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Rydberg chains 



Rydberg atom arrays

System of 87Rb atoms controllably coupled to their 
Rydberg excited state. 

The van dar Walls interaction between two 
atoms in their excited (Rydberg) states  is 
denoted by V and is a tunable parameter. 

One can vary the detuning parameter  which allows 
one to preferentially put the atom in a Rydberg or 
ground state

Effective low-energy description

n= (1+z)/2
Vij= V0 /|rij|6

V0 can be tuned so that Rydberg excitations in 
neighbouring sites are forbidden.

H. Bernien at al. Nature 2017



Z2 (|Z2>) state  for >> and 0. Rydberg vacuum  (|0>) for >> and 0

These states are separated by an Ising transition

Similar to the transition found in tilted optical lattice

S. Sachdev et al, PRB 66, 075128 (2002).

H. Bernien at al. Nature 2017



Rydberg blockade on neighboring sites: Vi,i+1 >> Vi,i+2

Mapping to a constrained model

Two states per site: Natural spin ½ representation

A up-spin (Rydberg excitation) can be created on a site 
if and only if there are no up-spins (excitations) on the 
neighboring sites 



Introduction to ETH 



Consider a generic state of quantum 
non-integrable many-body system

The time evolution of a generic operator for this state is given by 

Issues with long-time behavior:   

a) The steady state value of O(t) depends on the overlap coefficients: no thermalization
(in the sense that the value does not agree with standard ME prediction)

a) It takes an incredibly long time to reach the steady state (predicts a very large 
relaxation time). 

Invoking random matrix theory remedies these problems since within RMT  
Omm= O’ and Omn=0. However, it provides an energy independent answer
which does not agree with standard numerical results. 

D’Alessio et. al
Adv. Phys. 65, 239 (2016)



Eigenstate Thermalization Hypothesis 

Generalization of the RMT result for the matrix elements of a “typical” operator

It states that for a large-enough system, the answer is nearly identical to that 
obtained using a microcanonical ensemble at the average energy. 

Both O and fO are smooth functions of their arguments, S is the entropy, and R is a 
gaussian random number drawn from a normal distribution. 

This relies on the fact that energy fluctuations in a many-body system are subextensive.



Violation of ETH

1. Integrable models: Presence of large number of conserved quantities lead to 
loss of ergodicity and prevents realization of long-time thermal steady states. 

2.  Many-body localization: The system becomes non-ergodic due to strong disorder 
leading to localization of all states in its Hilbert space.

3. Violation of ETH due to presence of a special class of eigenstates in its Hilbert space 
leading to long-time coherent oscillations: Quantum scars. 

4.    Violation of ETH due to fragmentation of Hilbert space leading to loss of ergodicity:
Strong Hilbert space fragmentation. 



Quantum scars



Scars from two-magnon states in a S=1 spin chain

The local basis is denoted by |+>, 
|-> and |0> which are eigenstates of 
Sz with eigenvalues 1,-1 and 0.

The two polarized states are eigenstates
of the model. They can be used as starting
point of creating other states.  

One can create single and two-magnon states in this model which are eigenstates of H

E+(-)= +(-)h(L-1) + 2J cos k

En= h(2n-L)

These bimagnon states yield a separate 
tower of states which violate ETH

Example of spectrum generating algebra
[H, Q+] =  Q+

Chandran et. al
Ann. Rev. Con. Mat. 14, 443 (2022)



The bimagnon operators form a spectrum generating algebra

j=L/2  and m= n-L/2

Thus they form a spin L/2 representation of a SU(2) algebra. This separates these states
From the rest of the spectrum and leads to violation of ETH. 

The ETH violation becomes evident from the fact that

The presence of the SU(2) algebra allows one to form 
a closed subspace leading to loss of ergodicity

This is in contrast to the ETH predicted 1/L
decay of such correlators;  C ~ 4/(3L)

Mid-spectrum states yields sub-extensive
entanglement entropy: athermal nature.

Coherent oscillatory dynamics starting from states 
with large overlap with states in scar subspace in
Contrast to ETH predicted thermalization.



They violate ETH and have 
half-chain entanglement 
entropy which do not
obey volume law : S ~ln L

They usually form a closed 
subspace In the Hilbert space 
and do not have significant
overlap with other ETH obeying 
states.

Scars in Rydberg chains

These states are athermal; consequently 
the dynamics do not show signs of 
thermalization for very long times. This leads
to long time quantum coherence and 
violation of ETH,

The dynamics can be approximated as coherent 
revivals between two Fock states; the Neel (Z2)
state and its time-reversed partner  (FSA picture).

Experiments with Rydberg chains



Scars in staggered ladders



Scars in Rydberg ladder: Magnetization density

The scars at = 1 are 
qualitatively different 
from their = 0, 
PXP counterpart

Evolution of the Magnetization density as a function of time



Local Magnetization dynamics

(2j-1,1)

(2j,2)

(2j,1)

(2j-1,2)

The local magnetization is given by 

For the initial Z2 state

For the initial vacuum state

Spins at different sites converge to either superthermal or subthermal
values at long time thus generating imbalance which persist at long times



Long-time imbalance

These scars lead to long-time imbalance around =1 in an otherwise ergodic clean system

=0



Dynamics of Fidelity and Shannon entropy

The dynamics shows a striking difference in behavior of Shannon entropy

For = 0, the fidelity shows revivals at specific times t*,2t*….

The Shannon entropy dips also dips at intermediate times between the revivals 
at t*/2, 3t*/2 …. This indicates a FSA picture where the state oscillates 
between two Fock states ( for example Z2 and its time reversed partner). 

In contrast for =1, the Shannon entropy dips only at revival times. It remains
large at intermediate times.

This seems to suggest that the scar induced oscillations do not follow a 
simple FSA picture of oscillation between two Fock states as in a 
Rydberg chain.  

Nature of the scars in staggered ladder are fundamentally different compared 
to their chain counterparts.



Fidelity Revival 

Similar to scars 
in a Rydberg chain

Qualitatively different 
revival pattern



Fidelity oscillation and initial state overlap

Overlap with the initial state

Fidelity oscillations



Chirality operators and zero-energy states



Chirality operators and Imbalance

The Rydberg ladder with staggered detuning hosts 
two chirality operators C1 and C2

For all finite eigenstates |E>, the action of these operator yield |-E> 

For the zero modes, whose presence is guaranteed from 
the existence of these chirality operators via index theorem 
there is no such mapping; it just leads to a modifed set zero
modes within the zero-energy subspace

The matrix elements of spin operators thus satisfy

(i,1)

(i+1,2)

(i+1,1)

(i,2)



Z imbalance 

For staggered ladders both Z2 and its time reversed 
partners have zero expectation values  which implies

The long time z-imbalance  is defined as 

It receives contribution from expectation values of z operators given by 

The first term vanishes due to 
the chirality operators

The entire contribution to the z-imbalance 
for the Z2 initial state comes from the 

zero-energy eigenstates

Existence of anamolous zero energy eigenstates 
with high overlap with an initial Fock state
near =1.



X imbalance
A similar analysis can be carried out  for r the x imbalance

For the Z2 initial state one thus have 
contribution only for the zero energy
eigenstates.

However, for the vacuum initial state the imbalance 
receives contribution from the finite energy states

The imbalance starting from a vacuum state does not originate from translational 
symmetry breaking at t=0; this imbalance is scar induced and completely emergent.



Simultaneous zero modes in quantum many-body systems

Consider a generic many-body Hamiltonian  H= H0+  H1 where [H0, H1] does not vanish.

A generic zero-energy eigenstate ( zero mode) of H  satisfies   H |0> = 0

These modes are usually solutions at specific values of  and changing  destabilizes them.

The mid-spectrum modes are usually ETH obeying. 

However, it may happen that a linear combination of zero modes of H0
also become a zero mode of H1

If such modes exist, they remain zero mode for all 

The existence of such modes necessarily leads to ETH violation.

These are not generic and they have not been found in a standard Rydberg chain. 

Their existence have been shown, for example, in U(1) lattice gauge theory models.
[Banerjee and Sen, PRL (2021), Biswas, Banerjee and Sen (2022)]



Presence of simultaneous zero-energy modes

These are simultaneous zero modes of both the staggered on-site and the constrained spin-flip terms

These zero modes have anomalously low Shannon entropy (localization in Hilbert space) 
and they necessarily violate ETH. 

These modes have no analogue for the PXP chain. 


