
Kavli Asian Winter School (KAWS): problems for Caron-Huot’s lectures

Solutions will be discussed in the tutorial session [with corrected typo in problem 2].

1. (chaos bound; short) A transfer function satisfies S(ω) ≈ 1 + iCωλ over some range of |ω|, where λ

is real and |Cωλ| is small. Show that |S(ω)| ≤ 1 in the upper-half plane implies: −1≤λ≤1.

And if λ > λmin is sufficiently close to 1, then in addition: Re C≥0. (What λmin ensures this?)

In the context of out-of-time-order correlators for thermal systems [1], λ
2πT is a Lyapunov exponent.

Show that chaos is minimal (amplitude is elastic: ImC=0) when it is maximal (fastest growth: λ=1).

I’am not sure what this riddle means.

2. (resonant medium) After a signal goes through a medium with resonant absorption at frequency

ω0, its Fourier transform is multiplied by the transfer function:

S(ω) = exp

(
ia

ω0 − ω − iΓ

)
.

Here a > 0 measures the optical depth of the medium. Show that this medium is causal and

unitary; and that the stationary-phase approximation predicts a time advance for frequencies near

the resonance. (This model is similar to realistic media with faster-than-light group velocity [2].)

Now send in a Gaussian pulse that is narrowly peaked around the frequency ω0 (ie. σ−1 � Γ),

f̂in(ω) = e−(ω−ω0)2σ2/2
√

2πσ, fin(t) = e−iω0t−t2/(2σ2) .

Argue that for suitable choices of a and Γ, the Gaussian can come out mostly undistorted in shape

and advanced in time by 5σ. Explain why this does not challenge causality? Numerically sketch or

plot the Fourier transform. (Example parameters: σ = 1, Γ = 15, a = 1125, ω0 = 10.) 1

3. (null constraints) This problem and the next one are based on [3]. Parametrize a crossing-symmetric

amplitude for a real massless scalar, at low energies, by a sum of contact terms:

Mlow(s, t) = −g0 + g2(s
2 + t2 + u2) + g3(stu) + g4(s

2 + t2 + u2)2 + . . .

If the amplitude satisfies twice-subtracted dispersion relations and its imaginary part is only non-

negligible for m ≥M , show that (in d = 4):

g2 =

〈
1

m4

〉
, g3 =

〈
3− 2J(J + 1)

m6

〉
, g4 =

〈
1

2m8

〉
, 0 =

〈
J(J + 1)(J(J + 1)− 8)

m8

〉
(1)

where 〈•〉 ≡ 16
∑

J even(2J+1)
∫∞
M2

dm2

m2 Im aJ(m2)(•), and phase shifts are normalized so that

|1 + iaJ | ≤ 1. (The overall normalization is not always important, but work it out if you can!)

The last “null constraint” encodes crossing symmetry. If we instead considered an amplitude ΦΦ̄Φ̄Φ

for a complex scalar, there would be two spectral densities (for ΦΦ and ΦΦ̄ channels) but also two

distinct dispersion relations (fixed-t and fixed-u). How many linearly independent null constraints

would you then expect at order 1/m6, and at order 1/m8? How does the counting change if we

allow single-subtracted dispersion relations?

1Mathematica’s NIntegrate[] can compute the transform at discrete t’s; you may require WorkingPrecision->40.



4. Find positive combinations of the sum rules (1) which show that g4 ≤ g2
2M4 and g3 ≤ 3g2

M2 (easy).

Use a computer to prove the optimal lower bound g3 ≥ −10.61249 g2
M2 using only three of the sum

rules (1). Some hints for linear programming are given below. If desired, check how the bound

changes when you add the next two null constraints (n5 and n6 in (3.29) of [3]).

5. How narrow can a function be, if it is “positive in impact parameters and compact support in

momentum space”? Consider a 1D version of this problem, where

f(b) =
1

π

∫ 1

0
dpf̂(p) cos(pb) ≥ 0 ∀ b ∈ R,

and we define “width” from 〈b2〉:∫ +∞

−∞
f(b)db = 1, 〈b2〉 ≡

∫ +∞

−∞
f(b)b2db = mimized.

Discuss a possible ansatz for f̂(p): what constraints on its behavior as p→ 0 and p→ 1 ensure that

〈b2〉 is finite? Show (numerically or analytically[hard]) that the narrowest function has 〈b2〉 = π2.

On solving linear optimization programs

Given a matrix mat and vectors obj and norm, suppose we want the vector v which maximizes the

“objective” obj.v, subject to the constraints mat.v≥0 and normalization norm.v==1. Mathematica’s

LinearOptimization[-obj,{mat,0*mat[[;;,1]]},{{norm},{1}}] will return just that.

Concretely, for question 4 above that uses the three sum rules {g2, g3, 0}, v is a three vector,

norm={0, 1, 0} and obj={−1, 0, 0} (explain why!); mat is a N × 3 matrix whose rows represent N

discrete values of J and m. Since this method imposes positivity at only discrete values, it is important

to plot the outcome and verify positivity for all m ≥ 1, refining your sampling if necessary!

For larger problems, or problems involving semi-definite matrices, the powerful solver SDPB [4] is

generally much more stable and efficient. SDPB can also deal directly with polynomials in a positive

variable x ≥ 0. It is worthwhile familiarizing yourself with SDPB if there is any chance you will

encounter this type of semi-definite optimization problems. The easiest way to install it is often

through the Docker or Singularity environments, depending on your system.
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