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HALL EFFECT

Experimental phenomenon where electrons are confined on 2d surfaces in the

presence of strong magnetic fields

Deep connections with topology, noncommutative spaces, index theorems...

Classical Hall effect (EDWIN HALL, 1878)
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independent of impurities, it depends on the electron density n and linearly on the
magnetic field B. One can use this result to measure the electron density of a given
sample by measuring its Hall resistivity. The resistivities are plotted as functions of the
magnetic field in figure 1.

Figure 1: Resistivities of the classical Hall system, as functions of the magnetic field.
The blue line shows the longitudinal resistivity ⇢xx, it is constant in the magnetic field.
The red line denotes the Hall resistivity ⇢xy, it depends linearly on the magnetic field.
Image reproduced from [1].

1.4 The Results of the Integer Quantum Hall E↵ect

The experimental set-up for the integer quantum Hall e↵ect is similar to the classical
case.
One constructs a two dimensional electron gas from a semiconductor heterostructure,
for example a GaAs structure sandwiched in between two AlAs semiconductors. The
electrons live in the conduction band of the GaAs, which is lower in energy than the con-
duction band of the AlAs. They are therefore trapped to live within the layer of GaAs.
If one makes this GaAs layer su�ciently thin, the electrons are e↵ectively confined to
the two dimensional plane that is the GaAs structure.
One takes this 2D electron gas subject to a constant perpendicular magnetic field. At
strong magnetic fields B ⇠ O(T) and low Temperatures T < 4 K the transverse resis-
tivity ⇢xy takes on a plateau form: It is constant over a range of magnetic fields, and
jumps to the next plateau once the magnetic field is changed too much. The longitudinal
resistivity is zero whenever ⇢xy sits on a plateau and spikes when ⇢xy changes from one
plateau to the next. The experimental results are shown in figure 2. The plateau values
of ⇢xy are given by the following formula:

⇢xy =
2⇡~
e2

1

⌫
, ⌫ 2 Z (8)

They are independent of the sample details and the precise value of the magnetic field.
The integer ⌫ has been measured up to a precision of 1 part in a billion. While ⇢xy
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QUANTUM HALL EFFECT

At low T, plateaus form where

ρxy =
1
ν

2π~
e2

Ji = σHε
ijEj

σH = ν
e2

2π~

ν = 1, 2, · · · for IQHE ( VON KLITZING, 1980 )

and ν = 1/3, 1/5, · · · for FQHE ( TSUI AND STORMER, 1982 ).

Framework for interesting ideas

• conformal and topological field theories

• non-commutative geometries, fuzzy spaces

• bulk-edge dynamics, bosonization
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BASIC FEATURES OF INTEGER QHE

Quantum mechanics of 2d charged particle moving in a strong magnetic field

(Landau problem)

HΨ = EΨ

H =
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2π~

e
ν = number of completely filled LL

Lowest Landau level (LLL) : Dz̄Ψ = (∂z̄ + z/2)Ψ = 0

ψn ∼ zne−|z|
2/2 , z = x + iy
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QUANTUM HALL DROPLETS

Degeneracy of each LL is lifted by finite size of sample (V = 1
2 ur2)
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Low energy dynamics is confined on the edge.

Incompressible quantum Hall droplets with boundary fluctuations
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CHIRAL EDGE ACTIONS

Edge excitations⇐⇒ area preserving diffeomorphisms

Edge dynamics is collectively described by 1d chiral boson φ

Sedge =

∫
∂D

(
∂tφ+ u ∂θφ

)
∂θφ, u ∼ ∂V

∂r2

]
boundary

10
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EFFECTIVE ACTIONS

Interested in long wavelength description

Z[Aµ] =

∫
dψdψ̄e−S[ψ,ψ̄,Aµ] = e−Seff[A]

Electromagnetic fluctuations

Sbulk = SCS =
ν

4π

∫
D
εµνλAµ∂νAλ

It captures the response of the system to electromagnetic fluctuations.

Jµ =
δSCS

δAµ
=

ν

2π
εµνλ∂νAλ

SCS is not gauge invariant in presence of boundaries.

The edge dynamics is described by

Sedge ∼ gauged chiral action

Anomaly cancellation between bulk and edge actions,

δSbulk + δSedge = 0
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EFFECTIVE ACTIONS

How does the system respond to stress and strain?

Calculate stress tensor⇐⇒ couple theory to gravity (ABANOV AND GROMOV, 2014)

Seff =
1

4π

∫ [
[A + (s + 1

2 )ω] d[A + (s + 1
2 )ω]− 1

12
ωdω

]
+ · · ·

ω = spin connection s = 0→ LLL , s = 1→ 1st LL, · · ·

Tij =
2
√g

δSeff

δgij
=
ηH

2
(εilġlj + εjlġli)

ηH = Hall viscosity
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ηH = Hall viscosity

August 21

8 / 39



HIGHER DIMENSIONAL QHE

How do these 2d features extend to higher dimensions?

QHE on S4 (HU AND ZHANG, 2001)

Generalization to arbitrary even (spatial) dimensions

QHE on CPk (KARABALI AND NAIR, 2002...)

• higher dimensionality

• possibility of having both abelian and nonabelian magnetic fields
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QHE ON CPk

CPk : 2k dim space, locally parametrized by zi, i = 1, · · · , k

Fubini-Study metric

ds2 =
dz · dz̄

(1 + z · z̄)
− z̄ · dz z · dz̄

(1 + z · z̄)2 = gi ī dzidz̄ī Ω = i gi ī dzi ∧ dz̄ī

Group coset

CPk =
SU(k + 1)

U(k)

CPk curvatures take values in U(k) and constant⇒magnetic fields ∼ curvatures

There are degenerate Landau levels, separated by energy gap.

Each Landau level forms an irreducible SU(k + 1) representation, whose

degeneracy and energy is easy to calculate.
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QHE ON CP1 = S2

QHE on S2 analyzed by HALDANE

B

'̄ta'(x)
i

e↵
= x + x

+ x + · · ·

Figure 2: The e↵ective current vertex

3

Dirac quantization condition∫
F = 2πn n = 2Br2 ∈ Z

We will use S2 = CP1 = SU(2)/U(1) and group theory.

g =
1√

1 + z̄z

 1 z

−z̄ 1

 ∈ SU(2)

z = x + iy

Translations correspond to g→ gg′ with g ∼ gh for h ∈ U(1).

We define right translation operators: R̂A g = g TA

R̂+, R̂− → covariant derivatives D± = iR̂±/r

[R̂+, R̂−] = 2R̂3 ⇒ R̂3Ψ = − n
2 Ψ
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A complete basis for wavefunctions on SU(2) are given by Wigner D-functions

Ψ
j
m,m′ ∼ Dj

m,m′(g) = 〈 j,m | ĝ | j,m′ 〉 quantum numbers of states in j rep.

R̂3Ψ = − n
2 Ψ ⇒ m′ = − n

2

Hamiltonian

H =
1

4Mr2 (R̂+R̂− + R̂−R̂+) =
B

2M
+

R̂+R̂−
2Mr2

• LLL : R̂− |j,− n
2 〉 = 0 ⇒ |j,− n

2 〉 is the lowest weight state⇒ dim(j) = n + 1

• s-th LL : |j,− n
2 − s〉 is the lowest weight state⇒ dim(j) = n + 2s + 1

The spectrum decomposes into discrete Landau levels. Each LL forms an SU(2)

rep. whose degeneracy is easy to count.

LLL wavefunctions

Ψm ∼
zm

(1 + z̄z)n/2 m = 0, · · · , n
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QHE ON CPk : SINGLE PARTICLE SPECTRUM

CPk = SU(k + 1)/U(k). We can use (k + 1)× (k + 1)-matrix g ∈ SU(k + 1) as a

coordinate, where

gi,k+1 = zi/
√

1 + z̄ · z, gk+1,k+1 = 1/
√

1 + z̄ · z

Translations correspond to g→ gg′ with g ∼ gh for h ∈ U(k). In terms of the

right translation operators: R̂A g = g TA

R̂a, R̂k2+2k → gauge transformations ( U(k) )

R̂+i, R̂−i → covariant derivatives (i = 1, · · · , k)

[R̂+i, R̂−j] ∼ fijaR̂a, a ∈ U(k)

How Ψ transforms under gauge transformations depends on choice of

background fields
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QHE ON CPk : SINGLE PARTICLE SPECTRUM

Choose “uniform” U(1) or U(k) background magnetic fields.

U(1) : F̄ = dā = n Ω, Ω = Kahler 2− form

SU(k) : F̄a ∼ R̄a ∼ f aijei ∧ ej

Wavefunctions are written in terms of Wigner D-functions

ΨJ
m,α ∼ DJ

m,α(g) = 〈 m | ĝ | α 〉 quantum numbers of states in J rep.

R̂k2+2k ΨJ
m,α = − n k√

2k(k + 1)
ΨJ

m,α

R̂a ΨJ
m,α = (Ta)αβ ΨJ

m,β
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QHE ON CPk : SINGLE PARTICLE SPECTRUM

Wavefunctions for each Landau level form an SU(k + 1) representation J

ΨJ
m;α ∼ 〈m | ĝ | α︸︷︷︸ 〉

fixed U(1)R charge ∼ n and some finite SU(k)R repr. J̃

m = 1, · · ·dimJ =⇒ counts degeneracy within a Landau level

α = internal index = 1, · · · ,N′ = dimJ̃

Lowest Landau level: R̂−iΨ = 0 Holomorphicity condition

( | α 〉 is lowest weight state)
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LLL WAVEFUNCTIONS FOR U(1) MAGNETIC FIELD

For a U(1) magnetic field the LLL wavefunctions can be written in terms of complex

coordinates as

Ψi1i2···ik =
√

N
[

n!

i1!i2!...ik!(n− s)!

] 1
2 zi1

1 zi2
2 · · · z

ik
k

(1 + z̄ · z)
n
2
,

s = i1 + i2 + · · ·+ ik , 0 ≤ ii ≤ n , 0 ≤ s ≤ n

They form an SU(k + 1) representation of dimension

N = dimJ =
(n + k)!

n! k!
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MATRIX FORMULATION OF LLL DYNAMICS

QHE on a compact space M =⇒ LLL defines an N-dim Hilbert space

In the presence of confining potential =⇒ incompressible QH droplet

K states are filled, N − K unoccupied

Occupancy matrix for ground state droplet : ρ̂0

Under time evolution: ρ̂0 → ρ̂ = Û ρ̂0 Û†

Û = N ×N unitary matrix ; ”collective” variable describing excitations within

the LLL
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MATRIX FORMULATION OF LLL DYNAMICS

The action for Û is

S0 =

∫
dt Tr

[
iρ̂0Û†∂tÛ − ρ̂0Û†V̂Û

]
which leads to the evolution equation

i
dρ̂
dt

= [V̂, ρ̂]

S0 : universal matrix action

No explicit dependence on properties of space on which QHE is defined, abelian or

nonabelian nature of fermions, etc.
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NONCOMMUTATIVE FIELD THEORY

S0 : action of a noncommutative field theory

S0 =

∫
dt Tr

[
iρ̂0Û†∂tÛ − ρ̂0Û†V̂Û

]
= N

∫
dµ dt

[
i(ρ0 ∗U† ∗ ∂tU) − (ρ0 ∗U† ∗ V ∗U)

]

ρ̂0, Û, V̂︸ ︷︷ ︸ =⇒ ρ0(~x),U(~x, t),V(~x)︸ ︷︷ ︸
(N ×N) matrices symbols

A(~x, t) ≡ 1
N

∑
m,l Ψm(~x)Âml(t)Ψ∗l (~x)

A(x) ∗ B(x) ≡ 1
N

∑
m,l Ψm(~x)(ÂB̂)ml(t)Ψ∗l (~x) = A(x)B(x)− 1

n (R−iA)(R+iB) + · · ·

Tr =⇒ N
∫

dµ

S0 = bosonic action describing the dynamics of LLL fermions

DAS, DHAR, MANDAL, WADIA; SAKITA :2d plane context
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NONCOMMUTATIVE FIELD THEORY
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EDGE EFFECTIVE ACTION FOR ν = 1

Large N,K limit with N � K� 1 ( large n limit) =⇒ chiral boundary action

A. Abelian background magnetic field U(1)

Û = exp(iφ̂) ; boson field φ(x, t) = symbol of φ̂

X ∗ Y− Y ∗ X =
i
n

(Ω−1)ij ∂iX(~x, t) ∂jY(~x, t)︸ ︷︷ ︸
Poisson bracket

+O(1/n2), n Ω = Symplectic form

ρ0 = 1
N

∑K
m=1 Ψ∗mΨm → Θ

(
R2

D − r2
)

, RD= droplet radius

∂ρ0 → δ-function with support at the droplet boundary

S0 ∼
∫
∂D

(
∂tφ+ u Lφ

)
Lφ

(2k− 1) (space) dim chiral action defined on droplet boundary

Lφ = (Ω−1)ijr̂j∂iφ, L =

derivative along boundary of droplet

→ ∂θ in 2 dim.
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EDGE EFFECTIVE ACTION FOR ν = 1

B. Nonabelian background magnetic field U(k)

Wavefunction is a nontrivial representation of SU(k) : ψm,α α = 1, · · · ,N′

Symbol = (N′ ×N′) matrix valued function −→ action in terms of G ∈ U(N′)

The effective edge action is a generalized gauged WZW action in (2k− 1, 1)

dimensions.

S0 =
1

4π

∫
∂D

tr
[(

G†Ġ + u G†LG
)

G†LG
]

+
1

4π

∫
D

tr
[
−d
(

iĀdGG† + iĀG†dG
)

+
1
3

(
G†dG

)3]
∧
(

Ω

2π

)k−1 1
(k− 1)!

≡SWZW(AL = AR = Ā)

L = (Ω−1)ijr̂jDi = covariant derivative along the boundary of droplet
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EFFECTIVE ACTION IN PRESENCE OF GAUGE FLUCTUATIONS

In the presence of gauge fluctuations one starts with a gauged matrix action.

∂t → D̂t = ∂t + iÂ

S =

∫
dt Tr

[
iρ̂0Û†∂tÛ − ρ̂0Û†V̂Û − ρ̂0 Û†ÂÛ︸ ︷︷ ︸

]
gauge interactions

In terms of bosonic fields

S = N
∫

dt dµ tr
[
iρ0 ∗U† ∗ ∂tU − ρ0 ∗U† ∗ (V +A) ∗U

]

QUESTION: How is A related to the gauge fields coupled to the original

fermions?

August 21

22 / 39



EFFECTIVE ACTION IN PRESENCE OF GAUGE FLUCTUATIONS

S is invariant under

δU = −iλ ∗U

δA(~x, t) = ∂tλ(~x, t)−i (λ ∗ (V +A)−(V +A) ∗ λ)
(1)

Since S describes gauge interactions it has to be invariant under usual gauge

transformations

δAµ = ∂µΛ + i[ Āµ + Aµ , Λ] , δĀµ = 0 (2)

Background Perturbation

The strategy is to choose

A = function(Aµ, Āµ,V)

λ = function(Λ,Aµ, Āµ)

such that the gauge transformation (2) induces δA in (1) ( generalized

Seiberg-Witten map)
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EFFECTIVE ACTION IN PRESENCE OF GAUGE FLUCTUATIONS

In the large N limit the result is S = Sedge + Sbulk

Sedge∼ SWZW
(
AL = A + Ā ,AR = Ā

)
= Chirally gauged WZW ac-

tion in 2k dim

Sbulk ∼ S2k+1
CS (Ã) + · · · = (2k + 1) dim CS action

Ã = (A0 + V, āi + Āi + Ai) = background + fluctuations

Gauge Invariance =⇒ Anomaly Cancellation

δSedge 6= 0, δSbulk 6= 0

δSedge + δSbulk = 0
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BULK EFFECTIVE ACTION INCLUDING GAUGE AND METRIC FLUCTUATIONS

What about metric fluctuations?

The lowest Landau level obeys the holomorphicity condition R̂−iΨ = 0.

The number of normalizable solutions is given by the Dolbeault index.

Index =

∫
M

td(TCM)︸ ︷︷ ︸
Todd class

∧ ch(V)︸ ︷︷ ︸
Chern character

td(TcM) = 1 +
1
2

Tr
iR
2π

+
1
24

(
(Tr

iR
2π

)2 − Tr(
iR
2π

)2
)

+ · · ·

ch(V) = Tr
(

eiF/2π
)

Consider a fully filled LLL (each particle carries unit charge e = 1):

degeneracy = Dolbeault index = charge

=⇒ Dolbeault index density = charge density ≡ J0

So we can use δSeff

δA0
= J0 = Dolbeault index density

and integrate up to get Seff .
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BULK TOPOLOGICAL EFFECTIVE ACTION: EXAMPLES

CP1 = SU(2)/U(1) ; s-th LL

S3d =
1

4π

∫ {(
A + (s +

1
2

)ω
)

d
(

A + (s +
1
2

)ω
)
− 1

12
ω dω

}

Agrees with ABANOV, GROMOV; KLEVTSOV ET AL; BRADLYN, READ; CAN, LASKIN, WIEGMANN

CP2 = SU(3)/U(2); LLL, Abelian gauge field

S(LLL)
5d =

1
(2π)2

∫ {
1
3!

(
A + ω0

)(
dA + dω0

)2

− 1
12

(
A + ω0

)[
(dω0)2 +

1
2

Tr(R̃ ∧ R̃)

]}

ω0 ∼ U(1) part of spin connection; R̃ ∼ SU(2) nonabelian part of the curvature.

We have general results for arbitrary dimensions, higher Landau levels and

nonabelian magnetic fields
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CALCULATION OF HALL CURRENTS FOR ν = 1

We can calculate the electromagnetic response functions in all dimensions, Jµ =
δSeff
δAµ

.

(2+1) dimensions

Ji =
εij

2π

(
Ej +

Rj0

2

)
A Hall current can be generated from time variation of the metric.

(4+1) dimensions

Ji =
εijkl

2(2π)2 Ej

(
Fkl +

Tr Rkl

2

)
(6+1) dimensions

Ji =
εijklrs

23(2π)3 Ej

[(
Fkl +

1
2

TrRkl

) (
Frs +

1
2

TrRrs

)
− 1

12
Tr (RklRrs)

]
· · ·
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CALCULATION OF HALL VISCOSITY

One can calculate the energy-momentum tensor Tµλ

Tµλ = − 2
√g

δSeff

δgµλ

and from this the viscosity tensor ηijkl defined as Tij = ηijkl ġkl.

In two-dimensions

√
g Tml =

1
2
ηH

(
gmiεlk + gliεmk

)
ġki

+
1
2
η

(2)
H

(
gmiεlk + gliεmk

)
∇i∇k (grnġrn)

where the Hall viscosity ηH can be read off as ( s̄ = s + 1
2 )

ηH =
1

4π

[
s̄ B +

(
s̄2 − 1

12

)(
R
2
−∇2

)]
η

(2)
H =

1
8π

(
s̄2 − 1

12

)
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CALCULATION OF HALL VISCOSITY

In four-dimensions the expression for the viscosity tensor is quite involved. In

the flat limit, where CP2 ⇒ C× C

ηH =

(
(s + 1)B

4π

)2

In higher dimensions there are new response functions corresponding to the

variations of the effective action with respect to the nonabelian gauge fields

KARABALI AND NAIR, 2023
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ENTANGLEMENT ENTROPY FOR QHE

We divide the system into two regions, D and its complementary DC, and define

the reduced density matrix

ρD = TrDC |GS〉 〈GS|

where |GS〉 =
∏

m c†m |0〉.

The entanglement entropy is defined as

S = −Tr [ρD log ρD]

We choose D to be the spherically symmetric region of CPk satisfying z · z̄ ≤ R2.

For CP1 ∼ S2, D is a polar cap around the north pole with latitude angle θ.

R = tan θ/2 via stereographic projection.
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ENTANGLEMENT ENTROPY FOR INTEGER QHE

The entanglement entropy can also be written as

S = −Tr [ρD log ρD] = −
N∑

m=1

[
λm log λm + (1− λm) log(1− λm)

]

λ’s are eigenvalues of the two-point correlator (PESCHEL)

C(r, r′) =

N∑
m=1

Ψ∗m(z) Ψm(z′) , z, z′ ∈ D

∫
D

C(r, r′)Ψ∗l (z′)dµ(z′) = λl Ψ∗l (z)

where

λl =

∫
D
|Ψl|2dµ
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2D RESULTS

For 2d gapped systems

S = c L− γ +O(1/L)

L: perimeter of boundary

c: non-universal constant

γ: universal, topological entanglement entropy ; γ = 0 for IQHE

For integer QHE on S2 = CP1 RODRIGUEZ AND SIERRA, 2009

For ν = 1: c = 0.204

Some results on Kähler manifolds CHARLES AND ESTIENNE, 2019
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ENTANGLEMENT ENTROPY FOR ν = 1 ON CPk AND ABELIAN MAGNETIC FIELD

A. QHE on CPk with U(1) magnetic field

The LLL wavefunctions are essentially the coherent states of CPk.

Ψi1i2···ik =
√

N
[

n!

i1!i2!...ik!(n− s)!

] 1
2 zi1

1 zi2
2 · · · z

ik
k

(1 + z̄ · z)
n
2
,

s = i1 + i2 + · · ·+ ik , 0 ≤ ii ≤ n , 0 ≤ s ≤ n

They form an SU(k + 1) representation of dimension

N = dimJ =
(n + k)!

n! k!

The volume element for CPk is

dµ =
k!

πk
d2z1 · · · d2zk

(1 + z̄ · z)k+1 ,

∫
dµ = 1
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ENTANGLEMENT ENTROPY FOR QHE ON CPk AND ABELIAN MAGNETIC FIELD

The eigenvalues λ =
∫

D Ψ∗Ψ are given by

λi1i2···ik ≡ λs =
(n + k)!

(n− s)!(s + k− 1)!

∫ t0

0
dt ts+k−1 (1− t)n−s

where t0 = R2/(1 + R2).

The entanglement entropy is

S =
n∑

s=0

degeneracy︷ ︸︸ ︷
(s + k− 1)!

s!(k− 1)!
Hs

Hs = [−λs log λs − (1− λs) log(1− λs)]

For large n, this is amenable to an analytical semiclassical calculation for all

k� n.
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SEMICLASSICAL TREATMENT FOR LARGE n
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Graph of Hs vs s

—- exact

- - - - Gaussian approximation

Only wavefunctions localized around the boundary of the entangling surface

contribute to entropy.
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UNIVERSAL FORM FOR ENTANGLEMENT ENTROPY FOR ν = 1

From semiclassical analysis

S ∼ nk− 1
2
π (log 2)3/2

2 k!
2k

R2k−1

(1 + R2)k︸ ︷︷ ︸
geometric area

∼ ck Area

In agreement with k = 1 result by RODRIGUEZ AND SIERRA

Formula for entropy becomes universal if expressed in terms of a ”phase space”

area instead of a geometric area.

Vphase space → nk

k!

∫
Ωk = nk

k!

∫
dµ

Aphase space =
nk− 1

2

k!
Ageom =

nk− 1
2

k!
2k

R2k−1

(1 + R2)k

S ∼ π

2
(log 2)3/2 Aphase space
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ENTANGLEMENT ENTROPY FOR ν = 1 ON CPk AND NONABELIAN MAGNETIC FIELD

B. QHE on CPk with U(1)× SU(k) magnetic field

Wavefunctions carry SU(k) charge : Ψα , α = 1, · · ·dimJ̃ = N′. There are N′

distinct classes of λαs . Calculations long and tedious....

Simplifications at large n

• S→ dimJ̃ nk− 1
2 π (log 2)3/2

2 k! Ageom

• Degeneracy of LLL : N → dimJ̃ nk

k!

The corresponding phase-space volume in this case is Vphase space = dimJ̃ nk

k!

∫
dµ

S ∼ π

2
(log 2)3/2 Aphase space

for any dimension and Abelian or non-Abelian background. (KARABALI, 2020)
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SUMMARY, COMMENTS

QHE on CPk : platform for arbitrary even dimensions

• Experimental realizations of 4d QHE using synthetic dimensions

ZILBERBERG ET AL (2015...); BOUHIRON ET AL (2022)

LLL dynamics: Universal matrix action→ noncommutative bosonic field theory

At large N limit→ anomaly free bulk/edge dynamics

Use index theorems to include gauge and metric perturbations : New response

functions associated with non-Abelian gauge/gravitational fluctuations

Entanglement entropy for higher dim QHE on CPk : For ν = 1 there is a

universal formula valid for any k, Abelian or non-Abelian background if area is

expressed in terms of phase-space area.

Extend these ideas to fractional Hall effect (AGARWAL, KARABALI, NAIR, 2025)
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THANK YOU!
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