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@ Experimental phenomenon where electrons are confined on 2d surfaces in the
presence of strong magnetic fields

@ Deep connections with topology, noncommutative spaces, index theorems...

@ Classical Hall effect (Ebwin HALL, 1878)
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Atlow T, plateaus form where
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v=1,2,--- for IQHE ( von KLiTzinG, 1980 )
and v =1/3,1/5,- - - for FQHE ( Tsui AND STORMER, 1982 ).
@ Framework for interesting ideas
¢ conformal and topological field theories
® non-commutative geometries, fuzzy spaces

¢ bulk-edge dynamics, bosonization
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BASIC FEATURES OF INTEGER QHE

Quantum mechanics of 2d charged particle moving in a strong magnetic field

(Landau problem)
HY = EV
no= B G By
. 3 o =Bl
n=1 degeneracy = g—lj, Py = zleh
—ee— =0

v = number of completely filled LL

Lowest Landau level (LLL) : D:¥ = (8: +z/2)¥ =0

2
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QUANTUM HALL DROPLETS

Degeneracy of each LL is lifted by finite size of sample (V = 1ur?)

Low energy dynamics is confined on the edge.

Incompressible quantum Hall droplets with boundary fluctuations
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EFFECTIVE ACTIONS

Interested in long wavelength description

Z[AL = /dwdzjje_s[lﬁ";’A#] — o Seit4]

@ Electromagnetic fluctuations

v
Spulk = Scs = o /D €unA 0 A

It captures the response of the system to electromagnetic fluctuations.

0S5cs UV uua
= = — DA
SA, ~amt o

Scs is not gauge invariant in presence of boundaries.

]N

@ The edge dynamics is described by
Sedge ~ gauged chiral action
Anomaly cancellation between bulk and edge actions,

Sbulk + 6Sedge = 0
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@ How does the system respond to stress and strain?

@ Calculate stress tensor <=> couple theory to gravity (ABanov AND GRoMOV, 2014)

-1 1 - L
Seff_4ﬂ/[[A+(s+2)w] d[A + (s + 3)w] 12wdw +
w = spin connection s=0—LLL,s=1— 1stLL,---

i 05, G
T — %@lf]f _ ’O?H(Ellgl] + 6]lglt)

ny = Hall viscosity
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HIGHER DIMENSIONAL QHE

How do these 2d features extend to higher dimensions?

@ QHE on 5§* (HU AND ZHANG, 2001)

@ Generalization to arbitrary even (spatial) dimensions
QHE on CP* (KarABALI AND NAIR, 2002...)
¢ higher dimensionality

¢ possibility of having both abelian and nonabelian magnetic fields
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QHE ON CP*

CP* : 2k dim space, locally parametrized by z;,i = 1,--- ,k

@ Fubini-Study metric

2 dz - dz Z.dzz-dz P ) . -
- - =&ii =190 d
* (1+z-z) (1+z-z 8i7dzdz Q=ig;dz NdZ

@ Group coset
 SU(k+1)
CP* = um

@ CP* curvatures take values in U(k) and constant = magnetic fields ~ curvatures

@ There are degenerate Landau levels, separated by energy gap.

@ Each Landau level forms an irreducible SU(k + 1) representation, whose

degeneracy and energy is easy to calculate.
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QHE ON CP! = §?

QHE on S* analyzed by HaLbANE

B
Dirac quantization condition

/Pzzm n=2Br ez

@ We will use S* = CP' = SU(2)/U(1) and group theory.

1 z
g= ﬁ (_Z 1) € su()
zZ=x+1iy
@ Translations correspond to g — g¢’ with g ~ gh for h € U(1).
We define right translation operators: Ra g =g Ta
@ R,,R_ — covariant derivatives D+ = iRy /7

[Ri,R_]=2Rs = RV =-20
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@ A complete basis for wavefunctions on SU(2) are given by Wigner D-functions

\Ij];n,m’ ~ ﬂr‘n,m’ (g) = <]’m |§ | ]‘7 m' > quantum numbers of states in j rep.
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@ ReU =10 =m =1
@ Hamiltonian o
1 . IR B R R_
H=-— (RiR_+R_Ry)= —
iz (ReR-+ R-Ri) = 57 + o

* LLL:R_ |j, —5) =0 = |j,—%) is the lowest weight state = dim(j) = n +1

® s-thLL:|j, -5 —s) is the lowest weight state = dim(j) =n + 25 +1
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@ A complete basis for wavefunctions on SU(2) are given by Wigner D-functions

| g | ]‘7 4 > quantum numbers of states in j rep.

NDiy‘nm/( ) = <],m\m/

@ ReU =10 =m =1
@ Hamiltonian o
1 PN A B RiR_
H=—=(RyR_-+R_R})=—
ane ReRe P RRe) = 50+ i
° LLL:R_|j,~%) =0 = |j, —5) is the lowest weight state = dim(j) = n +1
® s-thLL:|j, —% — s) is the lowest weight state = dim(j) =n +2s+1

@ The spectrum decomposes into discrete Landau levels. Each LL forms an SU(2)

rep. whose degeneracy is easy to count.

@ LLL wavefunctions
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QHE ON CP* : SINGLE PARTICLE SPECTRUM

@ CP' = SU(k 4 1)/U(k). We can use (k+ 1) x (k+ 1)-matrixg € SU(k+ 1) asa
coordinate, where

Qikr1 =Zi/V1+2Z-2z, Qripp1=1/V1+Z 2

@ Translations correspond to ¢ — g¢’ with ¢ ~ gh for I € U(k). In terms of the

right translation operators: Rs g =g Ta

@ R, Ry Lor — gauge transformations ( U(k) )

@ R,i, R_; — covariant derivatives (i=1,--- k)

[Riiy R_j] ~ fiaRa, a € U(k)

@ How ¥ transforms under gauge transformations depends on choice of

background fields
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QHE ON CP* : SINGLE PARTICLE SPECTRUM

@ Choose “uniform” U(1) or U(k) background magnetic fields.

U(l): F=da=nQ, Q=Kahler 2— form

SU(k): F' ~ R~ fUe né

@ Wavefunctions are written in terms of Wigner D-functions

\Ili,, a ™~ 'D{n a(g) = < m |g| % > quantum numbers of states in J rep.
\_)2'
RE ), =y
%k(k+1) "

R o= (Tap ¥, ,



QHE ON CP* : SINGLE PARTICLE SPECTRUM

@ Wavefunctions for each Landau level form an SU(k + 1) representation |

W ~ (m 8] )
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fixed U(1)g charge ~ 1 and some finite SU(k)x repr. |

m =1, -dim] = counts degeneracy within a Landau level

a = internalindex=1,--- ,N’ = dimJ
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QHE ON CP* : SINGLE PARTICLE SPECTRUM

@ Wavefunctions for each Landau level form an SU(k + 1) representation |

W ~ (m 8] )

\

fixed U(1)g charge ~ 1 and some finite SU(k)x repr. |

m =1, -dim] = counts degeneracy within a Landau level

a = internalindex=1,--- ,N’ = dimJ

@ Lowest Landau level: R_;¥ =0  Holomorphicity condition

(] ) is lowest weight state)

15 / 39



LLL WAVEFUNCTIONS FOR U(1) MAGNETIC FIELD

For a U(1) magnetic field the LLL wavefunctions can be written in terms of complex

coordinates as

U . _ \/N n! 2 Z?lez Z;;c
it il il (n — s)! (1+z-2)7

s = h+b+-+i, 0<i<n, 0<s<mn
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LLL WAVEFUNCTIONS FOR U(1) MAGNETIC FIELD

For a U(1) magnetic field the LLL wavefunctions can be written in terms of complex
coordinates as

1. )
UN n! 2 o zZlzgeezf
iipip = VN |5y T
il ild(n—s)! | (142 2)2

s = htb+--+i, 0<i<n, 0<s<n

v

They form an SU(k + 1) representation of dimension

. n+k)!
N =dim] = 7( ) k!)

16 / 39
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@ K states are filled, N — K unoccupied
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MATRIX FORMULATION OF LLL DYNAMICS

@ QHE on a compact space M = LLL defines an N-dim Hilbert space
In the presence of confining potential => incompressible QH droplet
@ K states are filled, N — K unoccupied

Occupancy matrix for ground state droplet : o

| |
1 .
1 K
pPo = 1

%
‘ N — K
0

@ Under time evolution: gy — p = U po U’
U=NxN unitary matrix ; ”collective” variable describing excitations within

the LLL



MATRIX FORMULATION OF LLL DYNAMICS

The action for U is
So = / dt Tr [i,sofﬂ all — poawa]

which leads to the evolution equation
dp o
i = V.0l

Sp : universal matrix action

No explicit dependence on properties of space on which QHE is defined, abelian or

nonabelian nature of fermions, etc.

18 / 39
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NONCOMMUTATIVE FIELD THEORY

Sp : action of a noncommutative field theory
Sy = / e Te [ipnlr' 0,01 — polit V|

:N/dpdt [i(po + U 0LD) — (o U V5 1)

ﬁ07 Ha ‘A/ g po(f), u(fa t)v V(f)
——— —
(N x N) matrices symbols

@ AR, 1) =L 3, Un(@)Au(t) T} (F)

(]
2
Ra?

*
=
Na)

1
Z|=
2

s
3
Nat
—~

o

o3>
=l
=~
=

i
~%
&

I
=

=
—
=
Na

|
2=

%
::3
=
t
=
_l’_



NONCOMMUTATIVE FIELD THEORY

Sp : action of a noncommutative field theory
Sy = / e Te [ipnlr' 0,01 — polit V|

:N/dpdt [i(po + U 0LD) — (o U V5 1)

ﬁ07 Ha ‘A/ g po(f), u(fa t)v V(f)
——— —
(N x N) matrices symbols

@ AR, 1) =L 3, Un(@)Au(t) T} (F)

© AR)*B(x) = & X, Un(®)(AB)u (DY} () = AX)B(x) — }(R_iA)(RyiB) + - -

So = bosonic action describing the dynamics of LLL fermions

DAs, DHAR, MANDAL, WADIA; SakiTA :2d plane context



EDGE EFFECTIVE ACTION FOR v = 1

Large N, K limit with N > K > 1 ( large n limit) = chiral boundary action
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EDGE EFFECTIVE ACTION FOR v = 1

Large N, K limit with N > K > 1 ( large n limit) = chiral boundary action
A. Abelian background magnetic field U(1)

@ U = exp(i¢) ; boson field ¢(x, ) = symbol of )

@ X+Y—YxX = %(Q_l)ij OX(%,£) BY (%, £) +O(1/n?), nQ = Symplectic form

Poisson bracket

@ p = % 25:1 U, — 9<R,75 — r2), Rp= droplet radius

@ OJpo — ¢-function with support at the droplet boundary
S0 ~ / (0 + u L) Lo
ap
(2k — 1) (space) dim chiral action defined on droplet boundary

B derivative along boundary of droplet
£¢ — (Qfl)l];,jaid)7 L= { g y P

— Op in2dim.
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EDGE EFFECTIVE ACTION FOR v = 1

B. Nonabelian background magnetic field U(k)

@ Wavefunction is a nontrivial representation of SU(k) : Ym,a a =1, ,N’
@ Symbol = (N’ x N’) matrix valued function — action in terms of G € U(N’)

@ The effective edge action is a generalized gauged WZW action in (2k —1,1)

dimensions.
So :% /@D tr [(G*G tu GTL:G) G*zzc]
+ ﬁ /Dtr[—d (iAdGGT + iAGTdG) + % (Gfdcﬂ A (;)H v _1 ol

ESwzw(AL = AR = A)

L = (Q71#D; = covariant derivative along the boundary of droplet



EFFECTIVE ACTION IN PRESENCE OF GAUGE FLUCTUATIONS

@ In the presence of gauge fluctuations one starts with a gauged matrix action.
Bt — Dt = Bt + 1A
s— [t [inti'ou - pu'va- o' AG]
——
gauge interactions

In terms of bosonic fields

S:N/dtdutr [ipo*lﬁ*atu — po*UT*(V—i—.A)*U]

QUESTION: How is A related to the gauge fields coupled to the original

fermions?



EFFECTIVE ACTION IN PRESENCE OF GAUGE FLUCTUATIONS

@ Sisinvariant under
oU=—-ixxU
SAX ) = ONE ) —i (A (V+A)—(V+ A)*N)

@ Since S describes gauge interactions it has to be invariant under usual gauge

transformations
6A, = OuA + 1] A, T A, AL, 6AL =0 2
« N
Background Perturbation

The strategy is to choose

A function(A,,, A,, V)

A function(A, A, A,)

such that the gauge transformation (2) induces 0.4 in (1) ( generalized

Seiberg-Witten map)



EFFECTIVE ACTION IN PRESENCE OF GAUGE FLUCTUATIONS

@ In the large N limit the result is S = Segge + Sbuik

Sedge ~ Swzw (A" = A+ A AR = A) Chirally gauged WZW ac-
tion in 2k dim

Spuic ~ SEFL(A) + - - (2k 4 1) dim CS action

A=A+ V,a+ A +A)= background + fluctuations
@ Gauge Invariance = Anomaly Cancellation

(Ssedge 7é 07 5Sbulk 7é 0

6Sedge + 8Spuk =0
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@ What about metric fluctuations?
@ The lowest Landau level obeys the holomorphicity condition R_ ;¥ = 0.

The number of normalizable solutions is given by the Dolbeault index.

Index = / td(TeM) A ch(V)
MN>—~— N~
Todd class Chern character

2 2r 24 27
ch(V) =Tr (eip/zw)

Wd(TM) =14 2R L ((Trﬁ)2 - Tr(%)2> .

@ Consider a fully filled LLL (each particle carries unit charge e = 1):
degeneracy = Dolbeault index = charge

= Dolbeault index density = charge density = Jo



BULK EFFECTIVE ACTION INCLUDING GAUGE AND METRIC FLUCTUATIONS

@ What about metric fluctuations?

@ The lowest Landau level obeys the holomorphicity condition R_ ;¥ = 0.

The number of normalizable solutions is given by the Dolbeault index.

Index = / td(TeM) A ch(V)
M N~

~—
Todd class Chern character
IR 1 (iR iR
td(TM) =1+ 2Trzﬂ_ + 7 ((Trzﬂ_) Tr(zﬂ) ) +

ch(V) =Tr (eip/zw)
@ Consider a fully filled LLL (each particle carries unit charge e = 1):
degeneracy = Dolbeault index = charge

= Dolbeault index density = charge density = Jo

S
@ Sowe can use 5 f;ﬁ = Jo = Dolbeault index density
0

and integrate up to get Sy.




BULK TOPOLOGICAL EFFECTIVE ACTION: EXAMPLES

@ CP'=su(2)/u(1);s-th LL

Saq = ;/{(AJF (s+ %)w)d(A—i— (s+ %)w) - 112wdw}

Agrees with ABANOV, GROMOV; KLEVTSOV ET AL; BRADLYN, READ; CAN, LASKIN, WIEGMANN
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BULK TOPOLOGICAL EFFECTIVE ACTION: EXAMPLES

@ CP'=su(2)/u(1);s-th LL

Saq = ;/{(A—i— (s+ %)w)d(A—l— (s+ %)w) - 112wdw}

Agrees with ABANOV, GROMOV; KLEVTSOV ET AL; BRADLYN, READ; CAN, LASKIN, WIEGMANN

@ CP? = SU(3)/U(2); LLL, Abelian gauge field

SézLL) = (231_)2 /{ % (A + wo) (dA + dw0)2

hae)

() + STe(R A R)] }

w? ~ U(1) part of spin connection; R ~ SU(2) nonabelian part of the curvature.

@ We have general results for arbitrary dimensions, higher Landau levels and

nonabelian magnetic fields



CALCULATION OF HALL CURRENTS FOR v = 1

35S,
7

We can calculate the electromagnetic response functions in all dimensions, J* =

i Gij Rjo
=5 (5+3)

A Hall current can be generated from time variation of the metric.

@ (2+1) dimensions



CALCULATION OF HALL CURRENTS FOR v = 1

We can calculate the electromagnetic response functions in all dimensions, J* = Zf‘e’z .

@ (2+1) dimensions

i Gij R'o

i_ & E: -0

I'=2 ( it >
A Hall current can be generated from time variation of the metric.
@ (4+1) dimensions
i Eijkl Tr Rkl
I = gt (Fr+ 77
@ (6+1) dimensions
. eijklrs 1 1 1
]l = WE]’ |:(Pkl + ETrRkl> <Frs + ETrRrs> - ETI' (Rkers)



CALCULATION OF HALL VISCOSITY

One can calculate the energy-momentum tensor T+*

ir — _ 2 954
V8 08ux

and from this the viscosity tensor niﬂd defined as TV = 77’7” Su-
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CALCULATION OF HALL VISCOSITY

One can calculate the energy-momentum tensor T+*

ir — _ 2 954
V8 08ux

and from this the viscosity tensor niﬂd defined as TV = 7]’7” Su-

@ In two-dimensions
. 1 i i m .
Vg T 1 _ EWH (g'”e"‘—i—gle k)gki
1 i i .
+§ 77[(-[2) <gm 6lk + gltemk> Vivk (grngm)

where the Hall viscosity 7 can be read off as (5 = s + % )

I

@ _ 1 ({2 1
M= 87r<s 12>



CALCULATION OF HALL VISCOSITY

@ In four-dimensions the expression for the viscosity tensor is quite involved. In

the flat limit, where CP?> = C x C

29 / 39



CALCULATION OF HALL VISCOSITY

@ In four-dimensions the expression for the viscosity tensor is quite involved. In

the flat limit, where CP?> = C x C

@ In higher dimensions there are new response functions corresponding to the

variations of the effective action with respect to the nonabelian gauge fields



CALCULATION OF HALL VISCOSITY

@ In four-dimensions the expression for the viscosity tensor is quite involved. In

the flat limit, where CP?> = C x C

@ In higher dimensions there are new response functions corresponding to the
variations of the effective action with respect to the nonabelian gauge fields

KARABALI AND NAIR, 2023



ENTANGLEMENT ENTROPY FOR QHE

@ We divide the system into two regions, D and its complementary D, and define

the reduced density matrix
pp = Trpc |GS) (GS|

where |GS) = [T, ¢k |0).
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ENTANGLEMENT ENTROPY FOR QHE

@ We divide the system into two regions, D and its complementary D, and define

the reduced density matrix
pp = Trpc |GS) (GS|

where |GS) = [T, ¢k |0).

@ The entanglement entropy is defined as
§ = —Tr [pp log pp]

@ We choose D to be the spherically symmetric region of CP* satisfying z - z < R%.
For CP' ~ $?, D is a polar cap around the north pole with latitude angle 6.

R = tan 6/2 via stereographic projection.
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ENTANGLEMENT ENTROPY FOR INTEGER QHE

@ The entanglement entropy can also be written as

N
S=-Trlpplogpp] = — 3 [)\m 1og Aw + (1 — An) log(1 — Am)]

m=1

@ )’s are eigenvalues of the two-point correlator (PEscHEL)

rr)—Z\I/ YUu(z), zzZ €D

/D Clro V)7 () () = M ¥ (2)

N = / 0Py
D

where
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L: perimeter of boundary
¢: non-universal constant

~: universal, topological entanglement entropy ; v = 0 for IQHE



2D RESULTS

@ For 2d gapped systems

S=cL—~+0(1/L)

L: perimeter of boundary
¢: non-universal constant

~: universal, topological entanglement entropy ; v = 0 for IQHE

@ For integer QHE on S? = CP! RoDRIGUEZ AND SIERRA, 2009
Forv=1: ¢ =0.204

Some results on Kihler manifolds CHARLES AND ESTIENNE, 2019
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A. QHE on CP* with U(1) magnetic field

The LLL wavefunctions are essentially the coherent states of CP*.

1 .
n' 2 lezlz ce Zlk
Uiigeip =V [.|.' .| '] 172 kﬂ,
il ikl (n —s)! (1+Z-2)2

s = ii+b+--+i, 0<i;<n, 0<s<mn

They form an SU(k + 1) representation of dimension

(n+k)!

N =dim/ = =

The volume element for CP* is

K dPzp--
dp = ak (1+z-z)H1 zk+1 ’ /du_l



ENTANGLEMENT ENTROPY FOR QHE ON CP* AND ABELIAN MAGNETIC FIELD

@ The eigenvalues A = [, ¥* ¥ are given by

L = — (n+k)' /to s+k—1 _p\n—s
Ngois =X = ey | et A=

where to = R?/(1 + R?).

@ The entanglement entropy is

degeneracy
~ (k-1
S —1)!
S = 1 H;
o Si(k—1)!
Hs = [=Xloghs — (1= X)log(1—X)]

@ For large n, this is amenable to an analytical semiclassical calculation for all

k< n.
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SEMICLASSICAL TREATMENT FOR LARGE n
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SEMICLASSICAL TREATMENT FOR LARGE n

08

Graph of As vs s

06
=1 g
L0=05 Transition (A = %) ats* ~nty

k=1,k=5

04

02

200 400 600 800 1000

v Graph of Hs vs s

0.5
04 — exact
03 . . .
- - - - Gaussian approximation
0.2

0.1

450 560 550 600
Only wavefunctions localized around the boundary of the entangling surface

contribute to entropy.
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UNIVERSAL FORM FOR ENTANGLEMENT ENTROPY FOR v = 1

From semiclassical analysis

e % T (10g2)3/2 RZk—l
2K 1+ RO
N— —

geometric area

S~n ~ cr Area

In agreement with k = 1 result by RobriGuEZ AND SIERRA
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UNIVERSAL FORM FOR ENTANGLEMENT ENTROPY FOR v = 1

From semiclassical analysis

e % T (10g2)3/2 RZk—l
24 (1+ R2
N— —

geometric area

S~n ~ cr Area

In agreement with k = 1 result by RobriGuEZ AND SIERRA

@ Formula for entropy becomes universal if expressed in terms of a “phase space”

area instead of a geometric area.
nk Qk _ d
o Vphase space 7 T f - K f H

n*

Aphase space — TAgeom = T ZkW

[STES
BN
=
|
NI=
)
T
—

T
S~ E (log 2)3/2 Aphase space
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ENTANGLEMENT ENTROPY FOR v = 1 ON CP* AND NONABELIAN MAGNETIC FIELD

B. QHE on CP* with U(1) x SU(k) magnetic field

@ Wavefunctions carry SU(k) charge : ¥, ,a = 1,---dim] = N’. There are N’

distinct classes of \{*. Calculations long and tedious....

@ Simplifications at large n
~ 1 3/2
o S dimjnt 2 TUBD

¢ Degeneracy of LLL: N — dimJ Z—f

@ The corresponding phase-space volume in this case is Vphase space = dim] ';—’,( f du
T
S~ 0 (IOg 2)3/2 Aphase space

for any dimension and Abelian or non-Abelian background. (KarABALI, 2020)
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SUMMARY, COMMENTS

@ QHE on CP* : platform for arbitrary even dimensions

¢ Experimental realizations of 4d QHE using synthetic dimensions

ZILBERBERG ET AL (2015...); BOUHIRON ET AL (2022)
@ LLL dynamics: Universal matrix action — noncommutative bosonic field theory
@ Atlarge N limit — anomaly free bulk/edge dynamics

@ Use index theorems to include gauge and metric perturbations : New response

functions associated with non-Abelian gauge/gravitational fluctuations

@ Entanglement entropy for higher dim QHE on CP*: For v = 1 there is a
universal formula valid for any k, Abelian or non-Abelian background if area is

expressed in terms of phase-space area.

@ Extend these ideas to fractional Hall effect (AcARwAL, KARABALI, NAIR, 2025)
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THANK YOU!
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