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Lect I: 

Loop equation and bootstrap methods in Lattice gauge 

theories

Based on 1612.08140 by P.D.Anderson and M.K.

See also   2203.11360 by Kazakov and Zechuan Zheng

2002.08387 by Henry W. Lin

Motivation

Can one define gauge theories purely in terms of gauge 

invariant quantities?

AdS/CFT gives one possibility in terms of a dual string 

theory.

More directly:

Wilson loops               Loop equation (Migdal-Makeenko)
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Lattice gauge theory, pure YM, large-N, cubic lattice

Action

l : ‘t Hooft coupling 

is like temperature

Phase Transition (large-N) 

d=2  lc =1,          third order (Gross-Witten, Wadia, ‘80)

d=3 lc ~1.2,       third order (Teper ‘06, numerical)

d=4  lc =1.3904, first order  (Campostrini ’99, numerical)
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Loop equation (Migdal-Makeenko, Eguchi, Foerster,…)

Graphic form of the equation:

Algebraic form of the equations (sum over links) :
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L # WL(4d)

10 268

12 5,324

14 142,105

16 4,483,136

18 152,322,746
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In trying to solve the equations one faces a problem:

• To define the equations properly we have to cut the 

set of loops, e.g. length ≤ L, and then consider           .

• The equations for length L have loops of length L+4.

The number of loops increases exponentially with L.

• The limit            does not seem well defined, except at 

strong coupling where we set the unknown loops to 0.

We argue that including a certain set of positivity 

constraints gives a well defined limit            at any 

coupling. The reason is that the constraints put bounds 

on the energy density that improve as 

They are more relevant at weak coupling.

L → 

L → 

L → 

L → 
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Positivity constraints

Closed loop: 
goes along l ’

comes back along l
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r can be thought as a reduced density matrix obtained 

by tracing over color indices

Its entropy computes the information loss due to tracing: 

When l=0 all loops are 1, S=0, when l→∞, all loops are 

zero, r=I, S is maximal. Behaves as system entropy.
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Numerically SWL is approx. independent of the choice of r

0 1 3

2

4

5
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If r has a zero eigenvector c0 (boundary of the domain): 

Thus A0= 0

Closing with an arbitrary path r we get linear equations

valid for arbitrary long loops. In particular, if u=1 then all 

loops are 1.

r
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2d case  lc =1,     third order(Gross-Witten ‘80, 

analytical) 2( 1) 1
,

2
P

E d d N
u u TrU

V Nl

−
= − =
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3D case lc ~1.2,      third order (Teper ‘06)

L=6

L=8

L=10

L=20

L=8

L=10

L=20

Lmax=20. Using matrix r4 size 330x330 involving  5,299 variables.
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4D case lc =1.3904, first order (Campostrini ’99)

L=6

L=10

L=8

L=20

L=8

L=10

L=20

Lmax=20. Using matrix r4 size 786x786 involving 11302

variables.
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Gradient flow and the loop equation

Gradient flow (Luscher) introduces smeared operators 

that are easier to compute in the lattice (large loops) 

Given a lattice configuration we flow the links using

For Wilson loops 
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Graphically

Then, in the large-N limit
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The flowed Wilson loops obey a flowed loop equation

where

What about the positivity constraints? Since the flowed 

Wilson loops are computed with unitary (flowed) links:

More constraints? 
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Conclusions

-) We constructed a matrix         with WLs as entries and 

use it to correctly formulate the problem of solving the 

loop equations (especially at small coupling).

-) This numerically reproduces (in 2,3,4d) the          result

-) In the weak coupling phase r saturates the bounds, it 

has zero eigenvalues whose number increases as           

(relevant for the continuum limit?).

-) We defined an off-shell Wilson loop entropy as the 

entropy associated with r (~ indep. of particular r). 

0l →

0l →


