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Structure of this talk

The 3D incompressible Navier-Stokes equations

Consider the 3D Navier-Stokes equations in the domain [0,L]3per

ut + u · ∇u = ν∆u −∇p + f (x) div u = 0 (div f = 0)

1 I became interested in intermittency after reading Batchelor & Townsend
(1949) and the multi-fractal approach described in Uriel’s book (1995).

2 A generation of computations of the 3D incompressible NSEs on a
periodic cube [0, L]3per show the same typical intermittent behaviour in
the vorticity and energy dissipation fields :

I Intense regions begin to flatten into quasi-2D pancakes ;

I These pancakes then roll up into tubular/filamentary structures
which ultimately become even finer & begin to fragment.

3 I will address how this visual manifestation of intermittency could be
connected to NS weak solns and invariant scaling.
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Plot courtesy of J. R. Picardo and S. S. Ray at ICTS

Figure: Left : snapshot of the energy dissipation field ε = 2νSi,j Sj,i of a forced 5123 NS flow at
Reλ = 196 which is colour-coded such that yellow is 4 times the mean and blue denotes 6 times
the mean. Right : the field Q = 1

2

(
|ω|2 − |S|2

)
with colours corresponding to −2Qrms (blue) and

5Qrms (red). Plot courtesy of J. R. Picardo and S. S. Ray.
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Visualization from the TAMU 40963 data-base : Courtesy of Diego Donzis

Figure: The enstrophy |ωi |2 (red) & the energy dissipation ε = 2νSi,j Sj,i (blue-green) at
Reλ = 1000.
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Some history of large-scale 3D NSE computations

Just for the record :

1 Orszag & Patterson 1972;

2 Kerr 1985;

3 Eswaran & Pope 1988 ;

4 Jimenez et al 1993 ;

5 Moin & Mahesh (Ann Rev Fluid Mech 20, 1998) ;

6 Kurien & Taylor 2005;

7 Ishihara, Gotoh, Kaneda (Ann Rev Fluid Mech 2009) ;

8 A 40963 computation by Donzis, Yeung & Sreenivasan 2012 at TAMU
using 105 processors.

9 Hunt, Ishihara, Worth & Kaneda (2013, 2017). Latest is an 80003

computation – Ishihara, Elsinga & Hunt (PrRS 2020).
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Estimates of the energy dissipation rate

We begin with the forced 3D NSEs on a periodic domain V = [0, L]3 :

(∂t + u · ∇)u +∇P = ν∆u + f (x) , div u = 0 = div f .

Formally, we find the energy equation by dotting u across the NSEs :

1
2

d
dt

∫
V
|u|2 dV = −ν

∫
V
|∇u|2 dV +

∫
V

u · f dV

How do we deal with
∫
V u · f dV? Use the Cauchy-Schwarz inequality to write∣∣∣∣∫

V
u · f dV

∣∣∣∣ ≤ ‖u‖2‖f‖2 , where ‖f‖2 ≡
(∫
V
|f |2 dV

)1/2

Thus, upon time averaging 〈·〉T = T−1
∫ T

0 ·dt , we have

ν

〈∫
V
|∇u|2 dV

〉
T
≤ 〈‖u‖2‖f‖2〉T + O

(
T−1) .
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Some definitions for 3D NSEs

Re =
UL
ν︸ ︷︷ ︸

Reynolds No

; Gr =
L3frms

ν2︸ ︷︷ ︸
Grashof No

, U2 = L−3 〈‖u‖2
2
〉

T︸ ︷︷ ︸
Average vel. field

.

Thus the energy dissipation rate E per unit volume is

E = νL−3
〈∫
V
|∇u|2dV

〉
T
≤ L−4ν3GrRe + O

(
T−1) .

Doering & Foias (2002) have shown that for NS-solns Gr ≤ c Re2 .

E ≤ c L−4ν3 [Re3 + O
(
Re2)] Gr →∞ ,

from which we find an estimate for the inverse Kolmogorov length

Lλ−1
k =

(
E
ν3

)1/4

≤ c Re3/4 .

The u.b. coincides with K41. Question : in the NS-sense, are there scales
smaller than this?
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Turbulent cascades & length-scales smaller than λk ?

Numerical simulations of the 3D
Navier-Stokes equations show that
finer and finer vortical structures ap-
pear as resolution increases involving
inverse scales much smaller than λk .

1 Richardson (1922) & K41 believed that viscosity ultimately halts this
process (Frisch 1995) – Peter Lynch‘s book on Richardson 2006.

2 Mandelbrot (1974) suggested that the cascade process is fractal : i.e.,
the inverse length scales associated with the cascades of vorticity
diverge to infinity.

Question : For NSEs, is Richardson’s parody of Swift’s poem true :

Big whirls have little whirls that feed on their velocity, and
little whirls have lesser whirls and so on to viscosity.

In other words, is there a finite limit or do vortices spin down to mol-scales?
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Cascades & higher derivatives

A cascade is a sequential process that involves vorticity & strain being driven
down to smaller length scales. This process should show up in estimates of
both spatially & temporally averaged gradients of u(x , t).

Define a doubly-labeled set of norms in dimensionless form

Fn,m = ν−1L1/αn,m‖∇nu‖2m , αn,m =
2m

2m(n + 1)− 3
,

for 1 ≤ n <∞ and 1 ≤ m ≤ ∞, where

‖∇nu‖2m =

(∫
V
|∇nu|2mdV

)1/2m

.

1 Derivatives are sensitive to ever finer length scales in the flow.

2 Higher values of m pick out the larger spikes, with the m =∞ case
representing the maximum norm.
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Invariance and Leray’s weak solutions

The NSEs have the scale invariance (on the whole domain) :

u(x , t)→ λ−1u
(
x/λ, t/λ2) ⇒ Fn,m → Fn,m .

Thus the Fn,m are invariant at every length and time scale in the flow.

Theorem (JDG 2018)

With the definition αn,m = 2m
2m(n+1)−3 , and for

n ≥ 1 with 1 ≤ m ≤ ∞

n = 0 with 3 < m ≤ ∞ ,

Leray’s weak solutions of the 3D NSEs satisfy〈
F αn,m

n,m
〉

T ≤ cn,mRe3 + O
(
T−1) .

JDG, J. Nonlin. Sci., 29(1), 215–228, 2019.
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Historical Table of weak solution results

Note that α1,1 = 2 gives the standard ‘Leray’s energy inequality’ result〈
F 2

1,1
〉

T
= ν−2L

〈
‖∇u‖2

2
〉

T ≤ c Re3 .

n, m αn,m = 2m
2m(n+1)−3 Known for weak

n = 0, m =∞ α0,∞ = 1 〈‖u‖∞〉T ≤ c L−1νRe3 Tartar78

n = 0, m > 3 α0,m = 2m
2m−3

〈
‖u‖α0,m

2m

〉
T
≤ L−1να0,m Re3

n = 1, m = 1 α1,1 = 2
〈

F 2
1,1

〉
T
< c ν2L−1Re3 Leray34

n = 1, m ≥ 1 α1,m = 2m
4m−3 〈Dm〉T ≤ c Re3 JDG2011

n ≥ 1, m = 1 αn,1 = 2
2n−1

〈
H

1
2n−1

n,1

〉
T
≤ ναn,1 L−1Re3 FGT81

Table: Estimates for a range of n and m.

Concerning the Dm = F1,m :

Donzis, Gupta, JDG, Kerr, Pandit & Vincenzi, JFM (2013); Nonl’y (2014).

For 3D Euler : Kerr JFM, 729, R2, (2013).

JDG, J. Nonlin. Sci., 29(1), 215–228, 2019.
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Strong solutions?

Theorem

For any n ≥ 1 & 1 ≤ m ≤ ∞ ; (ii) for n = 0 & 3/2 ≤ m ≤ ∞, sufficient
conditions for strong solutions of the 3D NSEs to exist are〈

F2αn,m
n,m

〉
T
<∞ .

The Prodi-Serrin condition for regularity?? If u ∈ Lp[(0, T ), Lq] then ∃ a
unique smooth soln if p and q obey

2
p

+
3
q

= 1 , q > 3 .

Choose n = 0 with p = 2α0,m and q = 2m then

2
2α0,m

+
3

2m
= 1 .
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Definition of a sequence of length scales λn,m(t)

Define a set of t-dependent length-scales {λn,m(t)} s.t.

λ
−2m(n+1)+3
n,m ν2m =

(
L

λn,m

)−3
Hn,m where Hn,m =

∫
V
|∇nu|2mdV(

Lλ−1
n,m

)n+1
= Fn,m , αn,m =

2m
2m(n + 1)− 3

.

Lemma
For weak solutions 〈

Lλ−1
n,m

〉
T
≤ cn,mRe

3
(n+1)αn,m + O

(
T−1

)
.

when : i) n ≥ 1 and 1 ≤ m ≤ ∞ ; ii) n = 0 and 3 < m ≤ ∞ .

The upper bound has a finite limit : Richardson and Kolmogorov were correct!

lim
n,m→∞

3
(n + 1)αn,m

→ 3

λk ∼ 1mm while mean free paths are ∼ 5× 10−5mm = 50nm. Thus, ∃ a bandwidth of realistic
Re for these estimates to lie within the validity of the NSE.
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Turbulence in D dimensions?

1 In 1978 Fournier and Frisch introduced the idea of turbulence in D
dimensions where D is no longer an integer but restricted to D ≥ 2.
They achieved this by analytically continuing the Taylor expansion in
time of the energy spectrum Ek (t), assuming Gaussian initial conditions.

2 The idea of a non-integer dimension has taken root in the many papers
on the beta, bi-fractal and multi-fractal models – see Frisch 1995.

3 Can the Navier-Stokes estimates be found on a domain of non-integer
dimension?

I In a fully rigorous sense, the answer is in the negative.

I For instance, there are no proofs of the Divergence Theorem or the
Sobolev inequalities on fractal domains.
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A result in integer D dimensions

Estimates made so far are true for weak solutions in a D = 3 domain. How
can we generalize this to a D-dim domain for D = 1,2,3?

Fn,m,D = ν−1L1/αn,m,D‖∇nu‖2m , αn,m,D =
2m

2m(n + 1)− D
.

The Fn,m,D possess the same invariance properties as Fn,m.

Theorem

For D = 2, 3, and for n ≥ 1 and 1 ≤ m ≤ ∞, we have the estimate〈
F (4−D)αn,m,D

n,m,D

〉
T
≤ cn,m,D Re3 .

For D = 1 the same result holds for Burgers’ equation.

JDG : Turbulent cascades & thin sets in 3D NS-turbulence EPL 2020.
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Scaling of the exponent in integer D dimensions

1 The above Theorem shows how the exponent of Fn,m,D scales with D.

2 The surprising but crucial factor of 4− D in the exponent multiplying
αn,m,D deserves some remarks :

3 When D = 3, the factor of 4− D is simply unity ;

4 When n = m = 1 this factor cancels to make (4− D)α1,1,D = 2 for every
value of D, as it should. It also furnishes us with the correct bound on
the averaged energy dissipation rate E .

5 When D = 2 we achieve the

[(4− D)αn,m,D]D=2 = 2αn,m,2

The factor of 2 in the upper bound gives us full regularity. Thus the case
D = 2 is critical for regularity, as is well-known.

J. D. Gibbon : Imperial College London Intermittency, cascades and thin sets in 3D Navier-Stokes turbulenceTPIMP-ICTS 2020 16 / 17



More on scaling in D dimensions

Examine the exponent of Fn,m,D : one finds that

(4− D)αn,m,D =
2m(4− D)

2m(n + 1)− D
increases as D ↘ 0 .

An increasing exponent of Fn,m implies more, not less, regularity. This is
the direction of increasing dissipation.

This suggests that a flow may adjust itself to find the smoothest, most
dissipative set on which to operate.

This also runs counter to a commonly held theory of viscous turbulence
in which singularities have been long-standing candidates as the
underlying cause of turbulent dynamics.
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