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Structure of this talk

The 3D incompressible Navier-Stokes equations
Consider the 3D Navier-Stokes equations in the domain [0, L]3,,

ui+u-Vu=vAu—Vp+ f(x) divu=0 (divf =0)

@ | became interested in intermittency after reading Batchelor & Townsend
(1949) and the multi-fractal approach described in Uriel's book (1995).

@ A generation of computations of the 3D incompressible NSEs on a
periodic cube [0, L]f,e, show the same typical intermittent behaviour in
the vorticity and energy dissipation fields :

» Intense regions begin to flatten into quasi-2D pancakes ;

» These pancakes then roll up into tubular/filamentary structures
which ultimately become even finer & begin to fragment.

© | will address how this visual manifestation of intermittency could be
connected to NS weak solns and invariant scaling.
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Plot courtesy of J. R. Picardo and S. S. Ray at ICTS

Figure: Left: snapshot of the energy dissipation field e = 2v'S; ;S; ; of a forced 5123 NS flow at
Re, = 196 which is colour-coded such that yellow is 4 times the mean and blue denotes 6 times
the mean. Right: the field Q =  (|w[? — |S|?) with colours corresponding to —2Qrms (blue) and

5Qrms (red). Plot courtesy of J. R. Picardo and S. S. Ray.

J. D. Gibbon : Imperial College London Intermittency, cascades and thin sets in 3L TPIMP-ICTS 2020 3/17



Visualization from the TAMU 4096° data-base : Courtesy of Diego Donzis

Figure: The enstrophy |w;|? (red) & the energy dissipation e = 2v5; ;S; ; (blue-green) at
Re, = 1000.
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Some history of large-scale 3D NSE computations

Just for the record :
@ Orszag & Patterson 1972;
@ Kerr 1985;
© Eswaran & Pope 1988
Q Jimenez et al 1993 ;
©@ Moin & Mahesh (Ann Rev Fluid Mech 20, 1998) ;
@ Kurien & Taylor 2005;
@ Ishihara, Gotoh, Kaneda (Ann Rev Fluid Mech 2009) ;

@ A 40962 computation by Donzis, Yeung & Sreenivasan 2012 at TAMU
using 10° processors.

© Hunt, Ishihara, Worth & Kaneda (2013, 2017). Latest is an 80003
computation — Ishihara, Elsinga & Hunt (PrRS 2020).
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Estimates of the energy dissipation rate
We begin with the forced 3D NSEs on a periodic domain V = [0, L]*:

(Or+u-VIu+ VP =vAu+ f(x), divu=0=divf.

Formally, we find the energy equation by dotting u across the NSEs::

2dt/|u|2dV_—z//|Vu\2dV+/u fdv

How do we deal with [;, u- fdV? Use the Cauchy-Schwarz inequality to write

1/2
‘/ u. de‘ < ul2)lfll2,  where  |fllo= (/ f2dV>
\Z %

Thus, upon time averaging (-); = T~ fOT - dt, we have

</ |Vu2dV> < {Jullolifll)y + O(T) .
AV T
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Some definitions for 3D NSEs

uL L3Fms
_ . _ 2 _ -3 2
Re=—-; Gr=—75, U2 = L3 (||ullB) -
A /. fiel
Reynolds No Grashof No verage vel. field

Thus the energy dissipation rate £ per unit volume is

E=vL® </ Vu|2dV> <L *PGrRe+ O (T).
% T

Doering & Foias (2002) have shown that for NS-solns Gr < ¢ Re?.
£ <cL 2 [Re® + O (Re?)] Gr — o,

from which we find an estimate for the inverse Kolmogorov length
& 1/4
-1 _ 3/4
L\, = (y3) < cRe*/*.

The u.b. coincides with K41. Question : in the NS-sense, are there scales
smaller than this?
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Turbulent cascades & length-scales smaller than \,?

/N /\ e eron _ _ _
[ % [ ] ) Numerical simulations of the 3D

|
[k/ \\) \\/’ Navier-Stokes equations show that
f\/ x/\ (\/ x/\ \/ %/\‘ ey finer and finer vortical structures ap-
( b )

pear as resolution increases involving
inverse scales much smaller than \g.

\ Energy
dissipation

@ Richardson (1922) & K41 believed that viscosity ultimately halts this
process (Frisch 1995) — Peter Lynch‘s book on Richardson 2006.

@ Mandelbrot (1974) suggested that the cascade process is fractal : i.e.

the inverse length scales associated with the cascades of vorticity
diverge to infinity.

Question : For NSEs, is Richardson’s parody of Swift'’s poem true:

Big whirls have little whirls that feed on their velocity, and
little whirls have lesser whirls and so on to viscosity.

In other words, is there a finite limit or do vortices spin down to mol-scales?
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Cascades & higher derivatives

A cascade is a sequential process that involves vorticity & strain being driven
down to smaller length scales. This process should show up in estimates of
both spatially & temporally averaged gradients of u(x, t).

Define a doubly-labeled set of norms in dimensionless form

2m

F — 71L1/a"’m \v4l — S,
nm =V || uHZma Qnm 2m(n+1)_3a

for1 <n<ocoand 1 < m< oo, where
1/2m
19Ul = (/ |V”u2’”dv) .
v

@ Derivatives are sensitive to ever finer length scales in the flow.

© Higher values of m pick out the larger spikes, with the m = oo case
representing the maximum norm.
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Invariance and Leray’s weak solutions

The NSEs have the scale invariance (on the whole domain) :
u(x, t) = X Tu (x/, t/)?) = Fom— Fom.
Thus the F, ,, are invariant at every length and time scale in the flow.
Theorem (JDG 2018)
With the definition o, m = Zm(,;i% and for
@ n>1withl1 <m<

@ n=0with3<m< oo,

Leray’s weak solutions of the 3D NSEs satisfy

(Fom™ 7 < CamRe®*+ O (T71) .

JDG, J. Nonlin. Sci., 29(1), 215-228, 2019.
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Historical Table of weak solution results
Note that a1 1 = 2 gives the standard ‘Leray’s energy inequality’ result

(Ff1); =v72L{|Vu|5); < cRe®.

H n, m ‘ anm = m(:ﬁ Known for weak H
n=0, M= oo Q00 =1 (JJulloo) + < cL~TvRES Tartar78
— _ 2 @0,m —1,,00.m RE3
n=0,m>3 | agm= 2" (lullgy™) < L-'voonRe
n=1, m=1 ajg =2 <F121>T<0112L—‘,‘:n‘e3 Leray34

n=1,m>1 a1m = 20 (Dm)t < cRe® JDG2011
J
n>1, m=1 ong = 5 <H,,27”(‘ > < vt ~1Re® FGT81
T

Table: Estimates for a range of nand m.
Concerning the Dm = Fy -
@ Donzis, Gupta, JDG, Kerr, Pandit & Vincenzi, JFM (2013); Nonl'y (2014).
@ For 3D Euler: Kerr JFM, 729, R2, (2013).
@ JDG, J. Nonlin. Sci., 29(1), 215-228, 2019.
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Strong solutions?

Theorem

Foranyn>1&1<m<oo;(ii)forn=0&3/2 < m< oo, sufficient
conditions for strong solutions of the 3D NSEs to exist are

<Ff,?n'}’"‘ >T < 0.

The Prodi-Serrin condition for regularity?? If u € LP[(0, T), L9 then 3 a
unigue smooth soln if p and g obey

2 3
—+—-=1, > 3.
p q 7

Choose n = 0 with p = 2ag,, and g = 2m then

2 3

LI aY
20[0’,” 2m
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Definition of a sequence of length scales ), ;(f)
Define a set of t-dependent length-scales {A\n, m(f)} s.t.

3
AT2m(n+1)+3 2m _ <i> Hn,m where Hn,m :/ |V ul?dv
%

n,m
)\n.m
2m

+1
(LA;},,)" = Fom, anm= ——
’ 2m(n+1) -3

Lemma
For weak solutions .
<LA,;J,,>T < cpmRe™anm 4+ O (T‘1) .

when:i)n>1and1 < m< oco;i)n=0and3 < m< co.

The upper bound has a finite limit: Richardson and Kolmogorov were correct!

. 3
lim —— — 3
nm—oo (N + 1)on,m

Ak ~ 1mm while mean free paths are ~ 5 x 10~3mm = 50nm. Thus, 3 a bandwidth of realistic
Re for these estimates to lie within the validity of the NSE.
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Turbulence in D dimensions?

@ In 1978 Fournier and Frisch introduced the idea of turbulence in D
dimensions where D is no longer an integer but restricted to D > 2.
They achieved this by analytically continuing the Taylor expansion in
time of the energy spectrum E(t), assuming Gaussian initial conditions.

@ The idea of a non-integer dimension has taken root in the many papers
on the beta, bi-fractal and multi-fractal models — see Frisch 1995.

© Can the Navier-Stokes estimates be found on a domain of non-integer
dimension?

» In a fully rigorous sense, the answer is in the negative.

» For instance, there are no proofs of the Divergence Theorem or the
Sobolev inequalities on fractal domains.
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A result in integer D dimensions

Estimates made so far are true for weak solutions in a D = 3 domain. How

can we generalize this to a D-dim domain for D = 1,2, 37

Fomp = v~ LYo [V Ulom,  apmp = 2m(ni"1)_D .
The Fp m,p possess the same invariance properties as Fp, .
Theorem

ForD=2,3,andforn>1 and1 < m < co, we have the estimate

<F(47D)an.m,D>T < G o Re® .

n,m,D

For D = 1 the same result holds for Burgers’ equation.

JDG : Turbulent cascades & thin sets in 3D NS-turbulence EPL 2020.
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Scaling of the exponent in integer D dimensions

@ The above Theorem shows how the exponent of Fn.m p scales with D.

©@ The surprising but crucial factor of 4 — D in the exponent multiplying
anm,p deserves some remarks:

© When D = 3, the factor of 4 — D is simply unity ;
© When n= m =1 this factor cancels to make (4 — D)« 1 p = 2 for every
value of D, as it should. It also furnishes us with the correct bound on
the averaged energy dissipation rate £.
© When D = 2 we achieve the
[(4 - D)an,m,D]Dzz = 2Oln,m,2

The factor of 2 in the upper bound gives us full regularity. Thus the case
D = 2 is critical for regularity, as is well-known.
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More on scaling in D dimensions

Examine the exponent of Fj, , p : one finds that

2m(4 — D)

(4 — D)apmp = m

increases as D\, 0.

@ An increasing exponent of £, ,, implies more, not less, regularity. This is
the direction of increasing dissipation.

@ This suggests that a flow may adjust itself to find the smoothest, most
dissipative set on which to operate.

@ This also runs counter to a commonly held theory of viscous turbulence

in which singularities have been long-standing candidates as the
underlying cause of turbulent dynamics.
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