wider frequencies

PARTICLE PHYSICS FRAMEWORK

- ➤ Consider a dark-sector thermal bath, with temperature *T*
- ➤ Assume a first-order phase transition in this sector
	- scalar field *s* acquires a vev $\langle s \rangle$
	- nucleation of bubbles (with wall thickness $\sim 1/\langle s \rangle$)
	- walls reach a terminal velocity v_w (or equivalently $\gamma_w = 1/\sqrt{1-v_w^2}$)
- ➤ Feebly-interacting particles can be generated during this transition
	- particle *X* becomes massive at the phase transition, due to coupling to *s*

➤ Free-streaming particle should free-stream over a cosmological scale,

which we take the transition timescale $\Delta t \sim \mathcal{O}(1/\beta)$

▶ So, we need the condition
$$
n\sigma\Delta t \sim \frac{T^3\sigma}{\beta} \lesssim 1
$$

 \blacktriangleright How do *X* particles interact? $m_X = g'(s)$

The couplings that gives rise to mass also give rise to interactions

 \triangleright Can *X* be the scalar particle *s* itself ?

s needs to gain large mass (for the *s* particles to be dominant), but this means a large quartic coupling among *s* particles

 \blacktriangleright How do *X* particles interact? $m_X = g'(s)$

The couplings that gives rise to mass also give rise to interactions

 \blacktriangleright Can *X* be a gauge boson $X = Z'$?

Assuming $m_s \sim \langle s \rangle$, feeble-interaction condition reduces to

$$
n\sigma\Delta t \sim \frac{T^3 \sigma}{\beta} \sim \frac{T^3}{\beta} \frac{g^{2}}{(4\pi)^2} \frac{m_{Z'}^2}{m_s^4} \lesssim 1 \quad \longrightarrow \quad \frac{\langle s \rangle}{g^{3}T} > 10^6 \quad \text{for TeV transitions}
$$

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $35 / 36$

 \blacktriangleright How do *X* particles interact? $m_X = g'(s)$

The couplings that gives rise to mass also give rise to interactions

 \blacktriangleright Can *X* be a gauge boson $X = Z'$?

Assuming $m_s \sim \langle s \rangle$, feeble-interaction condition reduces to

$$
n\sigma\Delta t \sim \frac{T^3 \sigma}{\beta} \sim \frac{T^3}{\beta} \frac{g^{2}}{(4\pi)^2} \frac{m_Z^2}{m_s^4} \lesssim 1 \quad \longrightarrow \quad \frac{\langle s \rangle}{g^{3}T} > 10^6 \quad \text{for TeV transitions}
$$

Doable,

but not generic

 \blacktriangleright How do *X* particles interact? $m_X = g'(s)$

The couplings that gives rise to mass also give rise to interactions

 \triangleright More viable possibility: particle decay $X = Z' \rightarrow YY$ with $\epsilon \ll 1$

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $35/36$

SUMMARY (PART 2)

➤ GW spectrum from free-streaming particles differ from that from sound waves, because of the (non-)linearity of the source

➤ GW spectrum, if observed, will provide us with the information on the nature of the source

/ 36 Ryusuke Jinno (Kobe Univ.) *"GWs from FOPTs",* 2010.00971, 2209.04369, 2211.06405, 2409.03651 $36 / 36$