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INTRODUCTION



• The Ryu-Takayanagi formula provides an expression for the

entanglement entropy across sub-regions, an intrinsically

quantum object in terms of a classical quantity:

the area of the minimal surface.



• Consider the Ryu-Takayanagi formula in the context of

AdS/CFT:

The formula can in principle be tested using computations in

the dual CFT.

SCFT
EE (A) =

Area(γA)

4GN

A is the subregion of interest in the boundary CFT and

SCFT
EE (A) is corresponding entanglement entropy.

γA is the Ryu-Takayanagi surface whose boundary is A.

GN is the Newton’s constant in the bulk AdS.



• This formula admits a well known and widely used

modification at order G0
N .

SCFT
EE (A) =

Area(γA)

4GN
+ SEE

bulk(ΣA).

ΣA is the region which extends between γA and A. SEE
bulk is

the entanglement of all fields present in the bulk effective field

theory.

Faulkner, Lewkowycz and Maldacena (2013)
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Figure: The t = 0 slice of AdS3. We consider the entanglement between

system A and Ā in the boundary. The minimal surface γA is the geodesic in

the bulk connecting the end points of A. SEE
bulk is obtained by tracing over bulk

fields in ΣĀ.



• The FLM proposal and its generalizations have played an

fundamental role in our recent understanding of quantum

gravity and the information paradox.

• The generalizations involve extending the formula to any

sub-region in a theory of quantum gravity and the notion of

quantum extremal surface.



• The FLM formula is within the framework of AdS/CFT.

We can in principle test this by evaluating entanglement

entropy of various states in the CFT and comparing them with

the result from the FLM formula.

• Apart from the verification of the FLM formula what can we

learn from performing tests.



•We would need to develop techniques to study excited states

in the CFT.

Using the replica trick, this involves knowing analytically the

2n-point function of operators creating the excitations in the

CFT.

•We would need to develop techniques to evaluate SEE
bulk(ΣA).

This involves performing a trace in the bulk geometry including

excitations.



• In the CFT we would not naturally obtain a split of the

entanglement separately into Area(γA)
4GN

and SEE
bulk(ΣA).

In the bulk we can examine how the geometric part and the

quantum part combines together to reproduce the CFT answer.



• Considering a linear combination of the excitations:

We would be able to verify that the precise non-linear behaviour

of the 2n-point in the CFT is reproduced by an apparently a

very different structure in the bulk.



• Considering linear combination of states which are related by

symmetries, say the conformal symmetries, we can construct

situation in which the isometries of the bulk are broken.

Test the FLM formula in less symmetric situations.



• The one instance the FLM formula has been tested is in the

context of AdS3/CFT2.

Belin, Iqbal, Lokhande (2018)

The entanglement entropy of the excitation of the CFT vacuum

by a primary operator, was shown to agree with that given by

the FLM formula in the leading and sub-leading short distance

expansion.

The operator dimensions of the primary h << c and it was

assumed to be a generalised free field.

In the bulk the excitation is dual to a single particle excitation of

a minimally coupled scalar field.



•We will generalize this observation and also extend the

methods both in the CFT and gravity for other single particle

excitations as well as linear combinations of single particle

excitations.

In general the excitations break the isometries in the bulk.



• In all cases the FLM formula precisely reproduces the CFT

result.

The agreement involves interesting cancellations of

contributions from the 2 terms in the FLM formula
Area(γA)

4GN
and SEE

bulk(ΣA).



• In the bulk, the agreement requires evaluation of the back

reacted geometry to compute corrections to Area(γA)
4GN

• To evaluate SEE
bulk(ΣA) we use the map from global AdS to the

Rindler BTZ as in

Belin, Iqbal, Lokhande (2018)

For general single particle excitations, we would need to

generalise the computation of Bogoliubov coefficients which

relate the excitations in these spaces.



ENTANGLEMENT:

EXCITED STATES IN CFT

Alcaraz, Berganza, Sierra (2011, 2011), N. Lashkari (2014), G. Sáorsi, T.

Ugajin (2016),

B. G. Chowdhury, J. R. David (2022)



Consider the state

O|0〉 = |O〉

where O is an operator in CFT2 on the cylinder It can be a

primary, its descendants or composites.

We consider the reduced density matrix

ρO = Tr[0,2πx ]

(
(|O〉〈O|

)
.

The entangling interval is of length 2πx .

In the path integral, the density matrix is represented as



Figure: This figure shows the cut cylinder which represents the path

integral for the density matrix ρO.



• The expression for the entanglement entropy, which contains

the subtraction of the entanglement entropy of the vacuum is

Sn(ρO) =
1

1− n
log
( Trρn

O
Trρn

(0)

)
, S(ρ) = lim

n→1
Sn(ρO).

Here ρ(0) refers to the density matrix without any operator

insertions.



• From the path integral and conformal transformations the ratio

of the traces of the density matrices can be written as the

following 2n-point function on the plane

Trρn
O

Trρn
(0)

=
1(

〈O|O〉
)n

〈 n−1∏
k=0

w ◦ O(wk )
n−1∏
k ′=0

ŵ ◦ O∗(ŵk )
〉
.

Here w ◦ O(z) refers to the action of the conformal

transformation w(z) on the operator O

If O is a primary of weight h, then w ◦ O(z) = (∂w
∂z )hO(w(z))



• The map w(z) takes the complex plane to a wedge of angle

2π/n. It glues the n cylinders together.

w(z) =

(
z − u
z − v

) 1
n

,

and

u = e2πix , v = 1.

ŵ ◦ O(ẑ) refers to the conformal transformation

ŵ(ẑ) =

(
1
ẑ − u
1
ẑ − v

) 1
n

.



Under this map, the operators placed at t → −∞ on each

replica cylinder are mapped to

wk = e
2πi(k+x)

n = lim
z→0k

(
z − u
z − v

) 1
n

,

k labels the wedges.

Similarly, the operators placed at t → +∞ on each replica

cylinder are mapped to

ŵk = lim
ẑ→0̂k

(
1
ẑ − u
1
ẑ − v

) 1
n

= e
2πik

n .



Figure: The figure shows the uniformized plane for the n = 8 replica surface. Each cylinder is mapped to a

wedge on the uniformed plane. There are 2n operators with a pair of operators on each wedge. The operators are

located on the unit circe separated by an arc length of 2πx .



• The formulation is general.

If the operators are primary, it is easy to perform the conformal

transformations. If they are descendants or composites , it is

harder to evaluate.

The 2n-point function is difficult to evaluate,

only in the case of the free boson, free fermion, such

correlators are known.



• However one can set up a systematic expansion in short

distance x of the 2n point function.

• The leading term is given by:

factorizing the 2n point function into n, 2-point functions on

each wedge



Figure: A n = 8 uniformized plane showing the contraction structure of the 2n-point function for the leading

term in the single interval entanglement entropy. The 2n-point function is factored into n 2-point function with pairs of

operators on the same wedge.



• The sub-leading contribution is obtained by factorizing the

correlator as demonstrated in the figure



Figure: The figure shows a n = 8 uniformized plane with the factorisation of the 2n-point function into (n − 2),

2-point functions which are contracted on the same wedge and a 4-point functions involving operators on a pair of

wedges which are in blue. The contributions from all such pairs are summed over to obtain the sub-leading

contribution to the single interval entanglement entropy.



• In equations, the 2n point function is expanded as

C2n = C(0)
2n + C(1)

2n + · · · ,

C(0)
2n =

n−1∏
k=0

〈w ◦ O(wk )ŵ ◦ O∗(ŵk )〉,

C(1)
2n =

n−1∑
i,j=0,i 6=j

 n−1∏
k=0,k 6=i,j

〈w ◦ O(wk )ŵ ◦ O∗(ŵk )〉

〈w ◦ O(wi )w ◦ O∗(ŵi )w ◦ O(wj )w ◦ O∗(ŵj )
〉

c
.

where the subscript ‘c’ refers to the connected correlator.

The first sub-leading correction arises from the 4-point function

of the operators on the replica geometry in which a pair of

operators are placed on one of the wedges and another pair in

another wedge.



• Once the 2n-point function is evaluated we can substitute it in

the expression for the entanglement entropy and obtain

S(ρO) = lim
n→1

1
1− n

log
( C2n

(〈O|O〉)n

)
.



• The four point function is evaluated using the OPE

expansion.
For eg in case of the primaries in the j th, k th wedge.

〈w ◦ O(wj )ŵ ◦ O∗(ŵj )w ◦ O(wk )ŵ ◦ O∗(ŵk )〉c = (Bj B̂j Bk B̂k )h ×

1

(wj − ŵj )
2h(wk − ŵk )2h

∞∑
q=1

χvac,qw2
2F1(q, q, 2q,w) +

∑
p

COOOp C
Op
OOwhpF(c, h, hp,w)

 .

The cross ratio w is defined as

w =
(wj − ŵj)(wk − ŵk )

wj − wk )(ŵj − ŵk )
=

(
sin πx

n
sin π

n (j − k)

)2

.



• The first term in the round bracket is the expansion of the

Virasoro block corresponding to the stress tensor exchange in

terms of the global SL(2,C) blocks represented by the

hypergeometric function 2F1(q,q,2q,w).

The first two coefficients which is sufficient for our purpose are

χ1 = 0, χ2 =
2h2

c
,

where c is the central charge of the CFT.



• The second term in the round bracket represent the

contribution of the Virasoro blocks of the primaries of dimension

hp of the theory.

COOOpCOP
OO is the product of the corresponding structure

constants.

The Virasoro block admits the following expansion

F(c,h,hp; w) = 1 + O(w).

The B ’s are derivatives of the conformal transformations to the

uniformised plane.

Considered operators of dimensions (h,0) for simplicity.



• The CFT dependence is encoded in the structure constants.

• To apply this result to holographic CFT’s there are 2 cases we

can consider

Generalised free fields h << c :

The exchanged operator is the composite : O2 : with hp = 2h.

The product of structure constants

COOOpCOp
OO = 2, hp = 2h,



Heavy states:

The second case we can consider is h ∼ O(c),

The contribution from the stress tensor exchange is the leading

contribution.

•We have obtained results for both cases, but we will focus on

perturbative excitations or generalised free field.



CFT RESULTS



• Consider states

Ll
−1|h,0〉 = ∂lO(h,0)|0,0〉

in an arbitrary CFT.

Ŝ(ρ
O[−l] ) = 2(h + l)(1− πx cotπx)−

8h2

15c
[D
O[l] (h, 2)]2(sinπx)4

−COOOp C
Op
OO [D

O[−l] (h, hp)]2
Γ( 3

2 )Γ(hp + 1)

2Γ(hp + 3
2 )

(sinπx)2hp + · · · ,

D
∂ lO(h, hp) =

l! Γ(2h)

Γ(2h − hp)Γ(2h + l)

l∑
k=0

Γ(2h − hp + k)

k!

[
Γ(hp + l − k)

(l − k)!Γ(hp)

]2

.

We have verified this by direct computation in the free boson

theory for the operator eikX .



Consider the linear combination in a generalised free field

theory

|Ψ̂〉 =
∞∑

l=0

clLl
−1|h,h〉.

S(ρ|Ψ̂〉) =
∞∑

l,l′=0

cl c
∗
l′ ĝll′ (x)

〈Ψ̂|Ψ̂〉
+ 2h(1− πx cotπx)

−
Γ( 3

2 )Γ(4h + 1)

Γ(4h + 3
2 )

(πx)8h

〈Ψ̂|Ψ̂〉2
×

 ∞∑
l,l′=0

cl c
∗
l′Dll′ (h, 2h)

2

+ · · · .

There coefficients gll ′(x) and

Dll ′(h,2h) =
Γ(2h + l)Γ(2h + l ′)(

Γ(2h)
)2 .



ĝll′ (x) = ∂
l
z∂

l′
ẑ Ĝ(z, ẑ)

∣∣∣∣
(z,ẑ)=(0,0)

Ĝ(z, ẑ) = −
h

(1− zẑ)2h

{
2 + log

( z − u

z − v

)
+ log

( 1− uẑ

1− vẑ

)

+
2

(u − v)(1− zẑ)

[
(z − u)(1− vẑ) log

( z − u

z − v

)
+ (v − z)(1− uẑ) log

( 1− uẑ

1− vẑ

)]}
.



• A similar expression can be written for the entanglement for

semi-classical states, h >> c.

We have cross checked the results for these coefficients by

comparing our results to the entanglement entropy certain

coherent states, Bañados states evaluated by:

Caputa, Ge (2022)



• The results for the linear combination, which will be the focus

of our discussion in the bulk.

|Φ〉 = c0|h h〉+ c1L−1|h h〉.

Let us write the entanglement entropy as

S(ρ|Φ〉) = S(0)(ρ|Φ〉) + S(1)(ρ|Φ〉),



S(0)(ρ|Φ〉) =
1

|c0|2 + 2h|c1|2
×
([

4h|c0|
2 + 4h(2h + 1)|c1|

2
]

(1− πx cotπx)

+h
[

(c0c∗1 + c1c∗0 ) cotπx + i(c0c∗1 − c1c∗0 )
]

(2πx − sin 2πx)

)
.

S(1)(ρ|Φ〉) = −
Γ( 3

2 )Γ(4h + 1)

Γ(4h + 3
2 )

(sinπx)8h ×
[
|c0 + 2hc1|2

|c0|2 + 2h|c1|2

]2

• Our goal is to reproduce this result using the FLM formula.



SINGLE PARTICLE STATES IN BULK



• A primary and its global descendants are dual to single

particle excitations of a minimally coupled scalar in AdS3.

The metric of global AdS3 is given by

ds2 = −(r2 + 1)dt2 +
dr2

r2 + 1
+ r2dϕ2 ϕ ∼ ϕ+ 2π.



• The equations of motion of the scalar in this background is

given by

(∇2 −M2)φ(x) = 0 .

M2 = 2h(2h − 2)



•We expand the solutions in terms of modes

φ(t , r , ϕ) =
∑
m,n

(
am,ne−iΩm,nteimϕfm,n(r) + a†m,neiΩm,nte−imφf ∗m,n(r)

)
.

m runs over the set of integers due to the periodic boundary

conditions on ϕ.

n labels the radial wave function, n is also quantized,

n = 0,1, · · · .

Ωm,n = 2h + n + |m|



• The canonical commutation relations of φ and φ̇ result in

[am,n,a
†
m,n] = δn,n′δm,m′

Therefore single particle states on the global AdS3 vacuum are

given by

|ψm,n〉 = a†m,n|0〉.

• The wave functions and quantum numbers of a few low lying

modes are



m n fm,n(r) L0 + L̄0 L0 − L̄0

0 0 1
√

2π
(

r2+1
)h 2h 0

0 1 1√
2π

2hr2−1(
r2+1

)h+1 2h + 2 0

0 2 1√
2π

h(2h+1)r4−2(2h+1)r2+1(
r2+1

)h+2 2h + 4 0

1 0
√

hr
√
π
(

r2+1
)h+ 1

2
2h + 1 1

2 0
√

h(2h+1)r2
√

2π
(

r2+1
)h+1 2h + 2 2

Table: This table lists the explicit wave functions of the single particle states for low values of m and n. The last 2 columns lists out the

quantum numbers of L0, L̄0 of the corresponding dual state in the CFT.

The states in the bulk are normalized using the Klein-Gordan inner product.



• From examining the quantum numbers of the state and

comparing normalizations in the CFT and the bulk:

we obtain the following identification

|Φ〉 = c0|h,h〉+ c1L−1|h,h〉

↔ c0|ψ0,0〉+
√

2hc1|ψ1,0〉 ≡ |φ̂〉



BACK REACTED GEOMETRY



• Once we excite global AdS3 vacuum by this state, the energy

density induced by the excited state

back reacts when GN is non-vanishing and deforms the

geometry.

• At the leading oder in GN we can obtain the back reacted

geometry by solving the Einsteins equations with the

expectation value of stress tensor as source.

Rµν −
1
2

gµνR − gµν = 8πGN〈φ̂|Tµν |φ̂〉



• The stress tensor is given by

Tµν =: ∂µφ∂νφ−
1
2

gµν
(

(∇φ)2 + m2φ2
)

:

We can substitute the mode expansions of the scalar field φ

and evaluate the expectation value on any state in particular

the state |φ̂〉



• Note that we have considered the normal ordered stress

tensor.

⇒ This ensures we are insensitive to the UV divergence.

⇒ However this divergence does not dependent on the state,

it is also same for the AdS3 vacuum.

⇒ Since we are interested in the difference in entanglement

entropy between vacuum and the excited state,

⇒ it is sufficient to work with normal ordered stress tensor.



• For definiteness here is the expectation value tt- component

〈φ̂|Ttt |φ̂〉
〈φ̂|φ̂〉

=
1

|c0|2 + 2h|c1|2
1

π

{
2h(2h − 1)

(
r2 + 1

)1−2h
|c0|

2 + 4h2
(

r2 + 1
)−2h (

4h2r2 − 2hr2 + 1
)
|c1|

2

+ 4h2(2h − 1)r
(

r2 + 1
) 1

2−2h
cos(t + ϕ)

(
c1c∗0 + c0c∗1

)
− 4ih2(2h − 1)r

(
r2 + 1

) 1
2−2h

sin(t + ϕ)
(
c1c∗0 − c0c∗1

) }
,

Note the time and angular dependence.

All stress-tensor components need to be evaluated.

We have performed a cross check that the stress tensor

satisfies the conservation law.

Let us examine the energy profile at various angles for

t = 0, c0 = c1 = 1.
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Figure: Expectation value of the energy for the state

|φ̂〉 = c0|ψ0,0〉+
√

2hc1|ψ1,0〉 with c0 = c1 = 1 and t = 0. (a) Energy

density at ϕ = 0. (b) Energy density at ϕ = π
2 . (c) Energy density at

ϕ = π.(d) Energy density at ϕ = 3π
2 . (e) Energy density at ϕ = 2π.



•We solve the Einstein equation at the linear order in GN with

the stress tensor as the source with the metric anstaz

ds2 =
[
1 + r2 + J1(t , r , ϕ)

]
dt2 + 2J2(t , r , ϕ)drdt + 2J3(r)dtdϕ

+
dr2

1 + r2 + J4(t , r , ϕ)
+ r2dϕ2.

The functions Ji can be found, we present the component J4.



J4(t , r , ϕ)=
GN

(|c0|2 + 2h|c1|2)

{
2|c0|2d0,0(r) + 2(2h)|c1|2d1,0(r)

+2
√

2h[R4(r)(c1c∗0 + c0c∗1 ) cos(t + ϕ)− iR̃4(r)(c1c∗0 − c0c∗1 ) sin(ϕ+ t)]

}
.

d0,0(r) = −8h +
8h

(r 2 + 1)2h−1 ,

d1,0(r) = 4
(

4h2r 2 + 2h + 1
)(

r 2 + 1
)−2h

− 4(2h + 1).

R4(r) =
−4
√

2h
√

r 2 + 1
r

+
4
√

2h
(
2hr 2 + 1

)
r (r 2 + 1)2h− 1

2
,

R̃4(r) =
4
√

2h
√

r 2 + 1
r

+
4
√

2h
(
2hr 2 + 1

)
r (r 2 + 1)2h− 1

2
,



• The metric satisfies the following property:

From the metric we can read out boundary stress tensor using

the Fefferman-Graham coordinates.

The boundary stress tensor read out using these co-ordinates

agrees with that of the expectation value of the CFT stress

tensor evaluated in the state |Φ〉.

〈Φ|Ttt (t, ϕ)|Φ〉
〈Φ|Φ〉

= −
c

12
+

2h|c0|2 + 2h(2h + 1)|c1|2

|c0|2 + 2h|c1|2

+
2h

|c0|2 + 2h|c1|2
[

(c∗0 c1 + c0c∗1 ) cos(t + ϕ) + i(c∗0 c1 − c∗1 c0) sin(t + ϕ)
]
.



PERTURBED MINIMAL AREA



•We have a time dependent metric which breaks rotational

symmetry.

To evaluate the perturbed minimal area at order GN , we need

not correct the Ryu-Takayanagi surface.

The shift in the area is given by evaluating the length of the RT

geodesic using the perturbed metric.

δA = −1
2

∫
γA

drJ4(t = 0, r , ϕ)
(r2 − r2

min)
1
2

r(1 + r2)
3
2

,

The integral is along the RT-geodesic.



J4 also depends on the angle we need the explicit equation of

the RT-surface.

rm is the minimum radial distance at the turning point of the RT

surface. It is related to the interval length as

πx = arctan
1
rm

= arccotrm ≡
θ

2
.



rm

I

II

γA ΣAΣĀĀ A
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Figure: The t = 0 slice of AdS3. We consider the entanglement between

system A and Ā in the boundary. The minimal surface γA is the geodesic in

the bulk connecting the end points of A. γA consists of: Branch I, where

ϕ′(r) < 0 and Branch II with ϕ′(r) > 0. When perturbation breaks ϕ isometry

one need to evaluate the minimal area for the above branches separately.



• The equations of the 2 branches of the RT surface are given

by

cosϕ =
r2
m
√

1 + r2 +
√

r2 − r2
m

r(1 + r2
m)

, Branch I,

cosϕ =
r2
m
√

1 + r2 −
√

r2 − r2
m

r(1 + r2
m)

, Branch II.

Performing the integral for the perturbed minimal area, we

obtain



δA

4GN
=

1

|c0|2 + 2h|c1|2
×
([

4h|c0|
2 + 4h(2h + 1)|c1|

2
]

(1− πx cotπx)

+h
[

(c0c∗1 + c1c∗0 ) cotπx + i(c0c∗1 − c1c∗0 )
]

(2πx − sin 2πx)

)

−
Γ( 3

2 )Γ(2h + 1)

Γ(2h + 3
2 )

(πx)4h

(c0|2 + 2h|c1|2)
×
(
|c0|

2 + 2h(c0c∗1 + c∗0 c1) + (2h)2|c1|
2
)

+ · · ·

The leading term precisely agrees with the leading term from

the CFT.



• The 2nd term has a similar structure to that in the CFT but

dependence is (πx)4h not (πx)8h.

Such a term is not there in the CFT result.

It should be cancelled from the contribution in the bulk

entanglement entropy Sbulk(ΣA) ?



BULK ENTANGLEMENT ENTROPY



• If |ψ〉 is the single particle state of interest, then the reduced

density matrix in the bulk is given by

ρbulk = TrΣ̄A

(
|ψ〉〈ψ|

)
.

We need to trace over Σ̄A, the region to the left of γA.

Once this is performed we can evaluate the corresponding

Von-Neumann entropy.



This calculation is non-trivial to do directly.

• It is convenient to go to a co-ordinate system in which the RT

surface becomes a Rindler horizon.

Casini, Huerta, Myers 2011

Then the partial trace over Σ̄A would reduce the density matrix

to a thermal density matrix.

In the presence of excitations, it would reduce to evaluating

thermal n-point functions.



• The map arises by parametrising the AdS3 hyperboloid in 2
different ways as follows

X0 =
√

r 2 + 1 sin t ,

=
√
ρ2 − 1 sinh τ,

X1 =
√

r 2 + 1 cos t ,

= ρ cosh η cosh x +
√
ρ2 − 1 sinh η cosh τ,

X2 = r sin(ϕ− θ

2
),

= ρ sinh x ,

X3 = r cos(ϕ− θ

2
),

= cosh η
√
ρ2 − 1 cosh τ + ρ sinh η cosh x ,



θ is the opening angle of the RT geodesic and related to the

interval πx , the AdS3 hyperboloid is defined by

−X 2
0 − X 2

1 + X 2
2 + X 3

3 = −1

The metric in the (ρ, τ, x) co-ordinates reduces to

ds2 = −(ρ2 − 1)dτ2 +
dρ2

ρ2 − 1
+ ρ2dx2, x ∈ R.

The Rindler BTZ metric, with inverse temperature β = 2π.



We can also obtain the inverse transformation: global AdS3

co-orodinates (r , t , ϕ) to the Rindler BTZ coordinates (ρ, τ, x)

which is given by

r =

√
ρ2 sinh2 x +

(√
ρ2 − 1 cosh η cosh τ + ρ cosh x sinh η

)2
,

t = arctan

(
sinh τ

√
ρ2 − 1

ρ cosh x cosh η +
√
ρ2 − 1 cosh τ sinh η

)
,

ϕ− θ

2
= arctan

(
ρ sinh x√

ρ2 − 1 cosh τ cosh η + ρ cosh x sinh η

)
.



• The usefulness of the Rindler co-ordinates is that:

the horizon at t = 0, ρ = 1 is the image of the Ryu-Takayanagi

geodesic in global AdS3

once we make the identification

cosh η =
1

sin θ
2

=

√
r2
m + 1.



• The Rindler BTZ coordinates does not the cover global AdS.

This can be seen from the equation for ϕ, we have chosen one

branch for the arctan.

Choosing the branch sifted by π covers another part of the

global AdS.

Therefore we have 2 patches, the left and the right Rindler

wedges.



• A scalar field in global AdS will have support in both branches
and therefore will need to be expanded as

φ(ρ, τ, x) =
∑
L,R

∫
ω>0

dωdk
4π2

(
e−iωτbω,k,I(ρ, x)gω,kI(ρ, x) + eiωτb†ω,k,l (ρ, x)g∗ω,k,I(ρ, x)

)
.

(1)

with the commutation relations

[bω,k ,I ,b
†
ω′,k ′,I′ ] = 4π2δ(ω − ω′)δ(k − k ′)δII′ .

The wave functions gω,kI(ρ, x) are known and are

hypergeometric functions.



•We have 2 Rindler wedges, global AdS3 vacuum can be

written as a thermofield double state in the Rindler left and right

vaccua

|0〉 =
∑

n

e−
2πEn

2 |n∗〉L|n〉R.

Inverse temperature is 2π.



• From the fact that the field φ can be expanded in modes in

either the Rindler coordinates or in terms of the global AdS3

coordinates, we must have the relation

am,n =
∑
I,ω,k

(αm,n;ω,k ,Ibω,k ,I + βm,n;α,k ,lb
†
ω,k ,I),

where αm,n,ω,k ,I , αm,n,ω,k ,I

are the Bogoliubov coefficients relating the particle creation and

annihilation operators in the two coordinates.



• The thermofield double satisfies

bω,k ,L|0〉 = e−πωb†ω,−k ,R|0〉, b†ω,k ,L|0〉 = eπωbω,−k ,R|0〉,

Action of the operators on the left wedge can be converted to

the action on the right wedge.

• The global AdS3 vacuum is annihilated by the operators am,n,

we see that Bogoliubov coefficients must satisfy the relations

αω,k ,L = −eπωβ∗ω,−k ,R, β∗ω,k ,L = −e−πωαω,−k ,R.



• These relations allow us to write the single particle state in

terms of an operator acting on the right sector alone

a†m,n|0〉 = |ψm,n〉 =
∑
ω,k

[
(1− e−2πω)α∗m,n;ω,k,Rb†

ω,k,R + (1− e2πω)βm,n;ω,k,Rbω,k,R
]
|0〉.

Since excitations can be written in terms of the right sector

alone, the trace over Σ̄A is easily done.

The trace over the left sector results in a thermal vacuum over

which we have single particle excitation.



For eg. on the thermofield double

ρ0 = TrΣ̄A

(
|0〉〈0|

)
= e−2πHR .

here ĤR is the Hamiltonian of the single particle excitations in

the right wedge given by

HR =
∑
ω,k

wb†ω,k ,Rbω,k ,R.

ρ0 is a thermal state with inverse temperature 2π.



• Consider a linear combination of single particle excitations

|ψ〉 =
∑
m,n

Bm,na†mn|0〉,

=
∑

m,n,ω,k

Bm,n

[
(1− e−2πω)α∗m,n;ω,k,Rb†ω,k,R + (1− e2πω)βm,n;ω,k,Rbω,k,R

]
|0〉.

Here the coefficients Bmn are such that the sate is normalised

to unity

∑
mn

|Bmn|2 = 1.



We can ignore the subscript R,

writing the density matrix of the state |ψ〉,

ρ =
∑

m,n,ω,k

Bm,n
[

(1− e−2πω)α∗m,n;ω,k b†
ω,k + (1− e2πω)βm,n;ω,k bω,k

]
|0〉〈0|

×
∑

m′,n′,ω′,k′
B∗m′,n′

[
(1− e−2πω′ )αm′,n′ ;ω,k′bω′,k′ + (1− e2πω′ )β∗m′,n′ ;ω′,k′b

†
ω′,k′

]
.

Tracing out the left sector we obtain

ρbulk ≡ TrHLρ.



For the excited state we obtain the following reduced density

matrix

ρbulk =
∑

m,n,ω,k

Bm,n
[

(1− e−2πω)α∗m,n;ω,k b†
ω,k + (1− e2πω)βm,n;ω,k bω,k

]
ρ0

×
∑

m′,n′,ω,k

B∗m′,n′

[
(1− e−2πω′ )αm′,n′ ;ω′,k′bω′,k′ + (1− e2πω′ )β∗m′,n′ ;ω′,k′b

†
ω′,k

]
.



•We need evaluate the difference in single interval

entanglement

between the single particle excitations and the ground state in

the CFT.
This difference in the contribution to the bulk entanglement can
be written as

Sbulk(ΣA) = lim
n→1

Sn :bulk(ΣA), Sn :bulk(ΣA) =
1

1− n
log

Tr(ρbulk)n

Trρn0
.



• In principle it is possible to evaluate the trace Tr(ρbulk)n using

the creation and annihilation operator algebra and the two point

function

Tr(ρ0b†ω,kbω′k ′) =
4π2δ(ω − ω′)δ(k − k ′)

e2πω − 1
.



For this we would need the Bogoliubov coefficients and also

perform integrals over ω and k and then analytically continue in

the replica index n to obtain the entanglement entropy.

• However there is a simplification when one is interested in the

short distance expansion.

Belin, Iqbal, Lokhande (2018).



The Bogoliubov coefficients for single particle can be

analytically evaluated,

eg for the state a†0,0|0〉

α0,0;ω,k =
1

(cosh η)2h

[
eη − i
eη + i

]iω

F (ω, k),

β0,0;ω,k = − 1
(cosh η)2h

[
eη + i
eη − i

]iω

F (ω, k).

F (ω, k) =
22h√ω

Γ(2h)
√

4π

∣∣∣∣Γ(iw)Γ
(

h + i
ω − k

2

)
Γ
(

h − i
ω − k

2

)∣∣∣∣ .



• In the short interval limit

πx = arctan
1
rm

= arccotrm ≡
θ

2
, cosh η =

1
sin θ

2

=
√

r 2
m + 1.

The Bogoliubov coefficients are suppressed as (πx)2h

This is true for the Bogoliubov coefficients for other excited

states as well.

We can set up a perturbation theory in the short distance

expansion to evaluate Sbulk(ΣA)



• The leading contributions to the Sbulk(ΣA) is quadratic in the

Bogoliubov coefficients and is given by

S(1)
bulk(ΣA) = 2π

∑
ω1,k1

ω1

(
|B · α∗1|2 + |B · β1|2

)
.

B · α∗i =
∑
m,n

Bm,nα
∗
m,n;ωi ,ki

, B · βi =
∑
m,n

Bm,nβm,n;ωi ,ki .

This contribution is proportional to (πx)4h.



• To evaluate this for the excited state φ̂

|φ̂〉 = c0|ψ0,0〉+
√

2hc1|ψ1,0〉,

we choose

B00 =
c0√

|c0|2 + 2h|c1|2
, B10 =

√
2hc1√

|c0|2 + 2h|c1|2



Substituting in S(1)
bulk(ΣA), along with the expressions for

Bogoliubov coefficients and the B’s and performing the

integrals over ω, k

S(1)
bulk(ΣA)||φ̂〉 = +

[ ∣∣c0 + 2hc1
∣∣2

|c0|2 + 2h|c1|2

]
Γ(2h + 1)Γ(3

2)

Γ(2h + 3
2)

(πx)4h + · · ·

This precisely cancels the ‘unwanted’ term from the correction

in the minimal area.



•We proceed with the next order correction to Sbulk(ΣA), which
is given by

S(2)(ΣA) =
1

2

∑
ω1,ω2
k1,k2

[
2π(ω1 − ω2)

(1− e−2πω1 )(1− e2πω2 )

1− e2π(ω2−ω1)

∣∣∣(B · α∗1 )(B∗ · α2) + (B∗ · β∗1 )(B · β2)
∣∣∣2

2π(ω1 + ω2)
(1− e2πω1 )(1− e2πω2 )

1− e2π(ω1+ω2)
2
{
|B · α∗1 |

2|B∗ · β2|
2 + (B · α∗1 )(B∗ · β∗2 )(B∗ · α2)(B · β1)

}]
.

This correction is quartic in the Bogoliubov coefficients and

involves a double integral over ω, k



• Substituting again the Bogoliubov coefficients and the B’s the

second order contribution to the bulk entanglement is given by

S(2)(ΣA)||φ̂〉 = −

[ ∣∣c0 + 2hc1
∣∣2

|c0|2 + 2h|c1|2

]2
Γ(3

2)Γ(4h + 1)

Γ(4h + 3
2)

(πx)8.

This precisely agrees with that evaluated from the CFT.



• Therefore the LHS and RHS of

SCFT
EE (A) =

Area(γA)

4GN
+ SEE

bulk(ΣA).

agrees when evaluated in the short distance expansion on the

state

|Φ〉 = c0|h h〉+ c1L−1|h h〉

↔ |φ̂〉 = c0a†0,0|0〉+ c1
√

2ha†1,0|0〉



To summarize:

We have performed such checks for the following 6 low lying

states

|Ψ̂(1,0)〉 = L−1|h h〉, |Ψ̂(2,0)〉 = L2
−1|h h〉,

|Ψ̂(1,1)〉 = L−1L̄−1|h h〉, |Ψ̂(2,2)〉 = L−2L̄−2|h h〉,

|Φ〉 = c0|h h〉+ c1L−1|h h〉, |Υ〉 = c0|h h〉+ c1L−1L̄−1|h h〉.

In each case there is an extra ‘spurious’ contribution from the

perturbed minimal area term which is precisely cancelled by the

leading contribution from Sbulk(Σ)

In each case the CFT answer precisely agrees with that given

by the FLM formula.



CONCLUSIONS/DISCUSSIONS



• The details involving the verification of the FLM formula are

interesting and several features of holography are tested.

⇒ CFT evaluation of entanglement entropy of excited states

involving descendants,

⇒ Use of generalised free fields for perturbative states,

⇒ Evaluation of Bogoliubov coefficients from global AdS to the

Rindler BTZ.

⇒ The nonlinearity of the entanglement entropy in the

superposition of excited states.

⇒ FLM formula as well as the RT formula in less symmetric

situations.



• Recently similar tests have been done for scalar excitations

and U(1) current excitations in d > 2

S. Colin-Ellerin, G. Lin (2024)



• An interesting generalization to this work is to study the single

interval entanglement entropy of the descendants of the

vacuum L−(l+2)|0〉, l = 0,1,2, · · ·

S(ρL−(l+2)|0〉) = 2(l + 2)(1− πx cotπ)− 8(l + 2)2

15c
sin4 πx

−
[(l + 3)(l + 2)(l + 1)

3!

]2 128
315

sin8 πx + · · · .

This has been evaluated in the CFT.

B. G. Chowdhury, J. R. David (2022)

Note that the coefficients are universal numbers.



• These states are dual to excitations of the graviton in the bulk.

In 3d, these would be topological.

Reproducing this from the bulk would help us understand more

about the entanglement properties of graviton as well as the

FLM formula and its generalisations better.


