Ways of Computing

Jaikumar Radhakrishnan

\leadsto ICTS \(\left\lvert\, \begin{aligned} \& International
\& CENTRE for
\& THEORETICAL
\& SCIENCES\end{aligned}\right.\)
TATA INSTITUTE OF FUNDAMENTAL RESEARCH

26 Feb 2023

The plan: three examples

- Computing shortest paths in networks
- Matching nuts and bolts

■ A zero-knowledge proof involving Sudoku

The problem

Nodes: They represent locations.
Links: They represent paths between locations.
Costs: For each link we have a postive number, which represents the cost of using the link, e.g., its length, or the time it takes to travese it.
Goal: Find the best route from ICTS to
 all the other locations.

Why not try all possibilities?

■ Our network has 14 nodes and 19 links.

- There are at least 25 different routes from ICTS to node D.
- In general, even for moderately sized networks the number of possible paths from source to destination is enormous. But many of them can be
 systematically eliminated. How?

A physics experiment to find the best route

Balls: They correspond to nodes in our network. Place the balls on the floor.
Strings: They correspond to links in our network. Connect the balls with a string that is as long as the cost of the link.

Are you ready?

Step 1: Place everything on the floor in a heap.

Step 2: Lift the ball representing ICTS. (Let ICTS rise!)

Step 3: After the ball representing a location has risen, measure its distance from the ball representing ICTS.

Did nature examine all
nossibilities and come un with the path?

Could we have predicted the outcome with pen and paper?

Then, how long will this computation take for a network on n nodes and m links?

Are you ready?

Step 1: Place everything on the floor in a heap.

Step 2: Lift the ball representing ICTS. (Let ICTS rise!)

Step 3: After the ball representing a location has risen, measure its distance from the ball representing ICTS.

- Did nature examine all possibilities and come up with the path?

■ Could we have predicted the outcome with pen and paper?

- Then, how long will this computation take for a network on n nodes and m links?

Dijkstra's method

Edsger Dijkstra (1930-2002): A note on two problems in connexion with graphs. In Numerische Mathematik, 1 (1959), S. 269-271.
At each step ...

- Initially, ICTS is green, all other nodes are red. Give the neighbours of ICTS a tentative cost equal to the length of the link from ICTS and mark them orange
- Pick the orange node with minimum cost.
- Colour it green. Its tentative cost is now final. (It has risen!)

- Update the information on its neighbouring nodes.

Dijkstra's method

Edsger Dijkstra (1930-2002): A note on two problems in connexion with graphs. In Numerische Mathematik, 1 (1959), S. 269-271.
At each step ...

- Initially, ICTS is green, all other nodes are red. Give the neighbours of ICTS a tentative cost equal to the length of the link from ICTS and mark them orange.
- Pick the orange node with minimum cost.
\square Colour it green. Its tentative cost is now final. (It has risen!)
- Update the information on its
 neighbouring nodes.

Nuts and bolts (or keys and locks)

The problem

- We are given a large number of nuts and bolts, of different sizes.
- Each nut matches a unique bolt.
- When we try to match nut with a bolt, we know if the nut is too big or too small or just right.
- How do we match them up?

Must we try every nut against every bolt?

If only we could compare nuts with nuts and

... bolts with bolts
\square Sort the nuts in the increasing order of their sizes.
\square Sort the bolts similarly.

- Match the largest nut with the largest bolt, the second largest nut with the second largest bolt,
- How long does it take?

If only we could compare nuts with nuts and

... bolts with bolts
\square Sort the nuts in the increasing order of their sizes.
\square Sort the bolts similarly.

- Match the largest nut with the largest bolt, the second largest
... but we can't! nut with the second largest bolt,
- How long does it take?

Two strategies

Strategy I: Ignore the sizes

- Pick a random nut.
- Try it against every bolt.
- Put the matching pair aside and repeat with the rest.
- To match n pairs, it will take about $n^{2} / 4$ comparisons on average.

Strategy II: Divide and conquer

Pick a random nu:
Partition the bolts into too small, just
right and too big.
Using the matching bolt, partition the bolts, similarly.
Put the matching pair aside and solve
the two subproblems independently.
To match n pairs, it will take about $4 n \ln n$
comparisons on average

Two strategies

Strategy I: Ignore the sizes

- Pick a random nut.

■ Try it against every bolt.

- Put the matching pair aside and repeat with the rest.
- To match n pairs, it will take about $n^{2} / 4$ comparisons on average.

Strategy II: Divide and conquer

- Pick a random nut.
- Partition the bolts into too small, just right and too big.
- Using the matching bolt, partition the bolts, similarly.
- Put the matching pair aside and solve the two subproblems independently.
- To match n pairs, it will take about $4 n \ln n$ comparisons on average.

Sudoku and zero-knowledge proofs

■ You are given Sudoku puzzle. You suspect that perhaps the problem is unsolvable.

- I have a solution. I want to convince you that the problem is solvable without revealing the solution.
- Can it be done?

Yes! With randomness. ... and paper

	9		1		5		2	
6			3		2			8
	7			6			3	
		6				1		
9	1						4	5
		7				2		
	8			3			9	
7			4		8			2
	6		7		9		1	

LATEX source: Roberto Bonvallet and scissors.
(due to Gradwohl, Naor, Pinkas, Rothblum, see
https://www.wisdom.weizmann.ac.il/~naor/PAPERS/sudoku_abs.html)

Summary: the many ways of computing

■ Dijkstra's algorithm as a physics experiment.

- A randomized divide and conquer solution for the Nuts and Bolts problem. Deterministic methods (theoretically) matching the randomized solution are known, but are complicated (Bradford, Komlós, Ma, Szeméredi, 1995).

■ Zero-knowledge proof for Sudoku. Randomness was key!

The three types of constraints

- Each row must have all nine digits.
- Each column must have all nine digits.
- Partition the rows and columns into nine 3×3 blocks. Each block must have all nine digits.

Thank you!

Thank you!

Thanks to Ramprasad Saptharishi for the comparison software, and for suggestions for this talk.

