Two applications of the bootstrap in QCD

M. Kruczenski Purdue University

NONPERTURBATIVE AND NUMERICAL APPROACHES TO QUANTUM GRAVITY, STRING THEORY AND HOLOGRAPHY, *ICTS-Bengaluru, Aug 2022* Lect I:

Loop equation and bootstrap methods in Lattice gauge theories

Based on 1612.08140 by P.D.Anderson and M.K.
See also 2203.11360 by Kazakov and Zechuan Zheng 2002.08387 by Henry W. Lin

Motivation

Can one define gauge theories purely in terms of gauge invariant quantities?

AdS/CFT gives one possibility in terms of a dual string theory.

More directly:

Wilson loops - Loop equation (Migdal-Makeenko)

Lattice gauge theory, pure YM, large-N, cubic lattice

Action

$$S = -\frac{N}{2\lambda} \sum_{P} \mathrm{Tr} U_{P}$$

$$Z = \int \prod_{\vec{x},\mu} dU_{\mu}(\vec{x}) \ e^{-S}$$

d=2 $\lambda_c = 1$, third order (Gross-Witten, Wadia, '80) d=3 $\lambda_c \sim 1.2$, third order (Teper '06, numerical) d=4 $\lambda_c = 1.3904$, first order (Campostrini '99, numerical)³

Loop equation (Migdal-Makeenko, Eguchi, Foerster,...) Graphic form of the equation:

Algebraic form of the equations (sum over links) : $\mathbb{K}_{i \to j} \mathcal{W}_{j} + 2\lambda \mathcal{W}_{i} + 2\lambda \mathbb{C}_{i \to jk} \mathcal{W}_{j} \mathcal{W}_{k} = \delta_{i1}$ $-\frac{1}{NL} S * \mathcal{W} + \mathcal{W} + \frac{1}{L} \sum_{i} \sigma_{i} \mathcal{W}_{1i} \mathcal{W}_{2i} = 0$

4

 $-\mathcal{W}_{0} - \mathcal{W}_{2} - 4\mathcal{W}_{3} + \mathcal{W}_{17} + \mathcal{W}_{20} + 4\mathcal{W}_{21} + 2\lambda\mathcal{W}_{1} = 0$ $\mathcal{W}_{2} + \mathcal{W}_{6} + 4\mathcal{W}_{14} - \mathcal{W}_{16} - \mathcal{W}_{17} - 4\mathcal{W}_{18} = 0$ ₅

In trying to solve the equations one faces a problem:

- To define the equations properly we have to cut the set of loops, e.g. length \leq L, and then consider $L \rightarrow \infty$.
- The equations for length L have loops of length L+4. The number of loops increases exponentially with L.
- The limit $L \rightarrow \infty$ does not seem well defined, except at strong coupling where we set the unknown loops to 0.

We argue that including a certain set of positivity constraints gives a well defined limit $L \rightarrow \infty$ at any coupling. The reason is that the constraints put bounds on the energy density that improve as $L \rightarrow \infty$ ₆ They are more relevant at weak coupling.

ρ can be thought as a reduced density matrix obtained by tracing over color indices

$$\hat{\rho}_{\ell\ell'}^{(L)} = \frac{1}{NL} \langle \operatorname{Tr} \left[\left(U_{ab}^{(\ell)} \right)^* U_{ab}^{(\ell')} \right] \rangle$$

Its entropy computes the information loss due to tracing:

$$S_{WL} = -\mathrm{Tr}\,\hat{\rho}^{(L)}\log_L\hat{\rho}^{(L)}$$

When $\lambda=0$ all loops are 1, S=0, when $\lambda \rightarrow \infty$, all loops are zero, $\rho=I$, S is maximal. Behaves as system entropy.

Numerically S_{WL} is approx. independent of the choice of ρ

S_{WL}

If ρ has a zero eigenvector c_0 (boundary of the domain):

$$c_{0\ell}^* \rho_{\ell\ell'} c_{0\ell'} = 0 \quad \Rightarrow \quad \langle \mathrm{Tr} A_0 A_0^{\dagger} \rangle = 0, \quad A_0 = \sum_{\ell} c_{o\ell} U^{(\ell)}$$

Thus $A_0 = 0$ Closing with an arbitrary path *r* we get linear equations

$$\sum_{\ell} c_{0\ell} \langle \operatorname{Tr}(U_r^{\dagger} U^{(\ell)}) \rangle = 0 \quad r \swarrow \mathsf{r}_{\mathsf{X}}$$

valid for arbitrary long loops. In particular, if u=1 then all loops are 1.

10

<u>3D case</u> $\lambda_c \sim 1.2$, third order (Teper '06)

 L_{max} =20. Using matrix ρ_4 size 330x330 involving 5,299 variables.

<u>**4D** case</u> $\lambda_c = 1.3904$, first order (Campostrini '99)

 L_{max} =20. Using matrix ρ_4 size 786x786 involving 11302 variables.

Gradient flow and the loop equation

Gradient flow (Luscher) introduces smeared operators that are easier to compute in the lattice (large loops) Given a lattice configuration we flow the links using

$$\partial_t U_{ac}(\vec{x},\mu) = -\frac{\lambda}{N} \,\partial_{\vec{x},\mu} S_W(U)_{ab} U_{bc}(\vec{x},\mu)$$

$$\partial_{\vec{x},\mu}S_W(U)_{ab} = -\frac{1}{2}\frac{\delta S_W}{\delta U_{bc}(\vec{x},\mu)}U_{ac}(\vec{x},\mu) + \frac{1}{2N}\delta_{ab}\frac{\delta S_W}{\delta U_{cd}(\vec{x},\mu)}U_{cd}(\vec{x},\mu)$$

For Wilson loops

$$\partial_{t} \mathcal{W}_{i} = \frac{1}{N} \sum_{j} \langle U_{1} \dots \frac{\partial U_{j}}{\partial t} \dots U_{n} \rangle$$
$$= -\frac{1}{2} \mathbb{K}_{i \to j} \mathcal{W}_{j} + \frac{1}{2} \tilde{\mathbb{K}}_{i \to j} \mathcal{W}_{j}$$
¹⁴

Graphically

Then, in the large-N limit

$$\partial_t \mathcal{W}_i = -\frac{1}{2} \mathbb{K}_{i \to j} \mathcal{W}_j \quad \Rightarrow \quad \mathcal{W}(t) = e^{-\frac{1}{2}t\mathbb{K}} \mathcal{W}(t=0)$$

The flowed Wilson loops obey a flowed loop equation $\mathbb{K}_{i\to j}\mathcal{W}_j(t) + 2\lambda\mathcal{W}_i(t) + 2\lambda C(t)_{i\to jk}\mathcal{W}_j(t)\mathcal{W}_k(t) = b_i(t)$ where

$$b_{i}(t) = \left(e^{-\frac{1}{2}t\mathbb{K}}\right)_{i1}$$

$$C(t)_{i\to jk} = \left(e^{-\frac{1}{2}t\mathbb{K}}\right)_{ii'} C_{i'\to j'k'} \left(e^{\frac{1}{2}t\mathbb{K}}\right)_{j'j} \left(e^{\frac{1}{2}t\mathbb{K}}\right)_{k'k}$$

What about the positivity constraints? Since the flowed Wilson loops are computed with unitary (flowed) links:

$$\rho_{ij}(t) = \rho_{ij,k} \mathcal{W}_k(t), \qquad \rho(t) \succeq 0, \quad \forall t$$

More constraints?

Conclusions

-) We constructed a matrix $\rho \succeq 0$ with WLs as entries and use it to correctly formulate the problem of solving the loop equations (especially at small coupling).

-) This numerically reproduces (in 2,3,4d) the $\lambda \rightarrow 0$ result

$$\mathcal{W}_1 = u = 1 - \frac{\lambda}{d} + \mathcal{O}(\lambda^2)$$

- -) In the weak coupling phase ρ saturates the bounds, it has zero eigenvalues whose number increases as $\lambda \rightarrow 0$ (relevant for the continuum limit?).
- -) We defined an off-shell Wilson loop entropy as the entropy associated with ρ (~ indep. of particular ρ).