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Introduction

It is generally believed that several phase transitions have
taken place in the early Universe. The effects of cosmological
phase transitions may well have been crucial for the evolution
of the Universe, and thus for the existence of life as we know
it. If these Cosmological Phase Transitions are first order in
nature, they act as a source of stochastic gravitational waves
which can be a good candidate for probing the early universe.

The shape of the GW spectrum thus generated, depends on
the history of evolution of the universe.
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Model

The simplest scenario for a pseudo-Nambu Goldstone (pNGB)
dark matter consists of a complex gauge singlet scalar S with
softly broken global U(1) symmetry to provide a mass term
for the pNGB dark matter. However, in this work, we extend
the minimal framework of pNGB DM by another gauge singlet
real scalar Φ. We also introduce Z2 ×Z3 discrete symmetry.
The S field does not carry any Z2 charge while under Z3 it

transforms as S → e
2πi

3 S . In contrast, Φ has odd charge
under Z2, however remain invariant under Z3.
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Model

The most general renormalizable scalar potential containing the
SM Higgs doublet H, complex scalar S and the real scalar Φ is
given by

V0(H, S ,Φ) =µ2
H (H†H) + λH (H†H)2 + µ2

Φ Φ2 + λΦ Φ4 + µ2
S (S†S)

+ λS (S†S)2 + λHS (H†H)(S†S) + λSΦ(S†S)Φ2

+ λHΦ(H†H)Φ2 +
µ3

2
(S3 + S†3). (1)
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Model

In the unitary gauge, after electroweak symmetry breaking
(EWSB), we parametrize the scalar fields in the following form:

H =

[
0

vh+h√
2

]
; S =

vs + s + iχ√
2

; Φ = φ+ vφ. (2)

where, vh, vs and vφ represent vacuum expectation values for the
H,S and Φ fields respectively. Throughout our analysis we assume
these vacuum expectation values to be real.
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Model

The mixing of three CP even gauge eigen states (h, s, φ) will yield
to the following three CP even physical eigenstates:H1

H2

H3

 = O(α1, α2, α3)

hs
φ

 (3)

where O is an orthogonal matrix and relates the physical basis
(H1,H2,H3) with the unphysical basis (h, s, φ).
In this analysis, we assume the following mass hierarchy among
these CP even scalars :

m2
H3
> m2

H2
> m2

H1
(4)

where the lightest CP even scalar H1 is identified to the Standard
Model (SM) Higgs boson (hSM) having mass mH1 = 125 GeV, and
vh = vsm = 246 GeV respectively. Throughout the analysis, we
ensure that the properties of H1 remain consistent with the
experimentally measured values of the Standard Model Higgs
boson at the LHC.

m2
χ = −9

µ3vs

2
√

2
(5)

Note that, m2
χ is proportional to µ3 indicating that the soft

breaking of the U(1) symmetry is solely responsible for giving mass
to the pNGB dark matter candidate. In the absence of this
soft-breaking term, the massive pseudo-Nambu-Goldstone boson
(pNGB) would become a massless Nambu-Goldstone boson upon
the spontaneous breaking of the global U(1) symmetry.
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Requirements for studying PhT

To study the dynamics of the electroweak phase transition in the
early universe, we use the one-loop corrected finite temperature
effective potential involving the SM and extra scalar fields of this
scenario. We start the proceedings, by adding the
Coleman-Weinberg potential VCW and counterterms VCT that
encode one-loop corrections at zero temperature to the tree-level
potential V0. Finally, to incorporate the effect of temperature of
the early universe, we include the finite-temperature corrections
VT. The complete effective potential is given by

Veff = V0 + VCW + VCT + VT (6)
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One Loop Effective Potential

We first compute the Coleman-Weinberg potential VCW using the
MS scheme and taking the Landau gauge to decouple any ghost
contributions, and write the VCW at zero temperature as .

Vcw(Hi ) =
∑
j

(−1)Fj
njm

4
j (Hi )

64π2

[
log

m2
j (Hi )

4πµ2
− Cj

]
(7)

where, i = 1, 2, 3, and j runs over all particles contributing to the
one-loop correction, Fj = 0 (1) for bosons (fermions), nj are the
degrees of freedom of the j th particle and m2

j (Hi ) is Hi field
dependent mass of j-th particle. The renormalization scale µ is
fixed at µ = mt(= 173.5 GeV), the constant Cj is equal to 3

2 for
scalars and fermions and to 5

6 for vector bosons.
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Counter terms

It is noteworthy that, while considering Coleman-Weinberg
correction, the tree-level vacuum expectation values (vevs) and
masses may receive modification at zero temperature. To prevent
such changes, it is necessary to incorporate counterterms into the
effective potential. The counterterm potential is defined as:

δVct(Hi ) = δµ2
H (H†H) + δλH (H†H)2 + δµ2

Φ Φ2 + δλΦ Φ4 + δµ2
S (S†S)

+ δλS (S†S)2 + δλHS (H†H)(S†S) + δλSΦ(S†S)Φ2

+ δλHΦ(H†H)Φ2 +
δµ3

2
(S3 + S†3) (8)
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Counter Terms

To determine the expressions for the counterterms corresponding
to each parameter, we use the following conditions:

∂ha(δVct + ∆V ) = 0

∂ha∂hb(δVct + ∆V ) = 0, (9)

where the partial derivatives are taken with respect to h , s and φ
fields expressed as ha/b. The derivatives are evaluated at the
vacuum expectation values of the respective fields, 〈H〉 = vh,
〈S〉 = vs , 〈Φ〉 = vφ and ∆V is the effective potential at zero
temperature excluding the tree level part of the potential.
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One Loop Finite Temperature

Taking into thermal effects, the temperature-dependent part of the
effective potential at finite temperatures is given by

VT (Hi ,T ) =
T 4

2π2

(∑
B

nBJB(
m2

B(Hi )

T 2
) +

∑
F

nF JF (
m2

F (Hi )

T 2
)

)
(10)

The nB/F are the degrees of freedom of bosons/fermions
respectively and the JB/F are Bosonic and Fermionic functions
which are represented as

JB/F (x2) =

∫ ∞
0

y2 log[1∓ e−
√

x2+y2
]dy (11)

At high temperature limit, one can expand the Bosonic and
Fermionic integrals in powers of x ≡ m/T as

JB(x2) |x�1 ' −π
4

45
+
π2

12
x2 − π

6
x3 +O(x4),

JF(x2) |x�1 ' 7π4

360
− π2

24
x2 +O(x4). (12)
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Phase Transition

Figure: (a) Second Order Phase Transition (b) First Order Phase
Transition
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Phase Transition

The critical temperature Tc in a phase transition is determined by
setting the potential values at two vacuum expectation values
(vevs) which can be established using the following mathematical
expression.

V (HHigh
i ,Tc) = V (HLow

i ,Tc) (13)

We define the order parameter ζc,i along the i th field direction as:

ζc,i =
∆Hi

Tc
(14)

with ∆Hi is the difference of high and low vevs of the SM/BSM
scalar field. The criterion for an SFOPT is given by ζc,i ≥ 1.
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Phase Transition

A first-order phase transition involves two key temperatures: the
critical temperature (Tc) and the bubble nucleation temperature
(Tn). Generally, the transition proceeds through bubble nucleation
at Tn, which is typically below Tc . During this process, at a finite
temperature T , the probability per unit volume of tunneling from
the false vacuum to the true vacuum is given by,

Γ(T ) = T 4

(
S3

2πT

) 3
2

e−
S3
T (15)

where S3 represents the 3-dimensional Euclidean action and is
represented

S3 = 4π

∫
r2dr

[
1

2

(
dHi

dr

)2

+ Veff(Hi ,T )

]
(16)
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Phase Transition

where the scalar field Hi follows the differential equation given by

d2Hi

dr2
+

2

r

dHi

dr
=

dVeff(Hi ,T )

dHi
(17)

with the boundary conditions Hi = 0 as r →∞ and dHi
dr = 0 at

r = 0.
The nucleation temperature is defined as the temperature at which
the following condition is satisfied .

S3(Tn)

Tn
= 140 (18)
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Benchmark Points

Parameters BP 1 BP 2 BP 3 BP 4 BP 5 BP 6 BP 7

mH2 (GeV) 377.15 296.93 260.50 275.64 234.94 290.09 377.22

mH3 (GeV) 586.38 496.55 600.82 331.63 367.80 631.88 764.36

mχ (GeV) 985.94 653.75 765.83 714.46 787.2 628.44 840.19

sinα1 0.0016 -0.067 0.112 -0.0252 -0.0086 -0.022 0.12

sinα2 0.161 0.22 0.172 0.189 0.196 0.229 0.06

sinα3 0.192 0.094 0.025 0.877 0.965 0.175 -0.0074

vs (GeV) 391.28 870.91 915.97 746.70 851.43 962.96 1013.05

vφ (GeV) 152.16 121.6 184.43 156.33 227.8 238.13 624.37

Table: Benchmark Points for the study of SFOPT.
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Phase Transition
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Phase Transition
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Figure: Variation of some parameters on PhT strength along SM Higgs
direction
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Phase Transition
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DM Phenomenology

To quantify the dark matter abundance we define a ratio :

fχ =
Ωχh

2

ΩDMh2
(19)

where we assume that it is not mandatory for the pNGB field χ to
be the only DM component. If fχ < 1, the model predicted relic
density is suppressed compared to that of the observed value by fχ
which corresponds to larger values of scalar sector couplings
required for the strong first-order phase transition.

Observables BP1 BP2 BP3 BP4 BP5 BP6 BP7

ΩDMh2 0.00261 0.095 0.12 0.0517 0.071 0.0913 0.119

σSI
eff (cm2) 6.11× 10−51 1.9× 10−46 6.78× 10−46 3.76× 10−47 1.77× 10−47 2.46× 10−47 1.125× 10−45

Table: Relic density and Direct Detection cross section of the benchmark
points. BP2,3,7 fail to satisfy latest LUX-ZEPLIN bound.
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DM Phenomenology satisfying relic+DD+ID
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Figure: Variation of some parameters satisfying relic density, direct and
indirect detection cross constraints.
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Gravitational Waves

A first-order phase transition in the early universe can serve as a
primordial source of gravitational wave (GW) generation. The
basic characteristic of these waves are stochastic and there are
three primary mechanisms for their production which are:

1 Bubble Collisions occurring in the plasma.

2 Sound Waves generated in the plasma.

3 Magnetohydrodynamic Turbulence generated in the plasma.
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Gravitational Waves

The total GW energy spectrum is expressed as:

ΩGWh2 ' Ωcolh
2 + Ωswh

2 + Ωturbh
2 (20)

The GW Spectrum is primarily shaped by four key parameters

1 Latent heat parameter (α)

2 Inverse duration parameter (β)

3 Nucleation temperature (Tn)

4 Bubble wall velocity (vw ).
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Gravitational Waves

The parameter α indicates the strength of the phase
transition and is expressed as:

α =
T
4
dVeff(〈Hi 〉,T )

dT − Veff(〈Hi 〉,T )
π2g∗T 4

30

∣∣∣∣
T=Tn

(21)

The parameter β
Hn

represents the ratio of the inverse of the
time taken for the phase transition to complete to the Hubble
parameter value at Tn. It can be expressed as

β

Hn
= Tn

d(S3/T )

dT

∣∣∣∣
T=Tn

(22)
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Gravitational Waves

The intensity of a stochastic background of gravitational
waves (GWs) can be characterized by the dimensionless
quantity

ΩGW (f ) =
1

ρc

dρGW
d log(f )

where ρGW is the energy density of the stochastic background
of gravitational waves and ρc is the present value of the
critical energy density of the Universe.

The quantity ρGW is given by

ρGW =
1

32πG
< ḣabḣ

ab >

where hab are the two modes of polarization of the
gravitational waves in the Fourier space.
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Gravitational Waves
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Conclusion

This study investigates dark matter (DM) and phase
transition dynamics in a model featuring pNGB DM within a
Z3-symmetric complex scalar and a Z2-symmetric real scalar,
both singlets under SU(2)L symmetry.

Two patterns of strong first-order phase transitions (SFOPT)
were identified, occurring along either both SM and BSM
Higgs directions or exclusively along the BSM Higgs direction.
Several benchmark scenarios illustrate different stepwise phase
transitions.

Certain benchmark points (BP2, BP3, and BP7) align with
Xenon 1T limits but are ruled out by stricter LZ constraints.
Additionally, SFOPT along the SM Higgs direction yields
under-abundant DM relic density.
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Conclusion

The introduction of parameters such as mH3 , vφ, and sinα2

influences phase transition strength, while a key
symmetry-breaking scale (µ3) facilitates first-order transitions
within the viable parameter space, still satisfying DM
detection limits.

Analysis of gravitational wave spectra indicates the highest
amplitude GW peak for BP4, followed by BP5 and BP6.
While SM Higgs direction transitions yield weak GW signals,
BSM Higgs transitions could be detected by upcoming GW
observatories like DECIGO and U-DECIGO.

These findings enhance our understanding of the early
universe and suggest potential GW observables for testing
phase transition dynamics within this theoretical model.
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