Intermittency, cascades and thin sets in 3D Navier-Stokes turbulence

J. D. Gibbon: Imperial College London

TPIMP-ICTS 2020

Structure of this talk

The 3D incompressible Navier-Stokes equations

Consider the 3D Navier-Stokes equations in the domain $[0, L]_{per}^3$

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = \nu \Delta \mathbf{u} - \nabla \mathbf{p} + \mathbf{f}(\mathbf{x})$$
 div $\mathbf{u} = 0$ (div $\mathbf{f} = 0$)

- I became interested in intermittency after reading Batchelor & Townsend (1949) and the multi-fractal approach described in Uriel's book (1995).
- ② A generation of computations of the 3*D* incompressible NSEs on a periodic cube $[0, L]_{per}^3$ show the same typical *intermittent behaviour* in the vorticity and energy dissipation fields:
 - ▶ Intense regions begin to flatten into quasi-2*D* pancakes;
 - ► These pancakes then roll up into tubular/filamentary structures which ultimately become even finer & begin to fragment.
- I will address how this visual manifestation of intermittency could be connected to NS weak solns and invariant scaling.

Plot courtesy of J. R. Picardo and S. S. Ray at ICTS

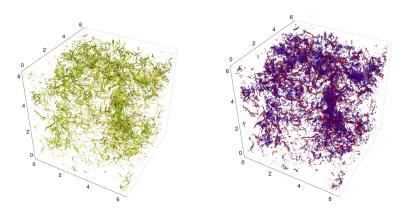


Figure: Left: snapshot of the energy dissipation field $\varepsilon=2\nu S_{i,j}S_{j,i}$ of a forced 512³ NS flow at $Re_\lambda=196$ which is colour-coded such that yellow is 4 times the mean and blue denotes 6 times the mean. Right: the field $Q=\frac{1}{2}\left(|\omega|^2-|S|^2\right)$ with colours corresponding to $-2Q_{rms}$ (blue) and $5Q_{rms}$ (red). Plot courtesy of J. R. Picardo and S. S. Ray.

Visualization from the TAMU 4096³ data-base : Courtesy of Diego Donzis

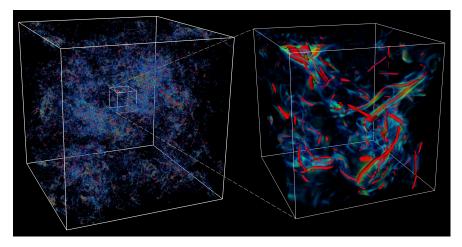


Figure: The enstrophy $|\omega_i|^2$ (red) & the energy dissipation $\varepsilon = 2\nu S_{i,j} S_{j,i}$ (blue-green) at $Re_{\lambda} = 1000$.

Some history of large-scale 3D NSE computations

Just for the record:

- Orszag & Patterson 1972;
- Kerr 1985;
- Second Second
- Jimenez et al 1993;
- Moin & Mahesh (Ann Rev Fluid Mech 20, 1998);
- Kurien & Taylor 2005;
- Ishihara, Gotoh, Kaneda (Ann Rev Fluid Mech 2009);
- A 4096³ computation by Donzis, Yeung & Sreenivasan 2012 at TAMU using 10⁵ processors.
- Hunt, Ishihara, Worth & Kaneda (2013, 2017). Latest is an 8000³ computation Ishihara, Elsinga & Hunt (PrRS 2020).

Estimates of the energy dissipation rate

We begin with the forced 3D NSEs on a periodic domain $V = [0, L]^3$:

$$(\partial_t + \boldsymbol{u} \cdot \nabla)\boldsymbol{u} + \nabla P = \nu \Delta \boldsymbol{u} + \boldsymbol{f}(\boldsymbol{x}),$$
 div $\boldsymbol{u} = 0 = \operatorname{div} \boldsymbol{f}.$

Formally, we find the energy equation by dotting \boldsymbol{u} across the NSEs:

$$\frac{1}{2}\frac{d}{dt}\int_{\mathcal{V}}|\boldsymbol{u}|^{2}\,dV=-
u\int_{\mathcal{V}}|\nabla\boldsymbol{u}|^{2}\,dV+\int_{\mathcal{V}}\boldsymbol{u}\cdot\boldsymbol{f}\,dV$$

How do we deal with $\int_{\mathcal{V}} \mathbf{u} \cdot \mathbf{f} \, dV$? Use the Cauchy-Schwarz inequality to write

$$\left| \int_{\mathcal{V}} \boldsymbol{u} \cdot \boldsymbol{f} \, dV \right| \leq \|\boldsymbol{u}\|_2 \|\boldsymbol{f}\|_2, \qquad \text{where} \qquad \|\boldsymbol{f}\|_2 \equiv \left(\int_{\mathcal{V}} |\boldsymbol{f}|^2 \, dV \right)^{1/2}$$

Thus, upon time averaging $\langle \cdot \rangle_T = T^{-1} \int_0^T \cdot dt$, we have

$$\nu \left\langle \int_{\mathcal{V}} |\nabla \boldsymbol{u}|^2 \, dV \right\rangle_T \leq \left\langle \|\boldsymbol{u}\|_2 \|\boldsymbol{f}\|_2 \right\rangle_T + O\left(T^{-1}\right) \, .$$

Some definitions for 3D NSEs

Thus the energy dissipation rate \mathcal{E} per unit volume is

$$\mathcal{E} = \nu \textbf{L}^{-\textbf{3}} \left\langle \int_{\mathcal{V}} |\nabla \textbf{\textit{u}}|^2 dV \right\rangle_{\mathcal{T}} \leq L^{-4} \nu^3 \textit{GrRe} + O\left(T^{-1}\right) \,.$$

Doering & Foias (2002) have shown that for NS-solns $Gr \leq c Re^2$.

$$\mathcal{E} \leq c L^{-4} \nu^3 \left[Re^3 + O \left(Re^2 \right) \right] \qquad Gr \to \infty,$$

from which we find an estimate for the inverse Kolmogorov length

$$L\lambda_k^{-1} = \left(rac{\mathcal{E}}{
u^3}
ight)^{1/4} \leq c\,Re^{3/4}\,.$$

The u.b. coincides with K41. **Question:** in the NS-sense, are there scales smaller than this?

Turbulent cascades & length-scales smaller than λ_k ?

Numerical simulations of the 3D Navier-Stokes equations show that finer and finer vortical structures appear as resolution increases involving inverse scales much smaller than λ_k .

- Richardson (1922) & K41 believed that viscosity ultimately halts this process (Frisch 1995) Peter Lynch's book on Richardson 2006.
- Mandelbrot (1974) suggested that the cascade process is fractal: i.e., the inverse length scales associated with the cascades of vorticity diverge to infinity.

Question: For NSEs, is Richardson's parody of Swift's poem true:

Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity.

In other words, is there a finite limit or do vortices spin down to mol-scales?

Cascades & higher derivatives

A cascade is a sequential process that involves vorticity & strain being driven down to smaller length scales. This process should show up in estimates of both spatially & temporally averaged gradients of $\boldsymbol{u}(\boldsymbol{x}, t)$.

Define a doubly-labeled set of norms in dimensionless form

$$F_{n,m} = \nu^{-1} L^{1/\alpha_{n,m}} \|\nabla^n \boldsymbol{u}\|_{2m}, \qquad \qquad \alpha_{n,m} = \frac{2m}{2m(n+1)-3},$$

for $1 \le n < \infty$ and $1 \le m \le \infty$, where

$$\|\nabla^n \boldsymbol{u}\|_{2m} = \left(\int_V |\nabla^n \boldsymbol{u}|^{2m} dV\right)^{1/2m}.$$

- Derivatives are sensitive to ever finer length scales in the flow.
- 2 Higher values of m pick out the larger spikes, with the $m=\infty$ case representing the maximum norm.

Invariance and Leray's weak solutions

The NSEs have the scale invariance (on the whole domain):

$$\mathbf{u}(\mathbf{x}, t) \to \lambda^{-1} \mathbf{u}(\mathbf{x}/\lambda, t/\lambda^2) \qquad \Rightarrow \qquad F_{n,m} \to F_{n,m}.$$

Thus the $F_{n,m}$ are invariant at every length and time scale in the flow.

Theorem (JDG 2018)

With the definition $\alpha_{n,m} = \frac{2m}{2m(n+1)-3}$, and for

- $n \ge 1$ with $1 \le m \le \infty$
- n = 0 with $3 < m \le \infty$,

Leray's weak solutions of the 3D NSEs satisfy

$$\left\langle F_{n,m}^{\alpha_{n,m}} \right\rangle_T \leq c_{n,m} Re^3 + O\left(T^{-1}\right)$$
.

JDG, J. Nonlin. Sci., 29(1), 215-228, 2019.

Historical Table of weak solution results

Note that $\alpha_{1,1}=2$ gives the standard 'Leray's energy inequality' result

$$\langle F_{1,1}^2 \rangle_T = \nu^{-2} L \langle \| \nabla \boldsymbol{u} \|_2^2 \rangle_T \leq c \operatorname{Re}^3.$$

n, m	$\alpha_{n,m} = \frac{2m}{2m(n+1)-3}$	Known for weak
$n=0, m=\infty$	$\alpha_{0,\infty}=1$	$\langle \ \boldsymbol{u} \ _{\infty} \rangle_T \leq c L^{-1} \nu Re^3$ Tartar78
n = 0, m > 3	$\alpha_{0,m} = \frac{2m}{2m-3}$	$\left\langle \ \boldsymbol{u} \ _{2m}^{\alpha_{0,m}} \right\rangle_{\mathcal{T}} \leq L^{-1} u^{\alpha_{0,m}} Re^3$
n = 1, m = 1	$\alpha_{1,1} = 2$	$\left\langle F_{1,1}^2 \right\rangle_T < c \nu^2 L^{-1} Re^3 \text{Leray34}$
$n=1, m\geq 1$	$\alpha_{1,m} = \frac{2m}{4m-3}$	$\langle D_m \rangle_T \le c Re^3 \text{ JDG2011}$
$n \ge 1, \ m = 1$	$\alpha_{n,1} = \frac{2}{2n-1}$	$\left\langle H_{n,1}^{\frac{1}{2n-1}} \right\rangle_T \leq \nu^{\alpha_{n,1}} L^{-1} Re^3 \text{ FGT81}$

Table: Estimates for a range of *n* and *m*.

Concerning the $D_m = F_{1,m}$:

- Donzis, Gupta, JDG, Kerr, Pandit & Vincenzi, JFM (2013); Nonl'y (2014).
- For 3D Euler: Kerr JFM, **729**, R2, (2013).
- JDG, J. Nonlin. Sci., 29(1), 215–228, 2019.

Strong solutions?

Theorem

For any $n \ge 1$ & $1 \le m \le \infty$; (ii) for n = 0 & $3/2 \le m \le \infty$, sufficient conditions for **strong solutions** of the 3D NSEs to exist are

$$\left\langle \mathsf{F}_{\mathsf{n},\mathsf{m}}^{\mathsf{2}lpha_{\mathsf{n},\mathsf{m}}} \right\rangle_{\mathsf{T}} < \infty$$
 .

The Prodi-Serrin condition for regularity?? If $u \in L^p[(0, T), L^q]$ then \exists a unique smooth soln if p and q obey

$$\frac{2}{p} + \frac{3}{q} = 1, \qquad q > 3.$$

Choose n = 0 with $p = 2\alpha_{0,m}$ and q = 2m then

$$\frac{2}{2\alpha_{0\,m}} + \frac{3}{2m} = 1$$
.

Definition of a sequence of length scales $\lambda_{n,m}(t)$

Define a set of *t*-dependent length-scales $\{\lambda_{n,m}(t)\}$ s.t.

$$\lambda_{n,m}^{-2m(n+1)+3} \nu^{2m} = \left(\frac{L}{\lambda_{n,m}}\right)^{-3} H_{n,m} \quad \text{where} \quad H_{n,m} = \int_{\mathcal{V}} |\nabla^n \mathbf{u}|^{2m} dV$$
$$\left(L\lambda_{n,m}^{-1}\right)^{n+1} = F_{n,m}, \quad \alpha_{n,m} = \frac{2m}{2m(n+1)-3}.$$

Lemma

For weak solutions

$$\left\langle L\lambda_{n,m}^{-1}\right\rangle_{T}\leq c_{n,m}Re^{\frac{3}{(n+1)\alpha_{n,m}}}+O\left(T^{-1}\right)$$
.

when: i) $n \ge 1$ and $1 \le m \le \infty$; ii) n = 0 and $3 < m \le \infty$.

The upper bound has a finite limit: Richardson and Kolmogorov were correct!

$$\lim_{\mathbf{n},\mathbf{m}\to\infty}\frac{\mathbf{3}}{(\mathbf{n}+\mathbf{1})\alpha_{\mathbf{n},\mathbf{m}}}\to\mathbf{3}$$

 $\lambda_k \sim$ 1mm while mean free paths are $\sim 5 \times 10^{-5}$ mm = 50nm. Thus, \exists a bandwidth of realistic *Re* for these estimates to lie within the validity of the NSE.

Turbulence in D dimensions?

- ① In 1978 Fournier and Frisch introduced the idea of turbulence in D dimensions where D is no longer an integer but restricted to $D \ge 2$. They achieved this by analytically continuing the Taylor expansion in time of the energy spectrum $E_k(t)$, assuming Gaussian initial conditions.
- The idea of a non-integer dimension has taken root in the many papers on the beta, bi-fractal and multi-fractal models – see Frisch 1995.
- Oan the Navier-Stokes estimates be found on a domain of non-integer dimension?
 - ► In a fully rigorous sense, the answer is in the negative.
 - ► For instance, there are no proofs of the Divergence Theorem or the Sobolev inequalities on fractal domains.

A result in integer D dimensions

Estimates made so far are true for weak solutions in a D=3 domain. How can we generalize this to a D-dim domain for D=1,2,3?

$$F_{n,m,D} = \nu^{-1} L^{1/\alpha_{n,m,D}} \|\nabla^n \boldsymbol{u}\|_{2m}, \qquad \alpha_{n,m,D} = \frac{2m}{2m(n+1)-D}.$$

The $F_{n,m,D}$ possess the same invariance properties as $F_{n,m}$.

Theorem

For D = 2, 3, and for $n \ge 1$ and $1 \le m \le \infty$, we have the estimate

$$\left\langle \mathit{F}_{\mathit{n,m,D}}^{(4-\mathit{D})lpha_{\mathit{n,m,D}}}
ight
angle _{\mathit{T}}\leq \mathit{c}_{\mathit{n,m,D}}\,\mathit{Re}^{3}\,.$$

For D = 1 the same result holds for Burgers' equation.

JDG: Turbulent cascades & thin sets in 3D NS-turbulence EPL 2020.

Scaling of the exponent in integer D dimensions

- 1 The above Theorem shows how the exponent of $F_{n,m,D}$ scales with D.
- 2 The surprising but crucial factor of 4-D in the exponent multiplying $\alpha_{n,m,D}$ deserves some remarks :
- **3** When D = 3, the factor of 4 D is simply unity;
- **1** When n = m = 1 this factor cancels to make $(4 D)\alpha_{1,1,D} = 2$ for every value of D, as it should. It also furnishes us with the correct bound on the averaged energy dissipation rate \mathcal{E} .
- **1** When D = 2 we achieve the

$$[(4-D)\alpha_{n,m,D}]_{D=2} = 2\alpha_{n,m,2}$$

The factor of 2 in the upper bound gives us full regularity. Thus the case D=2 is critical for regularity, as is well-known.

More on scaling in D dimensions

Examine the exponent of $F_{n,m,D}$: one finds that

$$(4-D)\alpha_{n,m,D} = \frac{2m(4-D)}{2m(n+1)-D}$$
 increases as $D \searrow 0$.

- An increasing exponent of $F_{n,m}$ implies more, not less, regularity. This is the direction of increasing dissipation.
- This suggests that a flow may adjust itself to find the smoothest, most dissipative set on which to operate.
- This also runs counter to a commonly held theory of viscous turbulence in which singularities have been long-standing candidates as the underlying cause of turbulent dynamics.