

QUANTUM HALL EFFECT: TOPOLOGY AND DYNAMICS IN ARBITRARY DIMENSIONS

DIMITRA KARABALI

City University of New York

Lehman College and Graduate Center

Women at the intersection of Mathematics and Theoretical Physics

ICTS, Bangalore

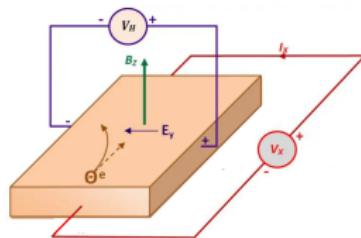
Dec. 30, 2025

- Experimental phenomenon where electrons are confined on 2d surfaces in the presence of strong magnetic fields

- Experimental phenomenon where electrons are confined on 2d surfaces in the presence of strong magnetic fields
- Deep connections with topology, noncommutative spaces, index theorems...

HALL EFFECT

- Experimental phenomenon where electrons are confined on 2d surfaces in the presence of strong magnetic fields
- Deep connections with topology, noncommutative spaces, index theorems...
- Classical Hall effect (EDWIN HALL, 1878)

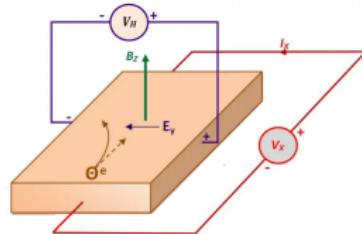


$$\rho_{xy} = \frac{V_H}{I_x} = \frac{E_y}{J_x} = \frac{B}{ne}$$

$$\rho_{xx} = \frac{V_x}{I_x}$$

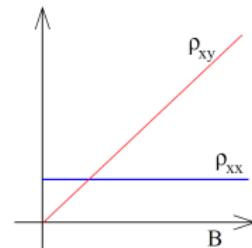
HALL EFFECT

- Experimental phenomenon where electrons are confined on 2d surfaces in the presence of strong magnetic fields
- Deep connections with topology, noncommutative spaces, index theorems...
- Classical Hall effect (EDWIN HALL, 1878)



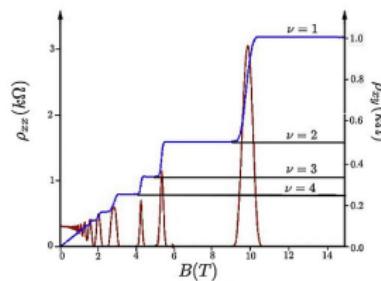
$$\rho_{xy} = \frac{V_H}{I_x} = \frac{E_y}{J_x} = \frac{B}{ne}$$

$$\rho_{xx} = \frac{V_x}{I_x}$$



QUANTUM HALL EFFECT

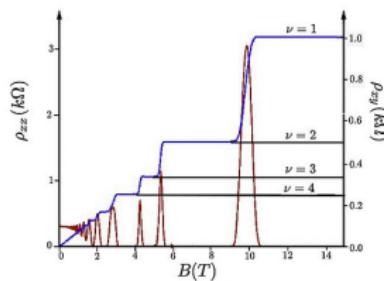
At low T, plateaus form where



$$\rho_{xy} = \frac{1}{\nu} \frac{2\pi\hbar}{e^2}$$

QUANTUM HALL EFFECT

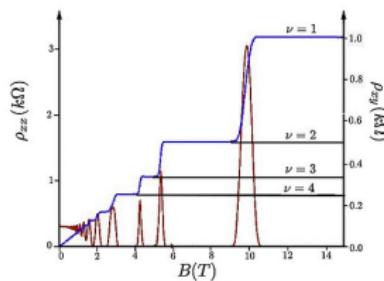
At low T, plateaus form where



$$\begin{aligned}\rho_{xy} &= \frac{1}{\nu} \frac{2\pi\hbar}{e^2} \\ J^i &= \sigma_H \epsilon^{ij} E_j \\ \sigma_H &= \nu \frac{e^2}{2\pi\hbar}\end{aligned}$$

$\nu = 1, 2, \dots$ for IQHE (VON KLITZING, 1980)

At low T, plateaus form where

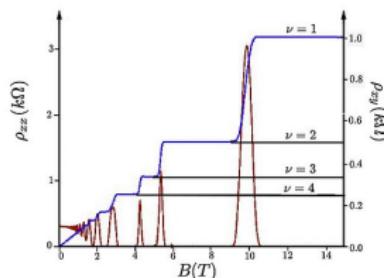


$$\begin{aligned}
 \rho_{xy} &= \frac{1}{\nu} \frac{2\pi\hbar}{e^2} \\
 J^i &= \sigma_H \epsilon^{ij} E_j \\
 \sigma_H &= \nu \frac{e^2}{2\pi\hbar}
 \end{aligned}$$

$\nu = 1, 2, \dots$ for IQHE (VON KLITZING, 1980)

and $\nu = 1/3, 1/5, \dots$ for FQHE (TSUI AND STORMER, 1982).

At low T, plateaus form where



$$\begin{aligned}\rho_{xy} &= \frac{1}{\nu} \frac{2\pi\hbar}{e^2} \\ J^i &= \sigma_H \epsilon^{ij} E_j \\ \sigma_H &= \nu \frac{e^2}{2\pi\hbar}\end{aligned}$$

$\nu = 1, 2, \dots$ for IQHE (VON KLITZING, 1980)

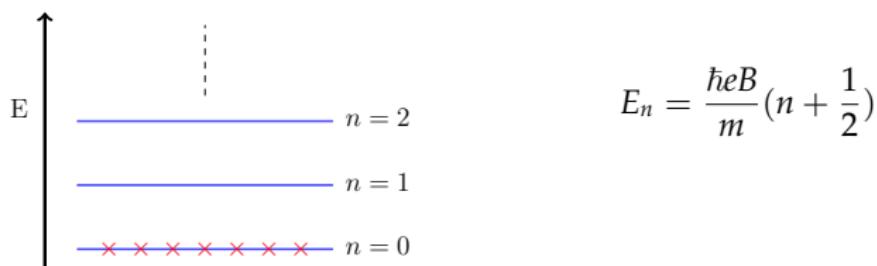
and $\nu = 1/3, 1/5, \dots$ for FQHE (TSUI AND STORMER, 1982).

- Framework for interesting ideas
 - conformal and topological field theories
 - non-commutative geometries, fuzzy spaces
 - bulk-edge dynamics, bosonization

BASIC FEATURES OF INTEGER QHE

Quantum mechanics of 2d charged particle moving in a strong magnetic field
(Landau problem)

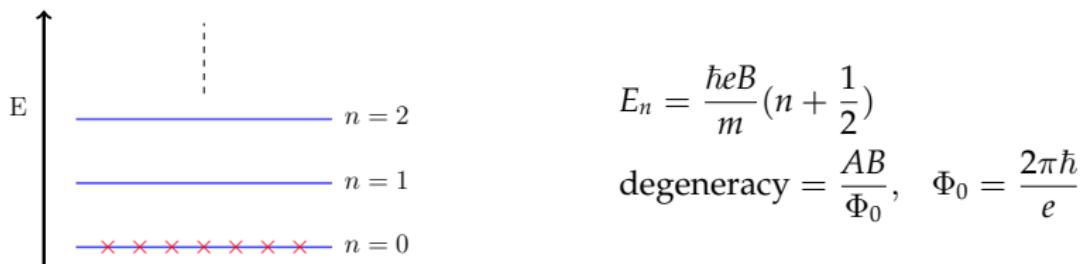
$$\begin{aligned} H\Psi &= E\Psi \\ H &= \frac{(\vec{p} - e\vec{A})^2}{2m}, \quad \vec{A} = \frac{B}{2}(-y, x) \end{aligned}$$



BASIC FEATURES OF INTEGER QHE

Quantum mechanics of 2d charged particle moving in a strong magnetic field
(Landau problem)

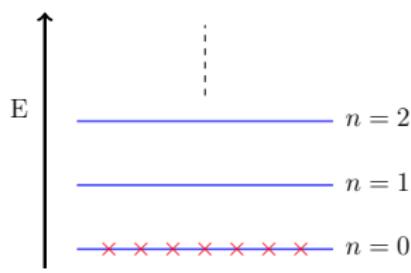
$$\begin{aligned} H\Psi &= E\Psi \\ H &= \frac{(\vec{p} - e\vec{A})^2}{2m}, \quad \vec{A} = \frac{B}{2}(-y, x) \end{aligned}$$



BASIC FEATURES OF INTEGER QHE

Quantum mechanics of 2d charged particle moving in a strong magnetic field
(Landau problem)

$$\begin{aligned} H\Psi &= E\Psi \\ H &= \frac{(\vec{p} - e\vec{A})^2}{2m}, \quad \vec{A} = \frac{B}{2}(-y, x) \end{aligned}$$



$$E_n = \frac{\hbar e B}{m} \left(n + \frac{1}{2} \right)$$

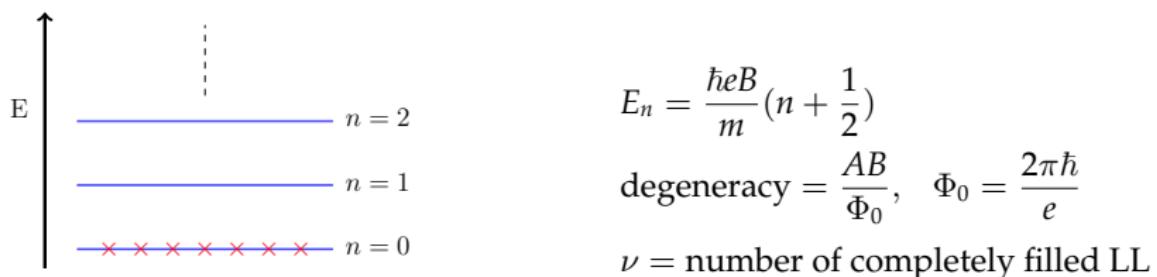
$$\text{degeneracy} = \frac{AB}{\Phi_0}, \quad \Phi_0 = \frac{2\pi\hbar}{e}$$

$\nu = \text{number of completely filled LL}$

BASIC FEATURES OF INTEGER QHE

Quantum mechanics of 2d charged particle moving in a strong magnetic field
(Landau problem)

$$\begin{aligned} H\Psi &= E\Psi \\ H &= \frac{(\vec{p} - e\vec{A})^2}{2m}, \quad \vec{A} = \frac{B}{2}(-y, x) \end{aligned}$$



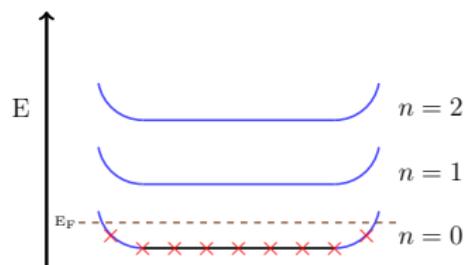
Lowest Landau level (LLL) : $D_{\bar{z}}\Psi = (\partial_{\bar{z}} + z/2)\Psi = 0$

$$\psi_n \sim z^n e^{-|z|^2/2}, \quad z = x + iy$$

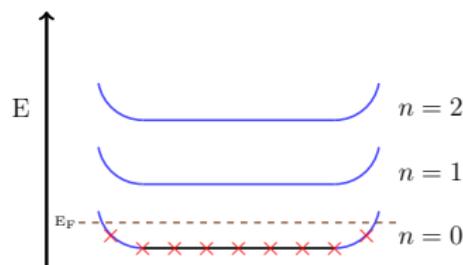
QUANTUM HALL DROPLETS

Degeneracy of each LL is lifted by finite size of sample $(V = \frac{1}{2}ur^2)$

Degeneracy of each LL is lifted by finite size of sample $(V = \frac{1}{2}ur^2)$



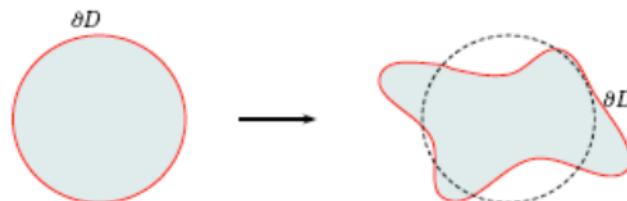
Degeneracy of each LL is lifted by finite size of sample $(V = \frac{1}{2}ur^2)$



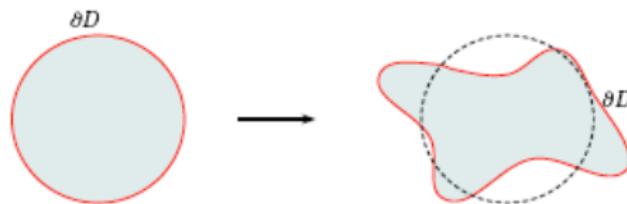
Low energy dynamics is confined on the edge.

Incompressible quantum Hall droplets with boundary fluctuations

Edge excitations \iff area preserving diffeomorphisms



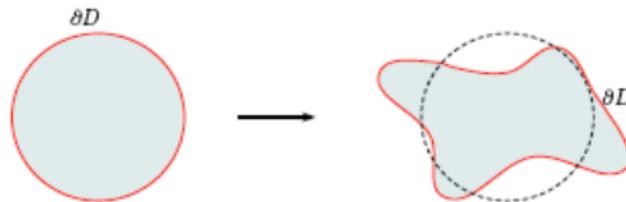
Edge excitations \iff area preserving diffeomorphisms



Edge dynamics is collectively described by 1d chiral boson ϕ

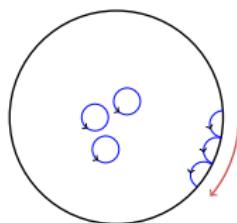
$$S_{\text{edge}} = \int_{\partial D} \left(\partial_t \phi + u \partial_\theta \phi \right) \partial_\theta \phi, \quad u \sim \left. \frac{\partial V}{\partial r^2} \right|_{\text{boundary}}$$

Edge excitations \iff area preserving diffeomorphisms



Edge dynamics is collectively described by 1d chiral boson ϕ

$$S_{\text{edge}} = \int_{\partial D} \left(\partial_t \phi + u \partial_\theta \phi \right) \partial_\theta \phi, \quad u \sim \left. \frac{\partial V}{\partial r^2} \right|_{\text{boundary}}$$



Interested in long wavelength description

$$Z[A_\mu] = \int d\psi d\bar{\psi} e^{-S[\psi, \bar{\psi}, A_\mu]} = e^{-S_{\text{eff}}[A]}$$

Interested in long wavelength description

$$Z[A_\mu] = \int d\psi d\bar{\psi} e^{-S[\psi, \bar{\psi}, A_\mu]} = e^{-S_{\text{eff}}[A]}$$

- Electromagnetic fluctuations

$$S_{\text{bulk}} = S_{CS} = \frac{\nu}{4\pi} \int_D \epsilon_{\mu\nu\lambda} A_\mu \partial_\nu A_\lambda$$

Interested in long wavelength description

$$Z[A_\mu] = \int d\psi d\bar{\psi} e^{-S[\psi, \bar{\psi}, A_\mu]} = e^{-S_{\text{eff}}[A]}$$

- Electromagnetic fluctuations

$$S_{\text{bulk}} = S_{\text{CS}} = \frac{\nu}{4\pi} \int_D \epsilon_{\mu\nu\lambda} A_\mu \partial_\nu A_\lambda$$

It captures the response of the system to electromagnetic fluctuations.

$$J^\mu = \frac{\delta S_{\text{CS}}}{\delta A_\mu} = \frac{\nu}{2\pi} \epsilon^{\mu\nu\lambda} \partial_\nu A_\lambda$$

Interested in long wavelength description

$$Z[A_\mu] = \int d\psi d\bar{\psi} e^{-S[\psi, \bar{\psi}, A_\mu]} = e^{-S_{\text{eff}}[A]}$$

- Electromagnetic fluctuations

$$S_{\text{bulk}} = S_{CS} = \frac{\nu}{4\pi} \int_D \epsilon_{\mu\nu\lambda} A_\mu \partial_\nu A_\lambda$$

It captures the response of the system to electromagnetic fluctuations.

$$J^\mu = \frac{\delta S_{CS}}{\delta A_\mu} = \frac{\nu}{2\pi} \epsilon^{\mu\nu\lambda} \partial_\nu A_\lambda$$

S_{CS} is not gauge invariant in presence of boundaries.

Interested in long wavelength description

$$Z[A_\mu] = \int d\psi d\bar{\psi} e^{-S[\psi, \bar{\psi}, A_\mu]} = e^{-S_{\text{eff}}[A]}$$

- Electromagnetic fluctuations

$$S_{\text{bulk}} = S_{CS} = \frac{\nu}{4\pi} \int_D \epsilon_{\mu\nu\lambda} A_\mu \partial_\nu A_\lambda$$

It captures the response of the system to electromagnetic fluctuations.

$$J^\mu = \frac{\delta S_{CS}}{\delta A_\mu} = \frac{\nu}{2\pi} \epsilon^{\mu\nu\lambda} \partial_\nu A_\lambda$$

S_{CS} is not gauge invariant in presence of boundaries.

- The edge dynamics is described by

$S_{\text{edge}} \sim \text{gauged chiral action}$

Interested in long wavelength description

$$Z[A_\mu] = \int d\psi d\bar{\psi} e^{-S[\psi, \bar{\psi}, A_\mu]} = e^{-S_{\text{eff}}[A]}$$

- Electromagnetic fluctuations

$$S_{\text{bulk}} = S_{CS} = \frac{\nu}{4\pi} \int_D \epsilon_{\mu\nu\lambda} A_\mu \partial_\nu A_\lambda$$

It captures the response of the system to electromagnetic fluctuations.

$$J^\mu = \frac{\delta S_{CS}}{\delta A_\mu} = \frac{\nu}{2\pi} \epsilon^{\mu\nu\lambda} \partial_\nu A_\lambda$$

S_{CS} is not gauge invariant in presence of boundaries.

- The edge dynamics is described by

$$S_{\text{edge}} \sim \text{gauged chiral action}$$

Anomaly cancellation between bulk and edge actions,

$$\delta S_{\text{bulk}} + \delta S_{\text{edge}} = 0$$

- How does the system respond to stress and strain?

- How does the system respond to stress and strain?
- Calculate stress tensor \iff couple theory to gravity (ABANOV AND GROMOV, 2014)

- How does the system respond to stress and strain?
- Calculate stress tensor \iff couple theory to gravity (ABANOV AND GROMOV, 2014)

$$S_{eff} = \frac{1}{4\pi} \int \left[[A + (s + \frac{1}{2})\omega] d[A + (s + \frac{1}{2})\omega] - \frac{1}{12}\omega d\omega \right] + \dots$$

ω = spin connection $s = 0 \rightarrow LLL$, $s = 1 \rightarrow 1st\ LL, \dots$

$$T^{ij} = \frac{2}{\sqrt{g}} \frac{\delta S_{eff}}{\delta g_{ij}} = \frac{\eta_H}{2} (\epsilon^{il} \dot{g}^{lj} + \epsilon^{jl} \dot{g}^{li})$$

η_H = Hall viscosity

How do these 2d features extend to higher dimensions?

How do these 2d features extend to higher dimensions?

- QHE on S^4 (HU AND ZHANG, 2001)

How do these 2d features extend to higher dimensions?

- QHE on S^4 (HU AND ZHANG, 2001)
 - Generalization to arbitrary even (spatial) dimensions
- QHE on \mathbb{CP}^k (KARABALI AND NAIR, 2002...)

How do these 2d features extend to higher dimensions?

- QHE on S^4 (HU AND ZHANG, 2001)
- Generalization to arbitrary even (spatial) dimensions

QHE on \mathbb{CP}^k (KARABALI AND NAIR, 2002...)

- higher dimensionality
- possibility of having both abelian and nonabelian magnetic fields

\mathbb{CP}^k : $2k$ dim space, locally parametrized by $z_i, i = 1, \dots, k$

- Fubini-Study metric

$$ds^2 = \frac{dz \cdot d\bar{z}}{(1 + z \cdot \bar{z})} - \frac{\bar{z} \cdot dz z \cdot d\bar{z}}{(1 + z \cdot \bar{z})^2} = g_{i\bar{i}} dz^i d\bar{z}^{\bar{i}} \quad \Omega = i g_{i\bar{i}} dz^i \wedge d\bar{z}^{\bar{i}}$$

\mathbb{CP}^k : 2k dim space, locally parametrized by $z_i, i = 1, \dots, k$

- Fubini-Study metric

$$ds^2 = \frac{dz \cdot d\bar{z}}{(1 + z \cdot \bar{z})} - \frac{\bar{z} \cdot dz z \cdot d\bar{z}}{(1 + z \cdot \bar{z})^2} = g_{i\bar{i}} dz^i d\bar{z}^{\bar{i}} \quad \Omega = i g_{i\bar{i}} dz^i \wedge d\bar{z}^{\bar{i}}$$

- Group coset

$$\mathbb{CP}^k = \frac{SU(k+1)}{U(k)}$$

\mathbb{CP}^k : $2k$ dim space, locally parametrized by $z_i, i = 1, \dots, k$

- Fubini-Study metric

$$ds^2 = \frac{dz \cdot d\bar{z}}{(1 + z \cdot \bar{z})} - \frac{\bar{z} \cdot dz z \cdot d\bar{z}}{(1 + z \cdot \bar{z})^2} = g_{i\bar{i}} dz^i d\bar{z}^{\bar{i}} \quad \Omega = i g_{i\bar{i}} dz^i \wedge d\bar{z}^{\bar{i}}$$

- Group coset

$$\mathbb{CP}^k = \frac{SU(k+1)}{U(k)}$$

- \mathbb{CP}^k curvatures take values in $U(k)$ and constant \Rightarrow magnetic fields \sim curvatures
- There are degenerate Landau levels, separated by energy gap.

\mathbb{CP}^k : $2k$ dim space, locally parametrized by $z_i, i = 1, \dots, k$

- Fubini-Study metric

$$ds^2 = \frac{dz \cdot d\bar{z}}{(1 + z \cdot \bar{z})} - \frac{\bar{z} \cdot dz z \cdot d\bar{z}}{(1 + z \cdot \bar{z})^2} = g_{i\bar{i}} dz^i d\bar{z}^{\bar{i}} \quad \Omega = i g_{i\bar{i}} dz^i \wedge d\bar{z}^{\bar{i}}$$

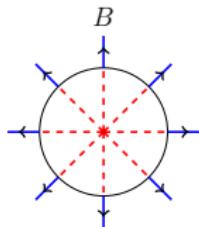
- Group coset

$$\mathbb{CP}^k = \frac{SU(k+1)}{U(k)}$$

- \mathbb{CP}^k curvatures take values in $U(k)$ and constant \Rightarrow magnetic fields \sim curvatures
- There are degenerate Landau levels, separated by energy gap.
- Each Landau level forms an irreducible $SU(k+1)$ representation, whose degeneracy and energy is easy to calculate.

QHE on $\mathbb{CP}^1 = S^2$

QHE on S^2 analyzed by [HALDANE](#)

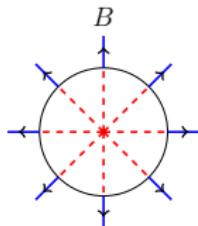


Dirac quantization condition

$$\int F = 2\pi n \quad n = 2Br^2 \in \mathbb{Z}$$

QHE on $\mathbb{CP}^1 = S^2$

QHE on S^2 analyzed by [HALDANE](#)



Dirac quantization condition

$$\int F = 2\pi n \quad n = 2Br^2 \in \mathbb{Z}$$

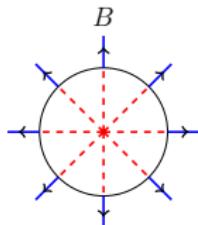
- We will use $S^2 = \mathbb{CP}^1 = SU(2)/U(1)$ and group theory.

$$g = \frac{1}{\sqrt{1 + \bar{z}z}} \begin{pmatrix} 1 & z \\ -\bar{z} & 1 \end{pmatrix} \in SU(2)$$

$$z = x + iy$$

QHE on $\mathbb{CP}^1 = S^2$

QHE on S^2 analyzed by [HALDANE](#)



Dirac quantization condition

$$\int F = 2\pi n \quad n = 2Br^2 \in \mathbb{Z}$$

- We will use $S^2 = \mathbb{CP}^1 = SU(2)/U(1)$ and group theory.

$$g = \frac{1}{\sqrt{1 + \bar{z}z}} \begin{pmatrix} 1 & z \\ -\bar{z} & 1 \end{pmatrix} \in SU(2)$$

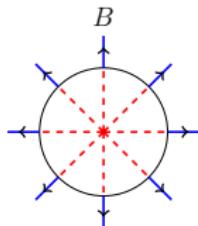
$$z = x + iy$$

- Translations correspond to $g \rightarrow gg'$ with $g \sim gh$ for $h \in U(1)$.

We define right translation operators: $\hat{R}_A g = g T_A$

QHE on $\mathbb{CP}^1 = S^2$

QHE on S^2 analyzed by [HALDANE](#)



Dirac quantization condition

$$\int F = 2\pi n \quad n = 2Br^2 \in \mathbb{Z}$$

- We will use $S^2 = \mathbb{CP}^1 = SU(2)/U(1)$ and group theory.

$$g = \frac{1}{\sqrt{1 + \bar{z}z}} \begin{pmatrix} 1 & z \\ -\bar{z} & 1 \end{pmatrix} \in SU(2)$$

$$z = x + iy$$

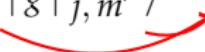
- Translations correspond to $g \rightarrow gg'$ with $g \sim gh$ for $h \in U(1)$.

We define right translation operators: $\hat{R}_A g = g T_A$

- $\hat{R}_+, \hat{R}_- \rightarrow$ covariant derivatives $D_{\pm} = i\hat{R}_{\pm}/r$

$$[\hat{R}_+, \hat{R}_-] = 2\hat{R}_3 \Rightarrow \hat{R}_3 \Psi = -\frac{n}{2} \Psi$$

- A complete basis for wavefunctions on $SU(2)$ are given by Wigner \mathcal{D} -functions

$$\Psi_{m,m'}^j \sim \mathcal{D}_{m,m'}^j(g) = \langle j, m | \hat{g} | j, m' \rangle$$


quantum numbers of states in j rep.

- A complete basis for wavefunctions on $SU(2)$ are given by Wigner \mathcal{D} -functions

$$\Psi_{m,m'}^j \sim \mathcal{D}_{m,m'}^j(g) = \langle j, m | \hat{g} | j, m' \rangle$$

quantum numbers of states in j rep.

- $\hat{R}_3 \Psi = -\frac{n}{2} \Psi \Rightarrow m' = -\frac{n}{2}$

- A complete basis for wavefunctions on $SU(2)$ are given by Wigner \mathcal{D} -functions

$$\Psi_{m,m'}^j \sim \mathcal{D}_{m,m'}^j(g) = \langle j, m | \hat{g} | j, m' \rangle$$

quantum numbers of states in j rep.

- $\hat{R}_3 \Psi = -\frac{n}{2} \Psi \Rightarrow m' = -\frac{n}{2}$

- Hamiltonian

$$H = \frac{1}{4Mr^2} (\hat{R}_+ \hat{R}_- + \hat{R}_- \hat{R}_+) = \frac{B}{2M} + \frac{\hat{R}_+ \hat{R}_-}{2Mr^2}$$

- A complete basis for wavefunctions on $SU(2)$ are given by Wigner \mathcal{D} -functions

$$\Psi_{m,m'}^j \sim \mathcal{D}_{m,m'}^j(g) = \langle j, m | \hat{g} | j, m' \rangle$$

quantum numbers of states in j rep.

- $\hat{R}_3 \Psi = -\frac{n}{2} \Psi \Rightarrow m' = -\frac{n}{2}$

- Hamiltonian

$$H = \frac{1}{4Mr^2} (\hat{R}_+ \hat{R}_- + \hat{R}_- \hat{R}_+) = \frac{B}{2M} + \frac{\hat{R}_+ \hat{R}_-}{2Mr^2}$$

- LLL : $\hat{R}_- |j, -\frac{n}{2}\rangle = 0 \Rightarrow |j, -\frac{n}{2}\rangle$ is the lowest weight state $\Rightarrow \dim(j) = n + 1$

- A complete basis for wavefunctions on $SU(2)$ are given by Wigner \mathcal{D} -functions

$$\Psi_{m,m'}^j \sim \mathcal{D}_{m,m'}^j(g) = \langle j, m | \hat{g} | j, m' \rangle$$

quantum numbers of states in j rep.

- $\hat{R}_3 \Psi = -\frac{n}{2} \Psi \Rightarrow m' = -\frac{n}{2}$

- Hamiltonian

$$H = \frac{1}{4Mr^2} (\hat{R}_+ \hat{R}_- + \hat{R}_- \hat{R}_+) = \frac{B}{2M} + \frac{\hat{R}_+ \hat{R}_-}{2Mr^2}$$

- LLL : $\hat{R}_- |j, -\frac{n}{2}\rangle = 0 \Rightarrow |j, -\frac{n}{2}\rangle$ is the lowest weight state $\Rightarrow \dim(j) = n + 1$
- s -th LL : $|j, -\frac{n}{2} - s\rangle$ is the lowest weight state $\Rightarrow \dim(j) = n + 2s + 1$

- A complete basis for wavefunctions on $SU(2)$ are given by Wigner \mathcal{D} -functions

$$\Psi_{m,m'}^j \sim \mathcal{D}_{m,m'}^j(g) = \langle j, m | \hat{g} | j, m' \rangle$$

quantum numbers of states in j rep.

- $\hat{R}_3 \Psi = -\frac{n}{2} \Psi \Rightarrow m' = -\frac{n}{2}$

- Hamiltonian

$$H = \frac{1}{4Mr^2} (\hat{R}_+ \hat{R}_- + \hat{R}_- \hat{R}_+) = \frac{B}{2M} + \frac{\hat{R}_+ \hat{R}_-}{2Mr^2}$$

- LLL : $\hat{R}_- |j, -\frac{n}{2}\rangle = 0 \Rightarrow |j, -\frac{n}{2}\rangle$ is the lowest weight state $\Rightarrow \dim(j) = n + 1$
- s -th LL : $|j, -\frac{n}{2} - s\rangle$ is the lowest weight state $\Rightarrow \dim(j) = n + 2s + 1$
- The spectrum decomposes into discrete Landau levels. Each LL forms an $SU(2)$ rep. whose degeneracy is easy to count.

- A complete basis for wavefunctions on $SU(2)$ are given by Wigner \mathcal{D} -functions

$$\Psi_{m,m'}^j \sim \mathcal{D}_{m,m'}^j(g) = \langle j, m | \hat{g} | j, m' \rangle$$

quantum numbers of states in j rep.

- $\hat{R}_3 \Psi = -\frac{n}{2} \Psi \Rightarrow m' = -\frac{n}{2}$

- Hamiltonian

$$H = \frac{1}{4Mr^2} (\hat{R}_+ \hat{R}_- + \hat{R}_- \hat{R}_+) = \frac{B}{2M} + \frac{\hat{R}_+ \hat{R}_-}{2Mr^2}$$

- LLL : $\hat{R}_- |j, -\frac{n}{2}\rangle = 0 \Rightarrow |j, -\frac{n}{2}\rangle$ is the lowest weight state $\Rightarrow \dim(j) = n + 1$
- s -th LL : $|j, -\frac{n}{2} - s\rangle$ is the lowest weight state $\Rightarrow \dim(j) = n + 2s + 1$
- The spectrum decomposes into discrete Landau levels. Each LL forms an $SU(2)$ rep. whose degeneracy is easy to count.
- LLL wavefunctions

$$\Psi_m \sim \frac{z^m}{(1 + \bar{z}z)^{n/2}} \quad m = 0, \dots, n$$

- $\mathbb{CP}^k = SU(k+1)/U(k)$. We can use $(k+1) \times (k+1)$ -matrix $g \in SU(k+1)$ as a coordinate, where

$$g_{i,k+1} = z_i / \sqrt{1 + \bar{z} \cdot z}, \quad g_{k+1,k+1} = 1 / \sqrt{1 + \bar{z} \cdot z}$$

- $\mathbb{CP}^k = SU(k+1)/U(k)$. We can use $(k+1) \times (k+1)$ -matrix $g \in SU(k+1)$ as a coordinate, where

$$g_{i,k+1} = z_i / \sqrt{1 + \bar{z} \cdot z}, \quad g_{k+1,k+1} = 1 / \sqrt{1 + \bar{z} \cdot z}$$

- Translations correspond to $g \rightarrow gg'$ with $g \sim gh$ for $h \in U(k)$. In terms of the right translation operators: $\hat{R}_A g = g T_A$

- $\mathbb{CP}^k = SU(k+1)/U(k)$. We can use $(k+1) \times (k+1)$ -matrix $g \in SU(k+1)$ as a coordinate, where

$$g_{i,k+1} = z_i / \sqrt{1 + \bar{z} \cdot z}, \quad g_{k+1,k+1} = 1 / \sqrt{1 + \bar{z} \cdot z}$$

- Translations correspond to $g \rightarrow gg'$ with $g \sim gh$ for $h \in U(k)$. In terms of the right translation operators: $\hat{R}_A g = g T_A$
- $\hat{R}_a, \hat{R}_{k^2+2k} \rightarrow$ gauge transformations ($U(k)$)
- $\hat{R}_{+i}, \hat{R}_{-i} \rightarrow$ covariant derivatives ($i = 1, \dots, k$)
 $[\hat{R}_{+i}, \hat{R}_{-j}] \sim f_{ija} \hat{R}_a, \quad a \in U(k)$

- $\mathbb{CP}^k = SU(k+1)/U(k)$. We can use $(k+1) \times (k+1)$ -matrix $g \in SU(k+1)$ as a coordinate, where

$$g_{i,k+1} = z_i / \sqrt{1 + \bar{z} \cdot z}, \quad g_{k+1,k+1} = 1 / \sqrt{1 + \bar{z} \cdot z}$$

- Translations correspond to $g \rightarrow gg'$ with $g \sim gh$ for $h \in U(k)$. In terms of the right translation operators: $\hat{R}_A g = g T_A$
- $\hat{R}_a, \hat{R}_{k^2+2k} \rightarrow$ gauge transformations ($U(k)$)
- $\hat{R}_{+i}, \hat{R}_{-i} \rightarrow$ covariant derivatives ($i = 1, \dots, k$)
 $[\hat{R}_{+i}, \hat{R}_{-j}] \sim f_{ija} \hat{R}_a, \quad a \in U(k)$
- How Ψ transforms under gauge transformations depends on choice of background fields

- Choose “uniform” $U(1)$ or $U(k)$ background magnetic fields.

$U(1) : \bar{F} = d\bar{a} = n \Omega, \Omega = \text{Kahler 2-form}$

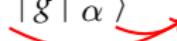
$SU(k) : \bar{F}^a \sim \bar{R}^a \sim f^{aij} e^i \wedge e^j$

- Choose “uniform” $U(1)$ or $U(k)$ background magnetic fields.

$$U(1) : \bar{F} = d\bar{a} = n \Omega, \quad \Omega = \text{Kahler 2-form}$$

$$SU(k) : \bar{F}^a \sim \bar{R}^a \sim f^{aij} e^i \wedge e^j$$

- Wavefunctions are written in terms of Wigner \mathcal{D} -functions

$$\Psi_{m,\alpha}^J \sim \mathcal{D}_{m,\alpha}^J(g) = \langle m | \hat{g} | \alpha \rangle$$


quantum numbers of states in J rep.

- Choose “uniform” $U(1)$ or $U(k)$ background magnetic fields.

$$U(1) : \bar{F} = d\bar{a} = n \Omega, \quad \Omega = \text{Kahler 2-form}$$

$$SU(k) : \bar{F}^a \sim \bar{R}^a \sim f^{aij} e^i \wedge e^j$$

- Wavefunctions are written in terms of Wigner \mathcal{D} -functions

$$\Psi_{m,\alpha}^J \sim \mathcal{D}_{m,\alpha}^J(g) = \langle m | \hat{g} | \alpha \rangle$$

quantum numbers of states in J rep.

$$\hat{R}^{k^2+2k} \Psi_{m,\alpha}^J = -\frac{n k}{\sqrt{2k(k+1)}} \Psi_{m,\alpha}^J$$

- Choose “uniform” $U(1)$ or $U(k)$ background magnetic fields.

$$U(1) : \bar{F} = d\bar{a} = n \Omega, \quad \Omega = \text{Kahler 2-form}$$

$$SU(k) : \bar{F}^a \sim \bar{R}^a \sim f^{aij} e^i \wedge e^j$$

- Wavefunctions are written in terms of Wigner \mathcal{D} -functions

$$\Psi_{m,\alpha}^J \sim \mathcal{D}_{m,\alpha}^J(g) = \langle m | \hat{g} | \alpha \rangle$$

quantum numbers of states in J rep.

$$\hat{R}^{k^2+2k} \Psi_{m,\alpha}^J = -\frac{n k}{\sqrt{2k(k+1)}} \Psi_{m,\alpha}^J$$

$$\hat{R}^a \Psi_{m,\alpha}^J = (T^a)_{\alpha\beta} \Psi_{m,\beta}^J$$

- Wavefunctions for each Landau level form an $SU(k + 1)$ representation J

$$\Psi_{m;\alpha}^J \sim \langle m | \hat{g} | \underbrace{\alpha}_{\downarrow} \rangle$$

fixed $U(1)_R$ charge $\sim n$ and some finite $SU(k)_R$ repr. \tilde{J}

$m = 1, \dots, \dim J \implies$ counts degeneracy within a Landau level

$\alpha =$ internal index $= 1, \dots, N' = \dim \tilde{J}$

- Wavefunctions for each Landau level form an $SU(k+1)$ representation J

$$\Psi_{m;\alpha}^J \sim \langle m | \hat{g} | \underbrace{\alpha}_{\downarrow} \rangle$$

fixed $U(1)_R$ charge $\sim n$ and some finite $SU(k)_R$ repr. \tilde{J}

$m = 1, \dots, \dim J \implies$ counts degeneracy within a Landau level

$\alpha =$ internal index $= 1, \dots, N' = \dim \tilde{J}$

- Lowest Landau level: $\hat{R}_{-i} \Psi = 0$ Holomorphicity condition
($|\alpha\rangle$ is lowest weight state)

For a $U(1)$ magnetic field the LLL wavefunctions can be written in terms of complex coordinates as

$$\begin{aligned}\Psi_{i_1 i_2 \dots i_k} &= \sqrt{N} \left[\frac{n!}{i_1! i_2! \dots i_k! (n-s)!} \right]^{\frac{1}{2}} \frac{z_1^{i_1} z_2^{i_2} \dots z_k^{i_k}}{(1 + \bar{z} \cdot z)^{\frac{n}{2}}}, \\ s &= i_1 + i_2 + \dots + i_k, \quad 0 \leq i_i \leq n, \quad 0 \leq s \leq n\end{aligned}$$

LLL WAVEFUNCTIONS FOR $U(1)$ MAGNETIC FIELD

For a $U(1)$ magnetic field the LLL wavefunctions can be written in terms of complex coordinates as

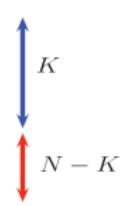
$$\begin{aligned}\Psi_{i_1 i_2 \dots i_k} &= \sqrt{N} \left[\frac{n!}{i_1! i_2! \dots i_k! (n-s)!} \right]^{\frac{1}{2}} \frac{z_1^{i_1} z_2^{i_2} \dots z_k^{i_k}}{(1 + \bar{z} \cdot z)^{\frac{n}{2}}}, \\ s &= i_1 + i_2 + \dots + i_k, \quad 0 \leq i_i \leq n, \quad 0 \leq s \leq n\end{aligned}$$

They form an $SU(k+1)$ representation of dimension

$$N = \dim J = \frac{(n+k)!}{n! k!}$$

- QHE on a compact space $M \implies$ LLL defines an N -dim Hilbert space
In the presence of confining potential \implies incompressible QH droplet
- K states are filled, $N - K$ unoccupied

Occupancy matrix for ground state droplet : $\hat{\rho}_0$

$$\hat{\rho}_0 = \begin{bmatrix} 1 & & & & & \\ 1 & 1 & & & & \\ 1 & 1 & 1 & & & \\ \ddots & \ddots & \ddots & 1 & & \\ & & & 0 & 1 & \\ & & & & 0 & 1 \\ & & & & & \ddots \\ & & & & & & 0 \end{bmatrix}$$


- QHE on a compact space $M \implies$ LLL defines an N -dim Hilbert space
In the presence of confining potential \implies incompressible QH droplet
- K states are filled, $N - K$ unoccupied

Occupancy matrix for ground state droplet : $\hat{\rho}_0$

$$\hat{\rho}_0 = \begin{bmatrix} 1 & & & & & \\ 1 & 1 & & & & \\ 1 & 1 & 1 & & & \\ \ddots & \ddots & \ddots & 1 & & \\ & & & 0 & 1 & \\ & & & & 0 & 1 \\ & & & & & \ddots \\ & & & & & & 0 \end{bmatrix} \quad \begin{matrix} \uparrow \\ K \\ \downarrow \\ N - K \end{matrix}$$

- Under time evolution: $\hat{\rho}_0 \rightarrow \hat{\rho} = \hat{U} \hat{\rho}_0 \hat{U}^\dagger$
 $\hat{U} = N \times N$ unitary matrix ; "collective" variable describing excitations within the LLL

The action for \hat{U} is

$$S_0 = \int dt \operatorname{Tr} \left[i\hat{\rho}_0 \hat{U}^\dagger \partial_t \hat{U} - \hat{\rho}_0 \hat{U}^\dagger \hat{V} \hat{U} \right]$$

which leads to the evolution equation

$$i \frac{d\hat{\rho}}{dt} = [\hat{V}, \hat{\rho}]$$

S_0 : universal matrix action

No explicit dependence on properties of space on which QHE is defined, abelian or nonabelian nature of fermions, etc.

S_0 : action of a noncommutative field theory

$$\begin{aligned} S_0 &= \int dt \operatorname{Tr} \left[i\hat{\rho}_0 \hat{U}^\dagger \partial_t \hat{U} - \hat{\rho}_0 \hat{U}^\dagger \hat{V} \hat{U} \right] \\ &= N \int d\mu dt \left[i(\rho_0 * U^\dagger * \partial_t U) - (\rho_0 * U^\dagger * V * U) \right] \end{aligned}$$

$$\underbrace{\hat{\rho}_0, \hat{U}, \hat{V}}_{(N \times N) \text{ matrices}} \implies \underbrace{\rho_0(\vec{x}), U(\vec{x}, t), V(\vec{x})}_{\text{symbols}}$$

S_0 : action of a noncommutative field theory

$$S_0 = \int dt \operatorname{Tr} \left[i\hat{\rho}_0 \hat{U}^\dagger \partial_t \hat{U} - \hat{\rho}_0 \hat{U}^\dagger \hat{V} \hat{U} \right]$$

$$= N \int d\mu dt \left[i(\rho_0 * U^\dagger * \partial_t U) - (\rho_0 * U^\dagger * V * U) \right]$$

$$\underbrace{\hat{\rho}_0, \hat{U}, \hat{V}}_{(N \times N) \text{ matrices}} \implies \underbrace{\rho_0(\vec{x}), U(\vec{x}, t), V(\vec{x})}_{\text{symbols}}$$

- $A(\vec{x}, t) \equiv \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x}) \hat{A}_{ml}(t) \Psi_l^*(\vec{x})$

S_0 : action of a noncommutative field theory

$$S_0 = \int dt \operatorname{Tr} \left[i\hat{\rho}_0 \hat{U}^\dagger \partial_t \hat{U} - \hat{\rho}_0 \hat{U}^\dagger \hat{V} \hat{U} \right]$$

$$= N \int d\mu dt \left[i(\rho_0 * U^\dagger * \partial_t U) - (\rho_0 * U^\dagger * V * U) \right]$$

$$\underbrace{\hat{\rho}_0, \hat{U}, \hat{V}}_{(N \times N) \text{ matrices}} \implies \underbrace{\rho_0(\vec{x}), U(\vec{x}, t), V(\vec{x})}_{\text{symbols}}$$

- $A(\vec{x}, t) \equiv \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x}) \hat{A}_{ml}(t) \Psi_l^*(\vec{x})$

- $A(x) * B(x) \equiv \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x}) (\hat{A} \hat{B})_{ml}(t) \Psi_l^*(\vec{x}) = A(x)B(x) - \frac{1}{n} (R_{-i}A)(R_{+i}B) + \dots$

S_0 : action of a noncommutative field theory

$$S_0 = \int dt \operatorname{Tr} \left[i\hat{\rho}_0 \hat{U}^\dagger \partial_t \hat{U} - \hat{\rho}_0 \hat{U}^\dagger \hat{V} \hat{U} \right]$$

$$= N \int d\mu dt \left[i(\rho_0 * U^\dagger * \partial_t U) - (\rho_0 * U^\dagger * V * U) \right]$$

$$\underbrace{\hat{\rho}_0, \hat{U}, \hat{V}}_{(N \times N) \text{ matrices}} \implies \underbrace{\rho_0(\vec{x}), U(\vec{x}, t), V(\vec{x})}_{\text{symbols}}$$

- $A(\vec{x}, t) \equiv \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x}) \hat{A}_{ml}(t) \Psi_l^*(\vec{x})$
- $A(x) * B(x) \equiv \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x}) (\hat{A} \hat{B})_{ml}(t) \Psi_l^*(\vec{x}) = A(x)B(x) - \frac{1}{n} (R_{-i}A)(R_{+i}B) + \dots$
- $\operatorname{Tr} \implies N \int d\mu$

S_0 : action of a noncommutative field theory

$$S_0 = \int dt \operatorname{Tr} \left[i\hat{\rho}_0 \hat{U}^\dagger \partial_t \hat{U} - \hat{\rho}_0 \hat{U}^\dagger \hat{V} \hat{U} \right]$$

$$= N \int d\mu dt \left[i(\rho_0 * U^\dagger * \partial_t U) - (\rho_0 * U^\dagger * V * U) \right]$$

$$\underbrace{\hat{\rho}_0, \hat{U}, \hat{V}}_{(N \times N) \text{ matrices}} \implies \underbrace{\rho_0(\vec{x}), U(\vec{x}, t), V(\vec{x})}_{\text{symbols}}$$

- $A(\vec{x}, t) \equiv \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x}) \hat{A}_{ml}(t) \Psi_l^*(\vec{x})$
- $A(x) * B(x) \equiv \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x}) (\hat{A} \hat{B})_{ml}(t) \Psi_l^*(\vec{x}) = A(x)B(x) - \frac{1}{n} (R_{-i}A)(R_{+i}B) + \dots$
- $\operatorname{Tr} \implies N \int d\mu$

S_0 = bosonic action describing the dynamics of LLL fermions

DAS, DHAR, MANDAL, WADIA; SAKITA : 2d plane context

Large N, K limit with $N \gg K \gg 1$ (large n limit) \implies **chiral boundary action**

Large N, K limit with $N \gg K \gg 1$ (large n limit) \implies chiral boundary action

A. Abelian background magnetic field $U(1)$

Large N, K limit with $N \gg K \gg 1$ (large n limit) \implies chiral boundary action

A. Abelian background magnetic field $U(1)$

- $\hat{U} = \exp(i\hat{\phi})$; boson field $\phi(x, t)$ = symbol of $\hat{\phi}$

Large N, K limit with $N \gg K \gg 1$ (large n limit) \implies chiral boundary action

A. Abelian background magnetic field $U(1)$

- $\hat{U} = \exp(i\hat{\phi})$; boson field $\phi(x, t)$ = symbol of $\hat{\phi}$
- $X * Y - Y * X = \underbrace{\frac{i}{n}(\Omega^{-1})^{ij} \partial_i X(\vec{x}, t) \partial_j Y(\vec{x}, t)}_{Poisson\ bracket} + \mathcal{O}(1/n^2), \quad n\Omega = \text{Symplectic form}$

Large N, K limit with $N \gg K \gg 1$ (large n limit) \implies chiral boundary action

A. Abelian background magnetic field $U(1)$

- $\hat{U} = \exp(i\hat{\phi})$; boson field $\phi(x, t)$ = symbol of $\hat{\phi}$
- $X * Y - Y * X = \underbrace{\frac{i}{n}(\Omega^{-1})^{ij} \partial_i X(\vec{x}, t) \partial_j Y(\vec{x}, t)}_{\text{Poisson bracket}} + \mathcal{O}(1/n^2), \quad n\Omega = \text{Symplectic form}$
- $\rho_0 = \frac{1}{N} \sum_{m=1}^K \Psi_m^* \Psi_m \rightarrow \Theta(R_D^2 - r^2), \quad R_D = \text{droplet radius}$

Large N, K limit with $N \gg K \gg 1$ (large n limit) \implies chiral boundary action

A. Abelian background magnetic field $U(1)$

- $\hat{U} = \exp(i\hat{\phi})$; boson field $\phi(x, t)$ = symbol of $\hat{\phi}$
- $X * Y - Y * X = \underbrace{\frac{i}{n}(\Omega^{-1})^{ij} \partial_i X(\vec{x}, t) \partial_j Y(\vec{x}, t)}_{\text{Poisson bracket}} + \mathcal{O}(1/n^2), \quad n\Omega = \text{Symplectic form}$
- $\rho_0 = \frac{1}{N} \sum_{m=1}^K \Psi_m^* \Psi_m \rightarrow \Theta(R_D^2 - r^2), \quad R_D = \text{droplet radius}$
- $\partial \rho_0 \rightarrow \delta\text{-function with support at the droplet boundary}$

Large N, K limit with $N \gg K \gg 1$ (large n limit) \implies chiral boundary action

A. Abelian background magnetic field $U(1)$

- $\hat{U} = \exp(i\hat{\phi})$; boson field $\phi(x, t)$ = symbol of $\hat{\phi}$
- $X * Y - Y * X = \underbrace{\frac{i}{n}(\Omega^{-1})^{ij} \partial_i X(\vec{x}, t) \partial_j Y(\vec{x}, t)}_{\text{Poisson bracket}} + \mathcal{O}(1/n^2), \quad n\Omega = \text{Symplectic form}$
- $\rho_0 = \frac{1}{N} \sum_{m=1}^K \Psi_m^* \Psi_m \rightarrow \Theta(R_D^2 - r^2), \quad R_D = \text{droplet radius}$
- $\partial \rho_0 \rightarrow \delta\text{-function with support at the droplet boundary}$

$$S_0 \sim \int_{\partial D} (\partial_t \phi + u \mathcal{L} \phi) \mathcal{L} \phi$$

$(2k - 1)$ (space) dim chiral action defined on droplet boundary

$$\mathcal{L} \phi = (\Omega^{-1})^{ij} \hat{r}_j \partial_i \phi, \quad \mathcal{L} = \begin{cases} \text{derivative along boundary of droplet} \\ \rightarrow \partial_\theta \text{ in 2 dim.} \end{cases}$$

B. Nonabelian background magnetic field $U(k)$

- Wavefunction is a nontrivial representation of $SU(k)$: $\psi_{m,\alpha}$ $\alpha = 1, \dots, N'$
- Symbol = $(N' \times N')$ matrix valued function \longrightarrow action in terms of $G \in U(N')$

B. Nonabelian background magnetic field $U(k)$

- Wavefunction is a nontrivial representation of $SU(k)$: $\psi_{m,\alpha}$ $\alpha = 1, \dots, N'$
- Symbol = $(N' \times N')$ matrix valued function \rightarrow action in terms of $G \in U(N')$
- The effective edge action is a generalized gauged WZW action in $(2k - 1, 1)$ dimensions.

$$\begin{aligned}
 S_0 &= \frac{1}{4\pi} \int_{\partial D} \text{tr} \left[\left(G^\dagger \dot{G} + u G^\dagger \mathcal{L}G \right) G^\dagger \mathcal{L}G \right] \\
 &+ \frac{1}{4\pi} \int_D \text{tr} \left[-d \left(i\bar{A}dGG^\dagger + i\bar{A}G^\dagger dG \right) + \frac{1}{3} \left(G^\dagger dG \right)^3 \right] \wedge \left(\frac{\Omega}{2\pi} \right)^{k-1} \frac{1}{(k-1)!} \\
 &\equiv S_{\text{WZW}}(A^L = A^R = \bar{A})
 \end{aligned}$$

$\mathcal{L} = (\Omega^{-1})^{ij} \hat{r}_i D_j =$ covariant derivative along the boundary of droplet

- In the presence of gauge fluctuations one starts with a gauged matrix action.

$$\partial_t \rightarrow \hat{D}_t = \partial_t + i\hat{\mathcal{A}}$$

$$S = \int dt \operatorname{Tr} \left[i\hat{\rho}_0 \hat{U}^\dagger \partial_t \hat{U} - \hat{\rho}_0 \hat{U}^\dagger \hat{V} \hat{U} - \underbrace{\hat{\rho}_0 \hat{U}^\dagger \hat{\mathcal{A}} \hat{U}}_{\text{gauge interactions}} \right]$$

gauge interactions

In terms of bosonic fields

$$S = N \int dt d\mu \operatorname{tr} \left[i\rho_0 * U^\dagger * \partial_t U - \rho_0 * U^\dagger * (V + \mathcal{A}) * U \right]$$

QUESTION: How is \mathcal{A} related to the gauge fields coupled to the original fermions?

- S is invariant under

$$\begin{aligned}\delta U &= -i\lambda * U \\ \delta \mathcal{A}(\vec{x}, t) &= \partial_t \lambda(\vec{x}, t) - i(\lambda * (V + \mathcal{A}) - (V + \mathcal{A}) * \lambda)\end{aligned}\tag{1}$$

- Since S describes gauge interactions it has to be invariant under usual gauge transformations

$$\delta A_\mu = \partial_\mu \Lambda + i[\bar{A}_\mu + A_\mu \cdot \Lambda], \quad \delta \bar{A}_\mu = 0 \tag{2}$$

Background

Perturbation

The strategy is to choose

$$\mathcal{A} = \text{function}(A_\mu, \bar{A}_\mu, V)$$

$$\lambda = \text{function}(\Lambda, A_\mu, \bar{A}_\mu)$$

such that the gauge transformation (2) induces $\delta \mathcal{A}$ in (1) (generalized Seiberg-Witten map)

- In the large N limit the result is $S = S_{\text{edge}} + S_{\text{bulk}}$

$S_{\text{edge}} \sim S_{\text{WZW}}(A^L = A + \bar{A}, A^R = \bar{A}) = \text{Chirally gauged WZW action in } 2k \text{ dim}$

$S_{\text{bulk}} \sim S_{\text{CS}}^{2k+1}(\tilde{A}) + \dots = (2k+1) \text{ dim CS action}$

$$\tilde{A} = (A_0 + V, \bar{a}_i + \bar{A}_i + A_i) = \text{background} + \text{fluctuations}$$

- Gauge Invariance \implies Anomaly Cancellation

$$\delta S_{\text{edge}} \neq 0, \quad \delta S_{\text{bulk}} \neq 0$$

$$\delta S_{\text{edge}} + \delta S_{\text{bulk}} = 0$$

- What about metric fluctuations?

- What about metric fluctuations?
- The lowest Landau level obeys the holomorphicity condition $\hat{R}_{-i}\Psi = 0$.

- What about metric fluctuations?
- The lowest Landau level obeys the holomorphicity condition $\hat{R}_{-i}\Psi = 0$.

The number of normalizable solutions is given by the **Dolbeault index**.

$$\text{Index} = \int_M \underbrace{\text{td}(T_C M)}_{\text{Todd class}} \wedge \underbrace{\text{ch}(V)}_{\text{Chern character}}$$

- What about metric fluctuations?
- The lowest Landau level obeys the holomorphicity condition $\hat{R}_{-i}\Psi = 0$.

The number of normalizable solutions is given by the **Dolbeault index**.

$$\text{Index} = \int_M \underbrace{\text{td}(T_c M)}_{\text{Todd class}} \wedge \underbrace{\text{ch}(V)}_{\text{Chern character}}$$

$$\text{td}(T_c M) = 1 + \frac{1}{2} \text{Tr} \frac{iR}{2\pi} + \frac{1}{24} \left((\text{Tr} \frac{iR}{2\pi})^2 - \text{Tr} (\frac{iR}{2\pi})^2 \right) + \dots$$

$$\text{ch}(V) = \text{Tr} \left(e^{iF/2\pi} \right)$$

- What about metric fluctuations?
- The lowest Landau level obeys the holomorphicity condition $\hat{R}_{-i}\Psi = 0$.

The number of normalizable solutions is given by the **Dolbeault index**.

$$\text{Index} = \int_M \underbrace{\text{td}(T_c M)}_{\text{Todd class}} \wedge \underbrace{\text{ch}(V)}_{\text{Chern character}}$$

$$\text{td}(T_c M) = 1 + \frac{1}{2} \text{Tr} \frac{iR}{2\pi} + \frac{1}{24} \left((\text{Tr} \frac{iR}{2\pi})^2 - \text{Tr} (\frac{iR}{2\pi})^2 \right) + \dots$$

$$\text{ch}(V) = \text{Tr} \left(e^{iF/2\pi} \right)$$

- Consider a fully filled LLL (each particle carries unit charge $e = 1$):

degeneracy = Dolbeault index = charge

\implies **Dolbeault index density** = charge density $\equiv J_0$

- What about metric fluctuations?
- The lowest Landau level obeys the holomorphicity condition $\hat{R}_{-i}\Psi = 0$.

The number of normalizable solutions is given by the **Dolbeault index**.

$$\text{Index} = \int_M \underbrace{\text{td}(T_c M)}_{\text{Todd class}} \wedge \underbrace{\text{ch}(V)}_{\text{Chern character}}$$

$$\text{td}(T_c M) = 1 + \frac{1}{2} \text{Tr} \frac{iR}{2\pi} + \frac{1}{24} \left((\text{Tr} \frac{iR}{2\pi})^2 - \text{Tr} (\frac{iR}{2\pi})^2 \right) + \dots$$

$$\text{ch}(V) = \text{Tr} \left(e^{iF/2\pi} \right)$$

- Consider a fully filled LLL (each particle carries unit charge $e = 1$):

degeneracy = Dolbeault index = charge

\implies **Dolbeault index density** = charge density $\equiv J_0$

- So we can use $\frac{\delta S_{\text{eff}}}{\delta A_0} = J_0 = \text{Dolbeault index density}$

and integrate up to get S_{eff} .

- $\mathbb{CP}^1 = SU(2)/U(1)$; s -th LL

$$S_{3d} = \frac{1}{4\pi} \int \left\{ \left(A + \left(s + \frac{1}{2} \right) \omega \right) d \left(A + \left(s + \frac{1}{2} \right) \omega \right) - \frac{1}{12} \omega d\omega \right\}$$

Agrees with ABANOV, GROMOV; KLEVTSOV ET AL; BRADLYN, READ; CAN, LASKIN, WIEGMANN

- $\mathbb{CP}^1 = SU(2)/U(1)$; s -th LL

$$S_{3d} = \frac{1}{4\pi} \int \left\{ \left(A + (s + \frac{1}{2})\omega \right) d \left(A + (s + \frac{1}{2})\omega \right) - \frac{1}{12} \omega d\omega \right\}$$

Agrees with ABANOV, GROMOV; KLEVTSOV ET AL; BRADLYN, READ; CAN, LASKIN, WIEGMANN

- $\mathbb{CP}^2 = SU(3)/U(2)$; LLL, Abelian gauge field

$$\begin{aligned} S_{5d}^{(LLL)} = & \frac{1}{(2\pi)^2} \int \left\{ \frac{1}{3!} \left(A + \omega^0 \right) \left(dA + d\omega^0 \right)^2 \right. \\ & \left. - \frac{1}{12} \left(A + \omega^0 \right) \left[(d\omega^0)^2 + \frac{1}{2} \text{Tr}(\tilde{R} \wedge \tilde{R}) \right] \right\} \end{aligned}$$

$\omega^0 \sim U(1)$ part of spin connection; $\tilde{R} \sim SU(2)$ nonabelian part of the curvature.

- $\mathbb{CP}^1 = SU(2)/U(1)$; s -th LL

$$S_{3d} = \frac{1}{4\pi} \int \left\{ \left(A + (s + \frac{1}{2})\omega \right) d \left(A + (s + \frac{1}{2})\omega \right) - \frac{1}{12} \omega d\omega \right\}$$

Agrees with ABANOV, GROMOV; KLEVTSOV ET AL; BRADLYN, READ; CAN, LASKIN, WIEGMANN

- $\mathbb{CP}^2 = SU(3)/U(2)$; LLL, Abelian gauge field

$$\begin{aligned} S_{5d}^{(LLL)} = & \frac{1}{(2\pi)^2} \int \left\{ \frac{1}{3!} \left(A + \omega^0 \right) \left(dA + d\omega^0 \right)^2 \right. \\ & \left. - \frac{1}{12} \left(A + \omega^0 \right) \left[(d\omega^0)^2 + \frac{1}{2} \text{Tr}(\tilde{R} \wedge \tilde{R}) \right] \right\} \end{aligned}$$

$\omega^0 \sim U(1)$ part of spin connection; $\tilde{R} \sim SU(2)$ nonabelian part of the curvature.

- We have general results for arbitrary dimensions, higher Landau levels and nonabelian magnetic fields

CALCULATION OF HALL CURRENTS FOR $\nu = 1$

We can calculate the electromagnetic response functions in all dimensions, $J^\mu = \frac{\delta S_{eff}}{\delta A_\mu}$.

- (2+1) dimensions

$$J^i = \frac{\epsilon^{ij}}{2\pi} \left(E_j + \frac{R_{j0}}{2} \right)$$

A Hall current can be generated from time variation of the metric.

CALCULATION OF HALL CURRENTS FOR $\nu = 1$

We can calculate the electromagnetic response functions in all dimensions, $J^\mu = \frac{\delta S_{\text{eff}}}{\delta A_\mu}$.

- (2+1) dimensions

$$J^i = \frac{\epsilon^{ij}}{2\pi} \left(E_j + \frac{R_{j0}}{2} \right)$$

A Hall current can be generated from time variation of the metric.

- (4+1) dimensions

$$J^i = \frac{\epsilon^{ijkl}}{2(2\pi)^2} E_j \left(F_{kl} + \frac{\text{Tr } R_{kl}}{2} \right)$$

- (6+1) dimensions

$$J^i = \frac{\epsilon^{ijklrs}}{2^3(2\pi)^3} E_j \left[\left(F_{kl} + \frac{1}{2} \text{Tr } R_{kl} \right) \left(F_{rs} + \frac{1}{2} \text{Tr } R_{rs} \right) - \frac{1}{12} \text{Tr} (R_{kl} R_{rs}) \right]$$

...

CALCULATION OF HALL VISCOSITY

One can calculate the energy-momentum tensor $T^{\mu\lambda}$

$$T^{\mu\lambda} = -\frac{2}{\sqrt{g}} \frac{\delta S_{eff}}{\delta g_{\mu\lambda}}$$

and from this the **viscosity tensor** η^{ijkl} defined as $T^{ij} = \eta^{ijkl} \dot{g}_{kl}$.

CALCULATION OF HALL VISCOSITY

One can calculate the energy-momentum tensor $T^{\mu\lambda}$

$$T^{\mu\lambda} = -\frac{2}{\sqrt{g}} \frac{\delta S_{\text{eff}}}{\delta g_{\mu\lambda}}$$

and from this the **viscosity tensor** η^{ijkl} defined as $T^{ij} = \eta^{ijkl} \dot{g}_{kl}$.

- In two-dimensions

$$\begin{aligned} \sqrt{g} T^{ml} &= \frac{1}{2} \eta_H \left(g^{mi} \epsilon^{lk} + g^{li} \epsilon^{mk} \right) \dot{g}_{ki} \\ &\quad + \frac{1}{2} \eta_H^{(2)} \left(g^{mi} \epsilon^{lk} + g^{li} \epsilon^{mk} \right) \nabla_i \nabla_k (g^{rn} \dot{g}_{rn}) \end{aligned}$$

where the **Hall viscosity** η_H can be read off as ($\bar{s} = s + \frac{1}{2}$)

$$\begin{aligned} \eta_H &= \frac{1}{4\pi} \left[\bar{s} B + \left(\bar{s}^2 - \frac{1}{12} \right) \left(\frac{R}{2} - \nabla^2 \right) \right] \\ \eta_H^{(2)} &= \frac{1}{8\pi} \left(\bar{s}^2 - \frac{1}{12} \right) \end{aligned}$$

- In four-dimensions the expression for the viscosity tensor is quite involved. In the flat limit, where $\mathbb{CP}^2 \Rightarrow \mathbb{C} \times \mathbb{C}$

$$\eta_H = \left(\frac{(s+1)B}{4\pi} \right)^2$$

- In four-dimensions the expression for the viscosity tensor is quite involved. In the flat limit, where $\mathbb{CP}^2 \Rightarrow \mathbb{C} \times \mathbb{C}$

$$\eta_H = \left(\frac{(s+1)B}{4\pi} \right)^2$$

- In higher dimensions there are new response functions corresponding to the variations of the effective action with respect to the nonabelian gauge fields

- In four-dimensions the expression for the viscosity tensor is quite involved. In the flat limit, where $\mathbb{CP}^2 \Rightarrow \mathbb{C} \times \mathbb{C}$

$$\eta_H = \left(\frac{(s+1)B}{4\pi} \right)^2$$

- In higher dimensions there are new response functions corresponding to the variations of the effective action with respect to the nonabelian gauge fields

KARABALI AND NAIR, 2023

- We divide the system into two regions, D and its complementary D^C , and define the reduced density matrix

$$\rho_D = \text{Tr}_{D^C} |GS\rangle \langle GS|$$

where $|GS\rangle = \prod_m c_m^\dagger |0\rangle$.

- We divide the system into two regions, D and its complementary D^C , and define the reduced density matrix

$$\rho_D = \text{Tr}_{D^C} |GS\rangle \langle GS|$$

where $|GS\rangle = \prod_m c_m^\dagger |0\rangle$.

- The entanglement entropy is defined as

$$S = -\text{Tr} [\rho_D \log \rho_D]$$

- We choose D to be the spherically symmetric region of \mathbb{CP}^k satisfying $z \cdot \bar{z} \leq R^2$.
For $\mathbb{CP}^1 \sim S^2$, D is a polar cap around the north pole with latitude angle θ .
 $R = \tan \theta/2$ via stereographic projection.

- The entanglement entropy can also be written as

$$S = -\text{Tr} [\rho_D \log \rho_D] = - \sum_{m=1}^N \left[\lambda_m \log \lambda_m + (1 - \lambda_m) \log(1 - \lambda_m) \right]$$

- The entanglement entropy can also be written as

$$S = -\text{Tr} [\rho_D \log \rho_D] = - \sum_{m=1}^N \left[\lambda_m \log \lambda_m + (1 - \lambda_m) \log(1 - \lambda_m) \right]$$

- λ 's are eigenvalues of the two-point correlator (Peschel)

$$C(r, r') = \sum_{m=1}^N \Psi_m^*(z) \Psi_m(z') , \quad z, z' \in D$$

$$\int_D C(r, r') \Psi_l^*(z') d\mu(z') = \lambda_l \Psi_l^*(z)$$

where

$$\lambda_l = \int_D |\Psi_l|^2 d\mu$$

- For 2d gapped systems

$$S = c L - \gamma + \mathcal{O}(1/L)$$

L : perimeter of boundary

c : non-universal constant

γ : universal, topological entanglement entropy ; $\gamma = 0$ for IQHE

- For 2d gapped systems

$$S = c L - \gamma + \mathcal{O}(1/L)$$

L : perimeter of boundary

c : non-universal constant

γ : universal, topological entanglement entropy ; $\gamma = 0$ for IQHE

- For integer QHE on $S^2 = \mathbb{CP}^1$ RODRIGUEZ AND SIERRA, 2009

For $\nu = 1$: $c = 0.204$

Some results on Kähler manifolds CHARLES AND ESTIENNE, 2019

A. QHE on \mathbb{CP}^k with $U(1)$ magnetic field

A. QHE on \mathbb{CP}^k with $U(1)$ magnetic field

The LLL wavefunctions are essentially the coherent states of \mathbb{CP}^k .

$$\begin{aligned}\Psi_{i_1 i_2 \dots i_k} &= \sqrt{N} \left[\frac{n!}{i_1! i_2! \dots i_k! (n-s)!} \right]^{\frac{1}{2}} \frac{z_1^{i_1} z_2^{i_2} \dots z_k^{i_k}}{(1 + \bar{z} \cdot z)^{\frac{n}{2}}}, \\ s &= i_1 + i_2 + \dots + i_k, \quad 0 \leq i_i \leq n, \quad 0 \leq s \leq n\end{aligned}$$

They form an $SU(k+1)$ representation of dimension

$$N = \dim J = \frac{(n+k)!}{n! k!}$$

The volume element for \mathbb{CP}^k is

$$d\mu = \frac{k!}{\pi^k} \frac{d^2 z_1 \cdots d^2 z_k}{(1 + \bar{z} \cdot z)^{k+1}} \quad , \quad \int d\mu = 1$$

- The eigenvalues $\lambda = \int_D \Psi^* \Psi$ are given by

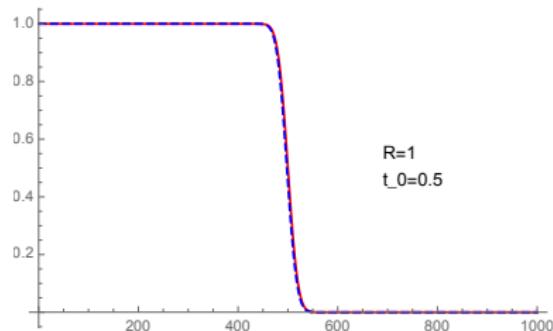
$$\lambda_{i_1 i_2 \dots i_k} \equiv \lambda_s = \frac{(n+k)!}{(n-s)!(s+k-1)!} \int_0^{t_0} dt \, t^{s+k-1} (1-t)^{n-s}$$

where $t_0 = R^2/(1+R^2)$.

- The entanglement entropy is

$$\begin{aligned} S &= \sum_{s=0}^n \overbrace{\frac{(s+k-1)!}{s!(k-1)!}}^{\text{degeneracy}} H_s \\ H_s &= [-\lambda_s \log \lambda_s - (1-\lambda_s) \log(1-\lambda_s)] \end{aligned}$$

- For large n , this is amenable to an analytical semiclassical calculation for all $k \ll n$.

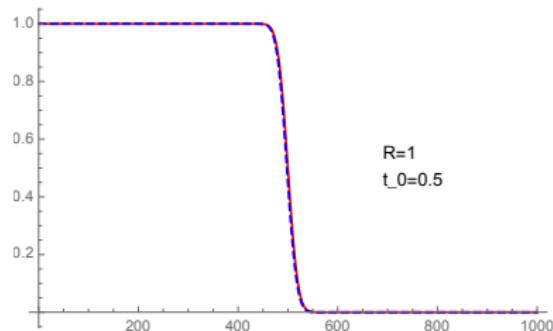


Graph of λ_s vs s

Transition ($\lambda = \frac{1}{2}$) at $s^* \sim n t_0$

$k = 1, k = 5$

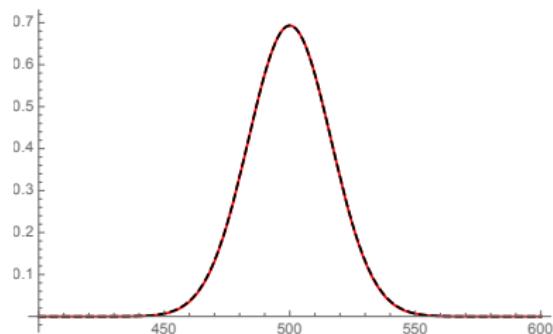
SEMICLASSICAL TREATMENT FOR LARGE n



Graph of λ_s vs s

Transition ($\lambda = \frac{1}{2}$) at $s^* \sim n t_0$

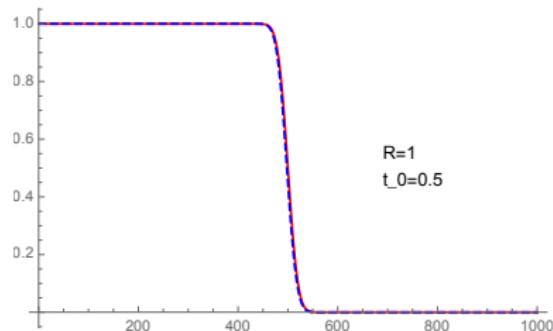
$k = 1, k = 5$



Graph of H_s vs s

— exact

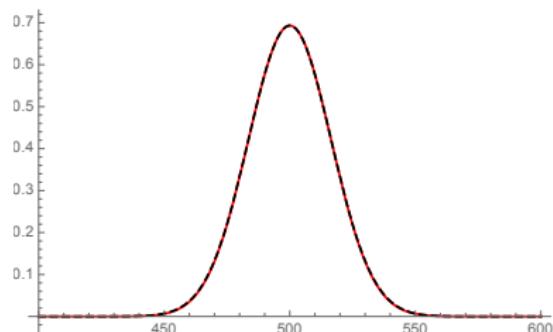
- - - Gaussian approximation



Graph of λ_s vs s

Transition ($\lambda = \frac{1}{2}$) at $s^* \sim n t_0$

$k = 1, k = 5$



Graph of H_s vs s

— exact

- - - Gaussian approximation

Only wavefunctions localized around the boundary of the entangling surface contribute to entropy.

From semiclassical analysis

$$S \sim n^{k - \frac{1}{2}} \frac{\pi (\log 2)^{3/2}}{2 k!} \underbrace{2k \frac{R^{2k-1}}{(1+R^2)^k}}_{\text{geometric area}} \sim c_k \text{Area}$$

In agreement with $k = 1$ result by [RODRIGUEZ AND SIERRA](#)

From semiclassical analysis

$$S \sim n^{k - \frac{1}{2}} \frac{\pi (\log 2)^{3/2}}{2 k!} \underbrace{2k \frac{R^{2k-1}}{(1+R^2)^k}}_{\text{geometric area}} \sim c_k \text{Area}$$

In agreement with $k = 1$ result by [RODRIGUEZ AND SIERRA](#)

- Formula for entropy becomes universal if expressed in terms of a "phase space" area instead of a geometric area.

From semiclassical analysis

$$S \sim n^{k-\frac{1}{2}} \frac{\pi (\log 2)^{3/2}}{2 k!} \underbrace{2k \frac{R^{2k-1}}{(1+R^2)^k}}_{\text{geometric area}} \sim c_k \text{Area}$$

In agreement with $k = 1$ result by [RODRIGUEZ AND SIERRA](#)

- Formula for entropy becomes universal if expressed in terms of a "phase space" area instead of a geometric area.
- $V_{\text{phase space}} \rightarrow \frac{n^k}{k!} \int \Omega^k = \frac{n^k}{k!} \int d\mu$

$$A_{\text{phase space}} = \frac{n^{k-\frac{1}{2}}}{k!} A_{\text{geom}} = \frac{n^{k-\frac{1}{2}}}{k!} 2k \frac{R^{2k-1}}{(1+R^2)^k}$$

$$S \sim \frac{\pi}{2} (\log 2)^{3/2} A_{\text{phase space}}$$

B. QHE on \mathbb{CP}^k with $U(1) \times SU(k)$ magnetic field

B. QHE on \mathbb{CP}^k with $U(1) \times SU(k)$ magnetic field

- Wavefunctions carry $SU(k)$ charge : Ψ_α , $\alpha = 1, \dots, \dim \tilde{J} = N'$. There are N' distinct classes of λ_s^α . Calculations long and tedious....

B. QHE on \mathbb{CP}^k with $U(1) \times SU(k)$ magnetic field

- Wavefunctions carry $SU(k)$ charge : Ψ_α , $\alpha = 1, \dots, \dim \tilde{J} = N'$. There are N' distinct classes of λ_s^α . Calculations long and tedious....
- Simplifications at large n
 - $S \rightarrow \dim \tilde{J} n^{k - \frac{1}{2}} \frac{\pi (\log 2)^{3/2}}{2 k!} A_{geom}$

B. QHE on \mathbb{CP}^k with $U(1) \times SU(k)$ magnetic field

- Wavefunctions carry $SU(k)$ charge : Ψ_α , $\alpha = 1, \dots, \dim \tilde{J} = N'$. There are N' distinct classes of λ_s^α . Calculations long and tedious....
- Simplifications at large n
 - $S \rightarrow \dim \tilde{J} n^{k - \frac{1}{2}} \frac{\pi (\log 2)^{3/2}}{2 k!} A_{geom}$
 - Degeneracy of LLL : $N \rightarrow \dim \tilde{J} \frac{n^k}{k!}$

B. QHE on \mathbb{CP}^k with $U(1) \times SU(k)$ magnetic field

- Wavefunctions carry $SU(k)$ charge : Ψ_α , $\alpha = 1, \dots, \dim \tilde{J} = N'$. There are N' distinct classes of λ_s^α . Calculations long and tedious....
- Simplifications at large n
 - $S \rightarrow \dim \tilde{J} n^{k-\frac{1}{2}} \frac{\pi (\log 2)^{3/2}}{2 k!} A_{\text{geom}}$
 - Degeneracy of LLL : $N \rightarrow \dim \tilde{J} \frac{n^k}{k!}$
- The corresponding phase-space volume in this case is $V_{\text{phase space}} = \dim \tilde{J} \frac{n^k}{k!} \int d\mu$

$$S \sim \frac{\pi}{2} (\log 2)^{3/2} A_{\text{phase space}}$$

for any dimension and Abelian or non-Abelian background. (KARABALI, 2020)

- QHE on \mathbb{CP}^k : platform for arbitrary even dimensions

- QHE on \mathbb{CP}^k : platform for arbitrary even dimensions
 - Experimental realizations of 4d QHE using synthetic dimensions
ZILBERBERG ET AL (2015...); BOUHIRON ET AL (2022)

- QHE on \mathbb{CP}^k : platform for arbitrary even dimensions
 - Experimental realizations of 4d QHE using synthetic dimensions
ZILBERBERG ET AL (2015...); BOUHIRON ET AL (2022)
- LLL dynamics: Universal matrix action → noncommutative bosonic field theory

- QHE on \mathbb{CP}^k : platform for arbitrary even dimensions
 - Experimental realizations of 4d QHE using synthetic dimensions
ZILBERBERG ET AL (2015...); BOUHIRON ET AL (2022)
- LLL dynamics: Universal matrix action \rightarrow noncommutative bosonic field theory
- At large N limit \rightarrow anomaly free bulk/edge dynamics

- QHE on \mathbb{CP}^k : platform for arbitrary even dimensions
 - Experimental realizations of 4d QHE using synthetic dimensions
ZILBERBERG ET AL (2015...); BOUHIRON ET AL (2022)
- LLL dynamics: Universal matrix action \rightarrow noncommutative bosonic field theory
- At large N limit \rightarrow anomaly free bulk/edge dynamics
- Use index theorems to include gauge and metric perturbations : New response functions associated with non-Abelian gauge/gravitational fluctuations

- QHE on \mathbb{CP}^k : platform for arbitrary even dimensions
 - Experimental realizations of 4d QHE using synthetic dimensions
ZILBERBERG ET AL (2015...); BOUHIRON ET AL (2022)
- LLL dynamics: Universal matrix action \rightarrow noncommutative bosonic field theory
- At large N limit \rightarrow anomaly free bulk/edge dynamics
- Use index theorems to include gauge and metric perturbations : New response functions associated with non-Abelian gauge/gravitational fluctuations
- Entanglement entropy for higher dim QHE on \mathbb{CP}^k : For $\nu = 1$ there is a universal formula valid for any k , Abelian or non-Abelian background if area is expressed in terms of phase-space area.

- QHE on $\mathbb{C}\mathbb{P}^k$: platform for arbitrary even dimensions
 - Experimental realizations of 4d QHE using synthetic dimensions
[ZILBERBERG ET AL \(2015...\)](#); [BOUHIRON ET AL \(2022\)](#)
- LLL dynamics: Universal matrix action \rightarrow noncommutative bosonic field theory
- At large N limit \rightarrow anomaly free bulk/edge dynamics
- Use index theorems to include gauge and metric perturbations : New response functions associated with non-Abelian gauge/gravitational fluctuations
- Entanglement entropy for higher dim QHE on $\mathbb{C}\mathbb{P}^k$: For $\nu = 1$ there is a universal formula valid for any k , Abelian or non-Abelian background if area is expressed in terms of phase-space area.
- Extend these ideas to fractional Hall effect ([AGARWAL, KARABALI, NAIR, 2025](#))

THANK YOU!