
Dynamical Fluctuations in Riesz and Dyson
gases

K. Mallick

Institut de Physique Théorique Saclay (France)
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Outline

Motivations

1. Macroscopic fluctuations in the Riesz gas

2. Large Deviations of the current in the Dyson gas

[3. Free expansion of a gas with long-range interactions]

Concluding remarks

R. Dandekar, P. Krapivsky, KM: Phys. Rev. E 107 044129 (2023)

R. Dandekar, P. Krapivsky, KM: Current fluctuations in the Dyson gas, to
appear in Phys. Rev. E (arxiv 2409.06881)

P. Krapivsky, KM: Expansion into the vacuum of stochastic gases with
long-range interactions (to be submitted)
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Motivation : Anomalous Single-file diffusion in 1d

Single-file diffusion is an important phenomena soft-condensed matter
(for example, transport through cell membranes).
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Experimental observations

(C. Bechinger’s group in Stuttgart)
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Symmetric exclusion

Consider the Symmetric Exclusion Process, (p = q = 1) on Z with a
uniform finite density ρ of particles. This model was invented by F.
Spitzer in 1970.
It is a pristine model for single-file diffusion is the Symmetric Exclusion
Process, in which particles perform continuous-time random walks with
hard-core (classical) exclusion interaction
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Suppose that we tag and observe a particle that was initially located at
site 0 and monitor its position Xt with time.

Because of the non-overtaking constraint, the tracer’s position Xt

and the current Qt are tightly linked.
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The Symmetric Exclusion Process (SEP) on Z.

On the average 〈Xt〉 = 0 but how large are its fluctuations?

• If the particles were non-interacting (no exclusion constraint), each
particle would diffuse normally 〈X 2

t 〉 = Dt .

• Because of the exclusion condition, a particle displays an anomalous
diffusive behaviour: when t →∞, we have

〈X 2
t 〉 ' 2

1− ρ
ρ

√
Dt

π
(Arratia, 1983)

The full distribution of Xt remained unknown for many years.

• An exact formula valid for any time has been obtained by using
Integrable Probabilities (Bethe Ansatz) for the microscopic model.

• The large deviations of Xt can also be calculated by using fluctuating
hydrodynamics and by solving exactly the MFT equations (Inverse
Scattering) at the macroscopic level.
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Exact Tracer distribution

At any finite time, the distribution of the tracer can be expressed as an
infinite dimensional (Fredholm) determinant:

〈eλN(x,t)〉 = det(1 + ωKt,x)W0(λ)

where

Kt,x(ξ1, ξ2) =
ξ
|x|
1 eε(ξ1)t

ξ1ξ2 + 1− 2ξ2
with ε(ξ) = ξ + ξ−1 − 2

The asymptotic analysis of this determinant yields concrete formulas for
the cumulants of the tracer’s position (revealing non-gaussian behaviour).

• Variance : 〈X 2
t 〉 = 2 1−ρ

ρ

√
Dt
π (Arratia)

• 4th order:
〈X 4

t 〉c√
4t

= 1−ρ√
πρ3 [1− (4− (8− 3

√
2)ρ)(1− ρ) +

12

π
(1− ρ)2]
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Fluctuating Hydrodynamics (MFT)

The coarse-grained evolution of the system, conditioned on a given value
of the tracer’s position Xt , can be recast as an ‘optimal transport
problem’. This leads to a Hamiltonian equations coupling two fields
(q(x , t), p(x , t)), where q(x , t) = ρ(x , t) is the density and p(x , t) is the
control-field (conjugate momentum):

∂tq = ∂x [D(q)∂xq]− ∂x [σ(q)∂xp]

∂tp = −D(q)∂xxp − 1
2σ
′(q)(∂xp)2

with Hamiltonian H = σ(q)(∂xp)2/2− D(q)(∂xq)(∂xp).

The only information of the microscopic scale relevant macroscopically is
embodied in D and σ.

For SEP, we have D(q) = 1 and σ(q) = 2q(1− q). Other details are
‘blurred’ in the continuous limit.
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The MFT for SEP are integrable

The Hamiltonian equations for SEP are classically integrable in the
Liouville sense and explicit formulas for the optimal fields (q∗, p∗) that
describe the dynamical evolution that generates a given fluctuation (rare
event) can be found at the hydrodynamic scale.

This, in turn, yields the Cumulant Generating Function (CGF) of the

current. In the long time limit, 〈eλQT 〉 ' e
√
Tµ(λ), with

µ(λ) =
1√
π

∞∑
n=1

(−1)n−1ωn

n3/2

where ω = (eλ − 1)ρ−(1− ρ+) + (e−λ − 1)ρ+(1− ρ−)

(see Derrida-Gershenfeld J. Stat. Phys. 2009; Imamura-M-Sasamoto
PRL 2017 and CMP 2021 for a microscopic derivation).
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Some questions

• For a driven diffusive gas, with transport coefficients D(ρ) and σ(ρ),
the variance of a tracer is (Krapivsky-M-Sadhu PRL 113, 2014)

〈X 2
t 〉 =

σ(ρ)

ρ2
√
π

√
t

D(ρ)

This formula depends on whether the initial conditions are fluctuating
(annealed) or fixed (quenched). In the latter case, there is an additional

√
2 in

the denominator. What about higher cumulants (Bénichou and Grabsch)?

• Can one generalize these results to non-diffusive single-file systems?

• For the Dyson gas, the tracer behaves as

〈X 2
t 〉 =

log t

π2ρ2
(H. Spohn, 1986)

Can this formula (and higher cumulants) be derived from hydrodynamics?

• More generally, how is the behaviour modified if the particles interact
through a potential, possibly long-ranged (Riesz gas)?

• How does the tracer behave in the scaling limit? (for SEP: Peligrad and
Sethuraman proved fBm-1/4).
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DYNAMICAL FLUCTUATIONS

IN THE RIESZ GAS

K. Mallick Dynamical Fluctuations in Riesz and Dyson gases



Particles with long-range interactions

We consider a gas of particles on the line subject to a white noise
interacting through a Riesz potential of strength g . In the over-damped
limit, the particle positions xi evolve according to

ẋi = g
∑
j 6=i

xi − xj
|xi − xj |2+s

+ ηi

with
〈ηi (t)ηj(t

′)〉 = 2Dδijδ(t − t ′)

For s > 1: the gas is effectively short-ranged.
For 0 < s < 1 : the gas is long-ranged and the free energy functional is
non-local.

Our goal is to generalize the MFT approach and investigate fluctuations
of the integrated current and the position of a tagged particle in a set-up
with uniform density ρ.
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Coarse-grained description of the Riesz gas

For s > 0, the system is characterized by a single dimensionless parameter

G =
gρs

D

that measures the relative strength of interactions versus noise. This
allows us to set g = D = 1.

We shall focus on the long-ranged case (0 < s < 1).

The coarse-grained density field of the particles satisfies the continuity
equation

∂tq + ∂xJ = 0

The local current J = J(x , t) contains the standard diffusion term, −∂xq,
plus a deterministic contribution JRiesz arising from the Riesz potential
and a stochastic component due to the noise:

J = JRiesz − ∂xq +
√

2q η

where η(x , t) is a space-time white noise.
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The Riesz current

For 0 < s < 1, the Riesz current JRiesz can be expressed as

JRiesz = qHs [q]

where the modified Hilbert transform is defined as (in the sense of
principal values)

Hs [q] =

∫
dy

x − y

|x − y |2+s
q(y)

(For s = 0, this is the π times the usual Hilbert transform).

Equivalently, the total deterministic current can be derived from

JRiesz − ∂xq = −q ∂

∂x

(
δ

δq
F [q]

)
with free energy

F [q] =
1

2s

∫ ∫
dx dy

q(x)q(y)

|x − y |s
+

∫
dx q ln q
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Stochastic Hydrodynamics of the Riesz gas

When 0 < s < 1, the fluctuating hydrodynamics of the 1d stochastic
Riesz gas is governed by the stochastic PDE (Dean-Kawasaki eq.)

∂tq = −∂x
(
qHs [q]− ∂xq +

√
2q η

)
The strategy is the same as usual: express the transition probability as a
path integral. The characteristic function of the total current QT that
has flown through the origin during the time interval (0,T ),

Q(T ) =

∫ ∞
0

dx [q(x ,T )− q(x , 0)]

is given by

〈eλQT 〉 =

∫ ∫
DqDp eλQT−

∫ T
0

∫
dt dx S(q,p) P[q(x , 0)]

with the action

S(q, p) = p∂tq − q(∂xp)2 − q(∂xp)Hs [q] ∂xp + ∂xp ∂xq
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Non-Local equations for macroscopic fluctuations

In the long time limit, T →∞, the evolution of the system conditioned
to a given value of the total current QT follows an optimal trajectory
that satisfy the saddle-point equations

∂tq = ∂2
xq −−∂x (2q∂xp + qHs [q])

∂tp = −∂2
xp − (∂xp)2 −Hs [q]∂xp +Hs [q∂xp]

This integro-differential system generalizes the original MFT equations to
the Riesz gas with long-range interactions.

The boundary conditions involve the fugacity parameter:

p(x ,T ) = λθ(x) and p(x ,T ) = λθ(x) +
δF

δq(x , 0)
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Perturbative solution of the MFT equations

A perturbative expansion w.r.t. λ allows us to find exact formulas for the
variance of the current and a tagged particle position as well as for the
two-time correlators.

〈Q2(T )〉 =
2

1
1+s Γ

(
1

s+1

)
s

[
4s Γ

(
1 + s

2

)
πs+3/2 Γ

(
1−s

2

)] 1
s+1

(ρT )
s

s+1

The displacement of a tagged particle satisfies

〈X 2(T )〉 =
1

ρ2
〈Q2(T )〉

Two-time correlations are given by

〈X (t1)X (t2)〉 ∝ t
s

1+s

1 + t
s

1+s

2 − |t1 − t2|
s

1+s

The particle behaves as a fractional Brownian with exponent ν = s
2(s+1) .
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For short range forces, s > 1, we have usual single-file behaviour with
exponent 1/4.
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Limiting cases - Discussion

• For s = 1, the particles are interacting through a 3d Coulomb potential
and are confined to a one dimensional-line. A heuristic analysis suggests

X 2 ∼

√
T

logT

• We could not integrate the full MFT system for the Riesz gas and get
higher cumulants (at the moment...).

• The scalings and the amplitude formulas we have obtained have been
recently retrieved using a different approach by Touzo, Le Doussal and
Schehr (2411.01355) who linearized the equations of motion around the
equally spaced crystal configuration.

• For s = 0, we have a Dyson gas.
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LARGE DEVIATIONS

OF THE CURRENT

IN THE DYSON GAS
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Optimal fluctuation equations

When the interaction potential is logarithmic (s = 0) the particles
perform a Dyson Brownian Motion:

ẋi =
∑
j 6=i

1

xi − xj
+ ηi

This corresponds to the collective motion of the eigenvalues of time
dependent random matrices: this is known to be a very rigid system and
the tracer is logarithmically subdiffusive (Spohn, 86).

We wish to study the macroscopic fluctuations of this interacting
particles system, including higher order cumulants, from a stochastic
hydrodynamics viewpoint.
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Optimal fluctuation equations

In the long time limit, the saddle-point equations, after neglecting the
subdominant diffusive term, reduce to

∂tq = −∂x (2q∂xp + qH[q])

∂tp = πH[q∂xp]− πH[q]∂xp − (∂xp)2

Here, H[q] is the standard Hilbert transform, defined as

H[q] =
1

π

∫
dy

q(y)

x − y
q(y)

The boundary conditions involve the fugacity parameter.

Contrarily to the case of the Riesz gas, the optimal saddle point
equations for the Dyson gas can be analyzed non-perturbatively.
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Analytic results

In the long time limit, the characteristic function of the time-integrated
current for the Dyson gas, Qt =

∫∞
0

dx [q(x , t)− q(x , 0)] by

K (γ) = 〈eγQt 〉 =
g3ρ4t2

D
µ

(
Dγ

g2ρ2t

)
with

µ(λ) =
λ2

π2

(
1

2
log

π6

λ2
+

1

2

)
Inverting the Laplace transform, we obtain:

log[Prob(Qt)] =
π2gQ2

t /4

DW−1(−q)

[
1 +

1

2W−1(−q)

]
where W−1 is a real branch of the Lambert function and
q = Qt/(2πgρ2t).
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Cumulants

From this expression, we retrieve the variance of the Dyson current and
obtain higher cumulants:

〈Q2
t 〉 '

2D

π2g
log(gρ2t)

Fluctuations of the current are drastically reduced compared to single-file
diffusion with local interactions.

Higher cumulants are given by

〈Q2m
t 〉c '

D(−1)m−1(m − 2)!

π2g

(
4D log(gρ2t)

π2g

)m−1

There are some close analogies with the distribution of the number of
eogenvalues of a random matrix in an interval (Fogler-Shklovskii, Dyson
1995).
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Strategy of the calculation

• Defining a velocity field, v = H[q] + 2∂xp, the equations take a
hydrodynamic form with pressure P = −π2q3/3 (Matytsin, 1994):

∂tq + ∂x (qv) = 0

∂tv + v(∂xv) = π2q(∂xq)

The main difference with the Matytsin problem is in the boundary
conditions (non-local and mixed).

• Using the complex-valued function, f = v + iπq, the above system is
mapped to the complex Burgers equation: ∂t f + f ∂x f = 0

• Our very peculiar boundary conditions imply a PT (parity and time
reversal) invariance of f (x , t): f (x , t) = f (−x , 1− t).

• A closed functional equation is obtained for the density profile that
leads to the CGF of the current.
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Conclusions

• The ideas and techniques that have been fruitful to study simple
interacting particle processes (stochastic hydrodynamics, MFT-type
equations) can be extended to long-range gases to describe scaling
behaviour and rare events.

• There are some (subtle?) divergence issues for the Riesz gas when one
tries to extract perturbatively higher cumulants.

• The Dyson gas is likely to be exactly solvable. A satisfactory
achievement would be have a full microscopic picture on a par with the
macroscopic analysis.

• The deterministic expansion of N Riesz/Dyson particles initially
concentrated in a single point is analytically tractable and displays
interesting scaling features.
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