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Epithelial Mes enchymal Plas ticity

N&% * Reversible switching between
;[°AR°%°F ﬁ _— three classes of phenotypes

Epithelial (E) Mesenchymal (M)

e Switches triggered by
biochemical/biophysical
signals

Adhesion , Growth Biochemical, Invasion

Blomechanlcal
signals

* Multistability increases
chances of cell survival

 What do the switching

Hybrid Ep'the"a'/ dynamics look like?
Mesenchymal(H)

Collective Migration

Epithelial-Mesenchymal Plasticity (EMP) 2



The EMP phenotypic s tability
“lands cape”
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The Terminal phenotypes are more “stable” than the Hybrid
phenotypes
Can regulatory networks explain the stability patterns?

Pastushenko | et al., Nature 2018 2

Pastushenko I, Blanpain C, Trends Cell Biol 2019



Gene Regulatory networks underlying
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Huang B et al, 2017 Tripathi S et al., 2020
Can the dynamics of EMP networks result in the observed stability landscape?



Hypothesis: Underlying regulatory
networks can explain a)multistability
and b)switching dynamics of EMP



Influence matrixs hows two teams of nodes
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Adj : Adjecency Matrix (left)
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Do teams direct the stability of phenotypes? ‘?1 |_I T2

Chauhan L et al., elLife, 2021 Epithelial Mesenchymal



Steady states of EMP networks

Boolean dynamics

79 Simulate for Epithelial

- ﬁ\' 100000 random N

@/ \@ initial states, n = 3 ’
>

Steady states
sit+1) = Zjez.wﬁsf(t) S(t+1) =5()

W;lzz 11 Epi + Mes phenotypes : 95% frequency

Hybrid phenotypes: 5% frequency Mesenchymal  Epithelial
Nodes Nodes

I; : Input nodes to i

Font-clos et al. pNas, 2015 State configuration agrees with team configuration

Shomar et al., Plos One, 2020
Hari et al., bioRxiv:472090, 2021



Similarity between influence and
correlation matrices

Correlation Matrix
Influence Matrix Boolean
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PercentDif f = 100 = Z
i j<N
 The difference between
influence matrix and correlation
matrix is <3%, for WT as well as
random networks!

* The similarity holds for RACIPE
simulations as well

* Influence matrix can indicate
the most dominant phenotypes
of a network without any
simulations
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Team Strength Correlation Matrix
Hari K et al., bioRxiv:472090 , 2021 (ODE based)



Static and dynamic s tability of EMP
phenotypes

How well is a state supported by the
network?

How well is a phenotype maintained against
dynamic perturbations (change in node
expression level)?
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Does the stability landscape agree with experimental observations?

Hari K et al., bioRxiv:472090 , 2021
Tripathi S et al., Phys Rev Lett, 2020



Frustration

Simulated phenotypes showexpected

stabilitv lands capes

pleauency e High stability = high steady
0-3\— state frequency (SSF) = high
Y coherence = low frustration

* Terminal phenotypes show
0.05 high static and dynamic
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Hari K et al., bioRxiv:472090 , 2021



Frequency

Strong teams => highly stable terminal
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As teams weaken, the stability patterns become widely distributed

Hari et al., bioRxiv:472090, 2021
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Phenotypic transition in EMP
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Celia-Terrassa T et al., Nat. Comm., 2018




EMP networks showexpected transition
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Perturbation = fraction of nodes whose expression level has been changed

Small set of uniqueperturbations can switch the phenotype
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Hari K et al., bioRxiv:472090, 2021



Change in phenotype

Weak teams =>loss of distinct
trans ition dynamics
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Teams provide s tructural robus tness
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Summary

* EMP networks are designed to have teams of nodes
e Strong teams lead to stable terminal phenotypes

* Terminal phenotypes and hybrid phenotypes show unique dynamic
characteristics, which are lost when teams weaken.

* Teams provide robustness against biochemical noise (node
perturbation) and mutations (edge perturbation)



Metas tatic cells can adapt to various
challenges

Circulating tumor cells Metastasis

Brain
metastases
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Celia-Terrassa T, Kang Y, Genes Dev, 2016

What other patterns in complex networks?
Lu W, Kang Y, Developmental Cell, 2019
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