Positivity Constraints on EFT
B. Bellezzini (GiRT) $\angle L / P \mid$ (0) $1 \mathrm{TIS}^{\prime}$'s Shool in Bangle 15-19/04/2029

In this second L2 lecture, we show that the missing ingredient alluded to in L1 is: subluminolity (as proxy for causality)

- U(1)-GB: $\pi \rightarrow \pi+c$ symmetric
(1) $\quad \mathcal{L}=\frac{1}{2}(\partial \pi)^{2}+\frac{(\partial \pi)^{4}}{4 M^{4}} c_{2}-\frac{(\partial \pi)^{2} \Delta \pi}{2 M^{3}} c_{3}+\cdots \quad$ pe.o.m.
(2) $\left.\quad \partial\left(-\partial^{\mu} \pi\left(1+\frac{\partial \pi)^{2}}{M^{4}} c_{2}\right)\right)+\frac{c_{3}}{M^{3}}\left[\partial_{\mu}\left(\partial^{\mu} \pi \Delta \pi\right)-\frac{\Delta}{2} \partial \pi\right)^{2}\right]+\cdots=0$
(3) $\Rightarrow\left\{\begin{array}{l}\bar{\pi}=c+V_{\mu} x^{\mu} \quad \text { with } V_{\mu}=\text { cont is solution } \\ \partial_{\mu} \bar{\pi}=V_{\mu}\end{array}\right.$
to analite it within EFT we terf $V_{\mu}{ }^{2} / M^{4}<1$
Let's consider now smell perturbations: $\pi=\bar{\pi}+\phi$ at $o\left(\phi^{2}\right)$:
(4)

$$
\begin{aligned}
\mathcal{L}_{\phi}^{(2)} & \left.=\frac{1}{2}(\partial \phi)^{2}+\frac{c_{2}}{2 M^{4}}[\partial \phi)^{2} V_{p}^{2}+2\left(V_{\mu} \partial^{\mu} \phi\right)^{2}\right]-\frac{c_{3}}{M^{3}}\left[V_{\mu} \partial_{\text {Motel } \phi} \partial \phi+(\partial \phi)^{2} \Delta V\right] \\
& =\frac{1}{2} \phi\left[-\eta^{\mu \nu}\left(1+\frac{c_{2}}{M^{4}} V_{p}^{2}\right)-2 \frac{c_{2}}{M^{4}} V^{\mu} V^{\nu}\right] \partial_{\mu} \partial_{\nu} \phi
\end{aligned}
$$

small
where we cen drop V_{μ}^{2} / M^{4} corrections to tams pent olreodg, and we con drop all the $\partial \ldots \partial \delta \pi)=\partial \ldots \partial v=0$
The e. o. m. for the partubitions read
(5) $\quad-\left(\eta^{\mu \nu}+2 \frac{c_{2}}{M^{\mu}} V^{\mu} V^{\nu}\right) \partial_{\mu} \partial_{\nu} \phi=0$

Expending in plein waves $\phi=e^{i k_{\mu} x^{\mu}}$
(6) $k^{2}+\frac{c_{2}}{M^{4}}(V \cdot u)^{2}=0 \Rightarrow c_{2} \geqslant 0$
to avoid superluminality
In practice, the new effective metric is
(7) $G_{\mu \nu}=\eta_{\mu \nu}-2 \frac{c_{2}}{M^{4}} V_{\mu} V_{\nu} \quad$ Effective Light cone
so that is broader for $c_{2}<0$ and narrower for $c_{2}>0$
Explicitly: $\quad V_{\mu}=\partial_{\mu} \bar{\pi}=\alpha M^{2} \delta_{\mu}^{0} \quad \bar{\pi}=\alpha M^{2} t$ i.e. $\underline{\bar{\pi}=\text { canst }}$
(8) $\quad q_{\mu \nu}=\eta_{\mu \nu}-2 c_{2} \alpha^{2} \delta_{\mu}^{0} \delta_{\nu}^{0}=\left(\begin{array}{c|c}1-2 c_{2} \alpha^{2} & 0 \\ \hline 0 & -1 \\ \hline-1-1\end{array}\right)_{\mu \nu}$
null" geodesic: $d t^{2}\left(1-2 c_{2} \alpha^{2}\right)-d \vec{x}^{2}=0$
(g) $\vec{V}^{2}=\frac{d \vec{x}^{2}}{d t^{2}}=1-2 C_{2} \alpha^{2} \Rightarrow \delta \vec{V}^{2}=-2 C_{2} \frac{V_{M}^{2}}{M^{4}}$

Remarll: The v_{μ} can be made arbitrarily smell to be arbitrarily well inside EFT.

- What about $c_{2} \ll 1$ by Galilean Symmetry? -

Can we have $c_{2} \geqslant 0$ with $c_{2} \ll\left|c_{3}\right|$? Can c_{3} be leading?

Let's work first in the regime c_{2} negligible, so the eq. of motions read
(10) $\left.\quad-D \pi+c_{3}\left[(\square \pi)^{2}-\omega_{2} 2 \pi\right)^{2}\right]=0$
a solution of (i0) is a plene weve troveling in n_{i}-dirct.
(11) $\left\{\begin{array}{l}\bar{\pi}=\pi_{0}\left(t-n_{i} x^{i}\right) \\ n_{i} n_{i}=1\end{array}\right.$
so thet a partubetion around if $\pi=\pi+\phi$

$$
\begin{aligned}
\partial_{\mu} \bar{\pi} & =\pi_{0}^{1}\left(\delta_{\mu}^{0}-n_{i} \delta_{\mu}^{i}\right)_{i}(\partial \pi)^{2}=0 \\
\partial_{\mu} l_{\nu} \bar{\pi} & =\pi_{0}^{\prime \prime}\left(\delta_{\mu}^{0}-n_{i} \delta_{\mu}^{i}\right)\left(\delta_{\nu}^{0}-n_{j} \delta_{\nu}^{j}\right) \\
\Delta \bar{\pi} & =\pi_{0}^{1 \prime}\left(\eta^{00}+n_{i} n_{j} \eta^{i j}\right)=0
\end{aligned}
$$

$$
\left(\partial_{\mu} \eta_{v} \bar{\pi}\right)^{2}=\pi_{0}^{112}\left(\eta^{00}+n_{i} n_{j} \eta^{i n}\right)^{2}=0
$$

(12) $\left.\quad \mathcal{R}^{(2)}=\frac{1}{2}(\partial \phi)^{2}\left(1-\frac{c_{3}}{M^{3}} \Delta \pi\right)-\frac{c_{3} 2}{M^{3}} \partial_{\mu} \pi \partial^{M} \phi \Delta \phi\right)$
(13)

$$
-D \phi+\frac{2 c_{3}}{\mu^{3}}\left(\partial_{\mu}\left(\partial^{\mu} \bar{\pi} \Delta \phi\right)-\Delta\left(\partial_{\mu} \bar{\pi} \partial^{\mu} \phi\right)\right)=0
$$

(14) $\left[\eta^{\mu \nu}+\frac{4 c_{3}\left(\partial^{\mu} \partial^{\prime} \bar{\pi}\right)}{\mu^{3}}\right] \partial_{\mu} \partial_{r} \phi=0$

$$
-2 \partial_{\mu} \delta_{\nu} \pi \partial^{\mu} \partial^{v} \phi
$$

so thet looking for solutions $\phi=\phi_{0}\left(v-t-n ; x^{i}\right)$ we get
(15) $\phi_{0}^{\prime \prime} \cdot\left[\left(V^{2}-1\right)+\frac{4 C_{3}}{M^{3}} \pi_{0}^{\prime \prime}(V+1)^{2}\right]=0 \Rightarrow V=\frac{1-\frac{4 C_{3}}{M^{3}} \pi_{0}^{\prime \prime}}{1+\frac{4 C_{3}}{M^{3}} \pi_{0}^{\prime \prime}}$

Remank: regondless of sign of G_{3}, can olweys doose $\pi_{0}^{\prime \prime}$ such that $c_{3} \pi_{0}^{\prime \prime}>0$, i.e. the sign isn't definite:
(16) $\quad \delta r \simeq-\frac{8 c_{3}}{M^{3}} \pi_{0}{ }^{\prime \prime} \lesseqgtr 0$ Not sign definite! suparluminally the bug solution $\pi=\bar{\pi}$.
subluminglity \Rightarrow Galileo symmetry $\pi \rightarrow \pi+c_{\mu} x^{\mu}$ can't be exact.
Question: How good an epproximute symmetry galilean can be, consistently with subluminallity?
Answer: it's never a good symmetry!
Indeed, let's tun n on a c_{2}-Galileonbreaking-less irrelevant tam: since $\pi=\bar{\pi}=\pi_{0}\left(t-n_{i} x^{i}\right)$ is still solution f new eq. of motion, we can look at the e.o.m. for the perturbations:
(16)

$$
\begin{aligned}
& \text { (16) } \left.\left[\eta^{\mu \nu}+\frac{4 c_{3}\left(\mu^{\mu} j^{\prime} \pi\right.}{M^{3}}\right)+2 \frac{c_{2}}{M^{4}} \partial^{\mu} \bar{\pi} \partial^{\nu} \pi\right] \partial_{\mu} \partial_{r} \phi=0 \\
& (17) \quad \mathcal{L} \quad \phi=\phi_{0}\left(v-t_{\left.-n_{i} x^{i}\right)}\right. \\
& \left(v^{2}-1\right)+\left[\frac{4 c_{3}}{M^{3}} \pi_{0}^{\prime \prime}+2 \frac{c_{2}}{M^{4}} \pi_{0}^{1^{2}}\right](v+1)^{2}=0
\end{aligned}
$$

(18) $\quad V=\frac{1-\left(\frac{4 c_{3}}{M^{3}} \pi_{0}^{\prime \prime}+{ }^{2} \frac{c_{2}}{M^{4}} \pi_{0}^{12}\right)}{1+\left(\frac{4 c_{3}}{M^{3}} \pi_{0}^{\prime \prime}+{ }^{2} \frac{c_{2}}{M^{4}} \pi_{0}^{12}\right)}$
(for $\phi=\phi_{0}\left(-v^{t}-n_{i} x^{i}\right)$ travelling opposite than π_{0}-well the solution is $\left.v=-1 \frac{1+(\ldots)}{1-(\ldots)}\right)$
$\|$
always subluminal if $c_{2}>0 \& \quad\left|\frac{4 C_{3} \pi_{0}^{\prime \prime}}{M^{3}}\right|<\frac{2}{} \frac{C_{2}}{M^{2}} \pi_{0}^{\prime 2} \Rightarrow \begin{aligned} & \mathcal{L} \text { in (1) } \\ & \text { not dominated }\end{aligned}$ by Galilean term

Lesson: Subluminality gives a new consistency condition on EFT "orthogonal" to power counting that a puiori could be designed to mete leading operator very irrelevant ones

Remarks: adding more irrelevant opentors does not change the story sine they ene subleading corrections to the ones considered, as long es π_{0} is dosen such that $\pi_{0}^{(n \geqslant 3)}<M \pi_{0}^{(n-1)}$ and $\pi_{0}^{\prime \prime} / M^{3} \ll 1$, and one look for $\phi=\phi_{0}$ with $\phi_{0}^{(n>z)}<\phi_{0}^{(n-1)} M$ Example: $\quad c_{2}\left(\frac{\partial \phi)^{6}}{M^{8}} \rightarrow \delta r^{2} \sim\left(\frac{\pi_{0}^{12}}{M^{4}}\right)^{2}, \frac{(\partial \partial \phi)^{4}}{M^{8}} \rightarrow \delta r^{2} \sim\left(\frac{\pi_{0}^{\prime \prime}}{M^{3}}\right)^{2}\left(\frac{\phi_{0}^{\prime \prime}}{\phi_{0}^{M}}\right)^{2}, \cdots\right.$

- superluminality resolvable? -

Yes! Take $\pi_{0}^{\prime \prime} \sim$ const over a region of space of size L where $\delta V_{1_{3}} \sim c_{3} \frac{\pi_{0}^{\prime \prime}}{M^{3}}$ wins over $\delta V_{c_{2}} \sim c_{2} \frac{\pi_{0}^{\prime 2}}{M^{4}} \sim c_{2} \frac{\left(\pi_{0}^{\prime \prime} L\right)^{2}}{M^{4}}$. This L cant be layer than
(19) $L^{2} M^{2}<\frac{c_{3}}{c_{2}}\left(\frac{M^{3}}{\pi_{0}{ }^{11}}\right)$
(clearly! c_{2} less inelonest then $C_{3}!$)
In that region (13) the time adrence in units of cutoff $1 / M$ is (20) $\left.M T_{\text {adv }} \sim M L \cdot \delta v=\sqrt{\frac{c_{3}}{c_{2}}\left(\frac{M^{3}}{\pi_{0}^{\prime \prime}}\right)} \cdot\left(\frac{c_{3} \pi_{0}^{\prime \prime}}{M^{3}}\right) \sim \right\rvert\, c_{3}\left(\frac{c_{3}}{c_{2}} \cdot \frac{\pi_{0}^{\prime \prime}}{M^{3}}\right)^{1 / 2}$ which gives
(21) Tod $\gg 1 / M$ if $C_{3} \gg C_{2}$

The hierarchy $c_{3}>c_{2}$ enforced by a symmetry is at odd with sublumindity, renolvebly so.

Remarks
Superluminality is here understood as bad, although it's not necesserily so, as long as one dole not run in conflict with experience and/or form causal paradox via Time machines (mathemetically, closed time-or lijht-likle curves). This is band however to enolyze in a controlled way because boosting a signal to send it beck in time deforms the blk (to be contrasted with suphluminelity in Minkowski which is trivially inconsistent).
(for instance if waves travels with or oyeinf flow
Time Machines: dossic setup in (15), the net time delay writhe) two bubbles in two planes seponeted by import ponemeter b

- bubble 1 sits in ($t, x, 0,0$)-plane
- bubble 2 sits in $(t, x, 0, b)$-plane
bubbles allows velocities $\left|v y, N^{\prime}\right|>1$
- projecting everything on the first bubble plane:
(2)

- in t-x plane
- in $t-z$ plane
- points at $z-y=0$
- paints at $z=b y=0$

$$
\begin{aligned}
& 1^{\mu}=(0, \overrightarrow{0}) \leftarrow 4^{\mu} \leftarrow\left(-\frac{-b}{2}+b+T, 0,0, b\right) \\
& \downarrow \\
& z^{\prime}=(-T, v T, 0,0) \rightarrow 3^{\mu}=(-T+b, v T, 0, b) \\
& v>1
\end{aligned}
$$

While it's cool, it is els cumbersome to check on a case by case study if time machines one possible within EFT.

- Euler - Heisenberg

The lesson from previous andysis on scalous is completely genend Let's repeat it quickly for the EFT of massless spin-1.
(23) $\mathscr{L}_{\gamma}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{a}{8 M^{4}}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+\ldots \quad \leftarrow$ for simplicity we We could literally repeat the story, i.e. solve the e.0.m
(24)

$$
\partial_{\mu}\left(F^{\mu \nu}\left(1-\frac{a}{M^{4}} F_{+\ldots}^{2}\right)\right)=0 \quad F^{2}=F_{\nu \nu} F^{\mu \nu}
$$

for some $b K_{g} \bar{F}_{\mu \nu}$, and then look for perturbations

$$
\text { (25) }\left\{\begin{array}{l}
\bar{F}_{\mu \nu}=f_{\mu \nu}+\bar{F}_{\mu \nu} \\
\mathscr{L}^{(2)}=-\frac{1}{4} f_{\mu \nu}^{2}+\frac{a}{4 M^{2}}\left(f_{\mu \nu}^{2} \bar{F}^{2}+2 f_{\mu \nu} f_{\nu \sigma} \bar{F}^{\mu \nu} \overline{F^{e \sigma}}\right)+\ldots
\end{array}\right.
$$

Excise: show that by suntable choice of bkg $\bar{F}_{\mu \nu}$ leg. $\bar{F}_{\mu \nu}$ constant) one must have $a>0$ to avoid superlumindity

Comment: In Lower $D, D=3$, the $a>0$ and the positing of $(0 \pi)^{4}$ coefficient one literally the same condition, via Hodye duality. Specifically, let's enforce $F=d A$ i.e. $d F=0$ as δ-function $\delta\left(\varepsilon^{\mu v \rho} \partial_{\rho} F_{v \rho}\right)=\int[d \pi] e^{i \pi \varepsilon^{\mu v \rho} \rho_{\mu} F_{\nu \rho}}$ to be invented in path integral over F now:
(26) $-F_{\mu \nu}^{2} / 4+\frac{a}{8 M^{3}}\left(F_{\mu \nu}^{2}\right)^{2}+\ldots \stackrel{D=3}{\longleftrightarrow} \mathcal{L}^{*}=-F_{\mu \nu}^{2}+A \partial_{\mu} \pi \varepsilon^{\mu v e} F_{v \rho}+\frac{a}{\delta \mu^{3}}\left(F_{\mu v}^{2}\right)^{2}$
(28)

$$
\text { (28) } \begin{aligned}
\mathcal{L}^{*}= & \left.-A^{2}(\partial \pi)^{2}\left(1+\frac{2 a}{M^{3}} A^{2}(\partial \pi)^{2}+\ldots\right)+2 A^{2}(\partial \pi)^{2}\left(1+\frac{a}{M^{3}} A^{2} \partial \pi\right)^{2}+\ldots\right) \\
& +\frac{a}{8 M^{3}} 4 A^{4}(\partial \pi)^{4}+\cdots \\
\text { (29) }= & A^{2}(\partial \pi)^{2}+a \frac{A^{4}}{M^{3}}(\partial \pi)^{4}\left(-2+2+\frac{1}{2}\right)_{A^{2}-1 / 2}=\frac{(\partial \pi)^{2}}{2}+\frac{a}{8 M^{3}}(\partial \pi)^{4}
\end{aligned}
$$

i.e. putting everything together:
(30) $\sum_{\sigma}^{D=3}-\frac{F_{N V}^{2}}{2}+\frac{\left(F_{v i}^{2}\right)_{a}^{2}}{8 M^{3}}+\cdots$ dual to $\left.\quad L_{D=3}^{*}=\frac{(\partial \pi)^{2}}{2}+\frac{a}{8 M^{3}} \partial \pi\right)^{4}+\cdots$
(31) $\quad a \geqslant 0$

Comment In $D=4: \frac{(F \tilde{F})^{2}}{8 M^{4}} \tilde{a}$ with $\tilde{a} \geqslant 0$ too, by (now femilier) cousality erguments. In $D=3$ it is missing becons \tilde{F} is 1 -form. The positisity of \tilde{a}, ria $D=3$ angumest, can be abtained $v i d ~ d i m e n s i o n e l ~ r e d u c t i o n ~ b y ~ c o m p e c t i f y i n g ~ o n e ~ d i m e n s i o n, ~$ becouse $A_{\mu}=\left(A_{\mu=0,1,2}, \varphi\right)$ so the ngotem is dual to 2 devinetive cocgled scolass (+ KK modes), see e.g. 1902.03250.

- Photons + Gravity -

Let's consider now an example with gravity in $D=4$:
(32)

$$
\begin{aligned}
\mathscr{L}^{\text {Einstein-Maxwell }} & =\frac{F_{\mu V}^{2}}{2}+\frac{a}{8 M^{4}}\left(F^{2}\right)^{2}+\frac{\tilde{a}(F \tilde{F})^{2}}{8 M^{4}}+\cdots \\
& +\frac{m_{p c}^{2}}{2}\left(R+\frac{\alpha_{3}}{M^{4}} R_{i e}^{3}+\cdots\right) \\
& -\frac{\beta}{4 M^{2}} F_{\mu v} F_{\text {er }} R^{\mu v \rho \sigma}+\cdots
\end{aligned}
$$

We are interested, say, on the size of β.
Remarks:

- From pertmbatire unitarity: we may naively expect that longe β is on. Explicitly, adding a neutral scalar (e.g. Schu. Black bole seen from for away) to source grant
(33) $\quad M\left(1^{-} 2^{\circ} 3^{+} 4^{\circ}\right) \alpha-\langle 12\rangle^{2}[23]^{2} \frac{1}{M_{p c}^{2}} \frac{1}{t} \sim\left(\frac{E}{p_{p c}}\right)^{2}$
(34) $M\left(1^{-} 2^{\circ} 3^{-} 4^{\circ}\right) \propto<\frac{13\rangle^{2}}{M_{p c}^{2}} \frac{\beta}{M^{2}} \frac{(5-u)^{2}}{t}+\cdots \sim\left(\frac{E}{M_{p l}}\right)^{2}\left(\frac{E}{M}\right)^{2} \beta \xlongequal{\sim}$
so that $|\beta| \leqslant\left(M_{p L} / M\right)^{2}$ would seem ok?
- Bread \& Butter NDA.
(35) $\longrightarrow \operatorname{Rie} F F \cdot\left(\frac{e^{2} N}{16 \pi^{2}}\right) \cdot \frac{1}{M^{2}} \Rightarrow|\beta| \lesssim O(1)$ at best

The (35) is confirmed by studying the propagation of light in the grantetionel big genented by the scalan/block hoe If one takes a very boosted block bole (while sending its mess to zero to keep eneyy finite), the geometry seen by the photon is the one of a shock were
(36) shock-wave $d s^{2}=(\underbrace{-d u d v+d \vec{x}_{\perp} 2^{\prime \prime}} /+d y^{2}+d t^{2}$

Mink in ligation coordinate $5_{j u m p}$
sources by $T_{\mu \nu}$ with only non-venishing entry
$T_{u n} \propto E_{A} \delta(u) \delta(y) \delta(z) \leftarrow$ particle A locolited on coralline
$\|$

$$
u=0=y=z
$$

$\nabla_{\perp}^{2} \Delta\left(\vec{x}_{l}\right) \propto \underset{M_{p l}^{2}}{M_{4}^{2}} \delta^{2}\left(\overrightarrow{x_{\perp}}\right)$ Poisson equation
in $D=2$ in $D=2$
\Downarrow (Lorentz constructions!)
(37)
where $b=\left|\vec{x}_{\perp}\right|$ is the impect ponemeter of the scattering
Comment: in $D=4(37)$ is $I R$-diregent: regulating it by putting the theory on AdS with $L_{A D S} \rightarrow \infty$ gives $\log \frac{b}{L_{I R}} \rightarrow \log b / L_{\text {ASS }}$

Geodesic: $d s^{2}=0$ for $\overrightarrow{x_{\perp}}=\vec{b}$ fixed and v fixed "es of fine

$$
d u d v=d u^{2} \Delta(b) d(u) \Rightarrow \frac{d v}{d u}=\Delta(b) \delta(u) \rightarrow \Delta v=\Delta(b)
$$

(38) $\quad \Delta V=\Delta(b)=-\frac{E_{A} M_{p L}^{2}}{} \log \left(b / L_{I R}\right)>0$

Time Delay

Comment:

- This cen be seen as proof of attractive ness of gravity $E_{r_{p L}^{2}}>0$ from causality
- We could have guess it based on dim. anelysis $\left(R_{s}\right.$ on's relevant sale)
(39)

$$
\Delta T_{\text {delay }}=\Delta V \propto G_{N} M_{\text {source }} \sim R_{S}
$$

\rightarrow boost it ΔT get γ-factor
House $\rightarrow 8 m_{n \rightarrow 0} E$-fixed
$2_{0 \text { missing only the } \log b}$

Remenk: adding now $\frac{\beta}{M^{4}} F_{\mu v} F_{e \sigma} R^{\mu v e \sigma}$ the shock were is still a solution of the new e.o.m.
The difference is that one breaks the equivalence principle: different photon polaritetions foll differently
(40)

$$
\nabla_{\mu}\left(F_{\mu \nu}+\frac{\beta}{M^{2}} R_{\mu \nu \rho \sigma} F^{l \sigma}\right)=0
$$

~ again, besicelly
\Downarrow dimensional analysis up
(41)

$$
\Delta T_{\text {delay }}^{ \pm}=\Delta V_{ \pm}=-\frac{E_{A}}{\pi M_{P L}^{2}}\left(\log b / L_{F \Omega} \pm \frac{\beta}{M^{2} b^{2}}\right)
$$ to $o(z)$

Subluminolity: Since one can lower b up to $b \geqslant 1 / M$ et best there is no net (resolvable) time edveme as long as $\beta_{\approx} \approx d_{1}$) If $\beta \gg 1$ instead, even for $b \gg 1 / M$ on could build time machines.

Let me end this LL saying that this strategy of bounding openetors in gravity is quite general，so that one can bound es well things like $\frac{\alpha_{3} \operatorname{Rie}^{3}}{M^{4}}$ in（32）（1407．597，2211．00085．．）

$$
\begin{equation*}
\Delta T_{\text {delay }}^{ \pm}=\Delta V_{ \pm}=\frac{-E_{A}}{+\Pi_{p c}^{2}}\left(\log b / L_{I R} \pm \frac{\alpha_{3}}{b^{4} M^{4}}\right) \tag{42}
\end{equation*}
$$

and working harden aha Ria（2211．00085，altouyh hosier in 1509．00851，0612015）．Even in the context of e．g． modified gmenty，operators like ϕ Gouss－Bonnet are bounded by looking et＂药－－中 corresponding to bkg that allow greuiton－to－scalor conversion．In this case the Time delay is a matrix in＂flavor＂space that one can diagondite to extract the bound（eng． 2205.08551 ）．

Remark：that time delay is $\alpha R_{S} \propto E_{A}$ is important to make it resolvable within EFT when e．g． $\mid \beta 1$ in（41）or k_{3} ）in（ 4^{2} ）ore >1 ．Time delay not growing with energy，lithe in AED，ϕ^{4}, \ldots is not resoluble instead within EFT．

