
Ways of Computing

Jaikumar Radhakrishnan

26 Feb 2023

The plan: three examples

Computing shortest paths in networks

Matching nuts and bolts

A zero-knowledge proof involving Sudoku

The problem

Nodes: They represent locations.
Links: They represent paths between

locations.
Costs: For each link we have a postive

number, which represents the
cost of using the link, e.g., its
length, or the time it takes to
travese it.

Goal: Find the best route from ICTS to
all the other locations.

M I J K D

L B ICTS C G

H A E F

5

3 7 8 9

1

5

1

4 6

7
2

45 4 5

8
2

3

6

Why not try all possibilities?

Our network has 14 nodes and 19
links.
There are at least 25 different routes
from ICTS to node D.
In general, even for moderately sized
networks the number of possible
paths from source to destination is
enormous. But many of them can be
systematically eliminated. How?

M I J K D

L B ICTS C G

H A E F

5

3 7 8 9

1

5

1

4 6

7
2

45 4 5

8
2

3

6

A physics experiment to find the best route

Balls: They correspond to nodes in our
network. Place the balls on the floor.

Strings: They correspond to links in our
network. Connect the balls with a
string that is as long as the cost of
the link.

Are you ready?

Step 1: Place everything on the floor
in a heap.

Step 2: Lift the ball representing
ICTS. (Let ICTS rise!)

Step 3: After the ball representing a
location has risen, measure its
distance from the ball
representing ICTS.

Did nature examine all
possibilities and come up with
the path?

Could we have predicted the
outcome with pen and paper?

Then, how long will this
computation take for a network
on n nodes and m links?

Are you ready?

Step 1: Place everything on the floor
in a heap.

Step 2: Lift the ball representing
ICTS. (Let ICTS rise!)

Step 3: After the ball representing a
location has risen, measure its
distance from the ball
representing ICTS.

Did nature examine all
possibilities and come up with
the path?

Could we have predicted the
outcome with pen and paper?

Then, how long will this
computation take for a network
on n nodes and m links?

Dijkstra’s method

Edsger Dijkstra (1930-2002): A note on two problems in connexion
with graphs. In Numerische Mathematik, 1 (1959), S. 269–271.

At each step ...
Initially, ICTS is green, all other nodes
are red. Give the neighbours of ICTS a
tentative cost equal to the length of the
link from ICTS and mark them orange
Pick the orange node with minimum
cost.
Colour it green. Its tentative cost is now
final. (It has risen!)
Update the information on its
neighbouring nodes.

M I J K D

L B ICTS C G

H A E F

5

3 7 8 9

1

5

1

4 6

7
2

45 4 5

8
2

3

6

B

I J

C

E F

Dijkstra’s method

Edsger Dijkstra (1930-2002): A note on two problems in connexion
with graphs. In Numerische Mathematik, 1 (1959), S. 269–271.

At each step ...
Initially, ICTS is green, all other nodes
are red. Give the neighbours of ICTS a
tentative cost equal to the length of the
link from ICTS and mark them orange.
Pick the orange node with minimum
cost.
Colour it green. Its tentative cost is now
final. (It has risen!)
Update the information on its
neighbouring nodes.

M I J K D

L B ICTS C G

H A E F

5

3 7 8 9

1

5

1

4 6

7
2

45 4 5

8
2

3

6

B

I J

C

E F

B

J

A

Nuts and bolts (or keys and locks)

The problem

We are given a large number of
nuts and bolts, of different sizes.
Each nut matches a unique bolt.
When we try to match nut with a
bolt, we know if the nut is too big
or too small or just right.
How do we match them up?
Must we try every nut against
every bolt?

© AlexLMX, Shutterstock

If only we could compare nuts with nuts and

. . . bolts with bolts

Sort the nuts in the increasing
order of their sizes.
Sort the bolts similarly.
Match the largest nut with the
largest bolt, the second largest
nut with the second largest bolt,
. . .
How long does it take?

. . . but we can’t!

If only we could compare nuts with nuts and

. . . bolts with bolts

Sort the nuts in the increasing
order of their sizes.
Sort the bolts similarly.
Match the largest nut with the
largest bolt, the second largest
nut with the second largest bolt,
. . .
How long does it take?

. . . but we can’t!

Two strategies

Strategy I: Ignore the sizes

Pick a random nut.
Try it against every bolt.
Put the matching pair
aside and repeat with the
rest.
To match n pairs, it will
take about n2/4
comparisons on average.

Strategy II: Divide and conquer

Pick a random nut.
Partition the bolts into too small, just
right and too big.
Using the matching bolt, partition the
bolts, similarly.
Put the matching pair aside and solve
the two subproblems independently.
To match n pairs, it will take about 4n lnn
comparisons on average.

Two strategies

Strategy I: Ignore the sizes

Pick a random nut.
Try it against every bolt.
Put the matching pair
aside and repeat with the
rest.
To match n pairs, it will
take about n2/4
comparisons on average.

Strategy II: Divide and conquer

Pick a random nut.
Partition the bolts into too small, just
right and too big.
Using the matching bolt, partition the
bolts, similarly.
Put the matching pair aside and solve
the two subproblems independently.
To match n pairs, it will take about 4n lnn
comparisons on average.

Sudoku and zero-knowledge proofs

You are given Sudoku puzzle. You
suspect that perhaps the problem is
unsolvable.

I have a solution. I want to convince you
that the problem is solvable without
revealing the solution.

Can it be done?
Yes! With randomness. . . . and paper
and scissors.

9 1 5 2
6 3 2 8

7 6 3
6 1

9 1 4 5
7 2

8 3 9
7 4 8 2

6 7 9 1

LATEX source: Roberto Bonvallet

(due to Gradwohl, Naor, Pinkas, Rothblum, see
https://www.wisdom.weizmann.ac.il/~naor/PAPERS/sudoku_abs.html)

https://www.wisdom.weizmann.ac.il/~naor/PAPERS/sudoku_abs.html

Summary: the many ways of computing

Dijkstra’s algorithm as a physics experiment.

A randomized divide and conquer solution for the Nuts and Bolts
problem. Deterministic methods (theoretically) matching the
randomized solution are known, but are complicated (Bradford,
Komlós, Ma, Szeméredi, 1995).

Zero-knowledge proof for Sudoku. Randomness was key!

The three types of constraints

Each row must have all nine digits.

Each column must have all nine digits.

Partition the rows and columns into nine 3×3 blocks. Each block must
have all nine digits.

Thank you!

Thanks to Ramprasad Saptharishi for the comparison software, and for
suggestions for this talk.

Thank you!

Thanks to Ramprasad Saptharishi for the comparison software, and for
suggestions for this talk.

