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Dimer model primer

Fully-packed dimers on <<regular>> bipartite graphs expected to be “critical”

Basic idea:
Divergence-free polarization field on links of lattice
Effective action in terms of “gauge field” that solves the polarization constraint

Pap = (nap—1/z)éan
A-P = 0
P = Axa
K
S.g = ) /ddaz (A x a)°

(see e.g. Henley Ann. Rev. Cond. Mat. 2010)



General consequence:

Dipolar dimer correlations:
dimer ‘ ‘

Monomers behave as +1 charges (sources of divergence of P) on A/B sublattice

Test monomer-antimonomer pair on same sublattice interacts via Coulomb law potential:
(Identical to test monomer-monomer pair on opposite sublattice)

Vir) ~ 1/7“0l_2

Ctest monomers "~ eXp(_V(T))



Specifically in d=2:
Gaussian action for scalar height field
P, = ¢€,0h
Seff = 7Tg/d233 (Ah)
V(r) = glog(r)

C1test monomer 1/Tg

For non-interacting dimers on square and honeycomb lattices: g=1/2



Non-bipartite dimer models are very different

No description in terms of divergence-free polarization field
Short-range correlations between dimers

Test monomer/antimonomer pair has no long-range interaction.

Prototypical examples in 2d: Fully-packed dimers on triangular and kagome lattices



The (anti)monomer walk: Worm algorithm for fully-packed dimer models

YARRY.




What is the return time distribution of this monomer walk?

But first: Why is this at all interesting?

One reason:

Worm head motion affects background dimer configuration.

Each step obeys detailed balance for coupled worm-dimer system

Monte-Carlo move ends when worm head returns to “origin” (position of fixed tail)
Heuristically: Worm head moves in “Coulomb potential” of worm tail

How far is this picture valid?



Another reason:

This picture leaves out the other interesting aspect of the monomer walk:
Process is explicitly Markovian for coupled system.

But: If dimers “integrated out” of description, worm head’s motion is correlated in time

(due to correlations of the underlying dimer configuration)



(Yet) another reason:

Another interesting feature:
Process is always respects detailed balance in larger configuration space.
But: Multiple prescriptions for maintaining detailed balance

Is there universality across prescriptions (and across bipartite lattices?)



Our focus and some background:

Our focus is d=2 case.

Some background:

Vi)=0  P(r)~

T, log2 (7 /70)

for usual random walker in d=2

V(r) = nm log(r/ro) P(1,) ~ 140
0 = Nim /2

(see e.g. Bray Phys. Rev. E 2000)



More background:

For simulations in a L by L box _
for usual random walker in d=2

Expect/Postulate natural finite-size scaling form:

V) =0 P(r)log (r/m) = - fold 1)
z =2
V(r) =nmlog(r/ro)  p(1,) = cLz<11 7 fg(d%)
lim f(z) ~ 1 Jat

(any literature on this?)



Distribution of non-winding worms

Non-winding worm
[ |

10° F o ! =
orl —
104 - E
O Algorith l
‘5’ -k © gii.t-l;:th i 9 — 034(2)

O  no-bounce

107" - Honeycomb Square 7
¢ L=480 & L=512 ©
1072 & L=960 ¢ L=102 p B ° -
d L =480 L =512 ®0
10" ¢ L=960 ¢ L=1024 T) ﬁ) (P S
0 07 107 07

Tr



cP(1,)L*(1+9)

Scaling form and universality of dynamics validated
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Distribution of winding worms
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Scaling form and universality again validated
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Fractional Brownian motion?

Value of z to be interpreted as fractional brownian motion (due to history dependence)?

note: similar earlier results for much more complicated
worm algorithms for frustrated Ising models
(Rakala, KD, Dhar PRE 2021)



Heuristic idea

Power-law history dependence controlled by dimer-dimer correlations
Persistence properties affected by “potential” between head and tail of worm
Z  controlled by dimer correlation exponent

@  controlled by test monomer correlation exponent



Tests with interacting dimer models?

Dimer-dimer interactions cause g to increase

But no independent control over dimer and monomer exponents:

na=1/g Nm = ¢



Different setting: The star (decorated honeycomb) lattice dimer model

1 1 g
6
[ [ o 3
<
Exactly dual to triangular lattice Ising model Exactly dual to square lattice Ising model

Any other literature on this? (other than Thomas & Middleton 2009 & Likhosherstov, Maximov, Chertkov 20207?)



Key point:

Although non-bipartite, power-law dimer correlator at Ising critical points

Dimer correlator maps to bond energy correlator of Ising model:

Nd = 2
But no height theory, so monomer exponent quite different:

Nm 7 1/14



Monomer exponent at triangular lattice Ising critical point

gtar lattice ¢ = ¢! (triangular symm.)
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Monomer exponent at square lattice Ising critical point

Star lattice t = t!(square symm.)
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Distribution of all worms at triangular Ising critical point

Star lattice ¢ = ¢! (triangular symm.)
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Scaling ansatz validated at triangular Ising critical point

Star lattice ¢ = ¢! (triangular symm.)
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Distribution of all worms at square lattice Ising critical point

Star lattice ¢t = t!(square symm.)
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Scaling ansatz validated at triangular Ising critical point

Star lattice ¢ = t2'(square symm.)
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Confirms heuristics (?)

z does not change (within errors)

But big change in 6
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