Positivity Constraints on EFT

We have seen in $\angle 1$ and $\angle 2$ that subluminality / causality provides interesting positivity bounds on EFT coefficients. It's shows however also some of its limitations:

- no systematics in building bKg's where to look for supaluminolity
- "easy" for lowest dim. operators, what about higha-dim operators?

In this L_{3} we recast these positivity bounds in tums of scattering amplitudes, which allow to daw (often, not always) more genend conclusions.

- Subluminality \Rightarrow Microcausality -

Let's first consider a classical field $\phi(t, \vec{x})$ specified at some time slice $t=t_{0}$ along with its time derivative
(1) $\quad t=t_{0} \quad \phi\left(t_{0}, \vec{x}\right)=\phi_{0}(\vec{x}) \quad \dot{\phi}\left(t_{0}, \vec{x}\right)=\dot{\phi}_{0}(\vec{x})$

Solving its e.0.m. We get $\phi(t, \vec{x})$ and $\dot{\phi}(t, \vec{x})$ at late times as functional of the initial conditions $\phi_{0}(\vec{x}), \dot{\phi}_{0}(\vec{x})$
(2) $\phi(t, \vec{x})=\phi\left[\phi_{0}, \dot{\phi}_{0}\right](t, \vec{x}) \quad \dot{\phi}(t, \vec{x})=\dot{\phi}\left[\phi_{0}, \dot{\phi}_{0}\right](t, \vec{x})$

Subluminality means that varying the initial conditions in some region A
it will not offect the solution in B, if $A \times B$ ore spacelik
(3) $\quad \frac{\delta \phi(t, x)}{\delta \phi\left(t_{0}, y\right) \mid}=0=\frac{\delta \phi(t, x)}{\delta \dot{\phi}\left(t_{0}, y\right)}$
$(t, \vec{y}) \in A$
$(t, \vec{x}) \in B$

This can be wnitten in teirs of Poisson breckefs
(4) $\left\{\phi(t, \vec{x}), \phi\left(t_{0}, \vec{y}\right)\right\}_{\mid}^{\mid}=0$ and $\quad\left\{\phi(t, \vec{x}), \dot{\phi}\left(t_{0}, \vec{y}\right)\right\}_{\text {spocelike }}^{\ell}=0$
\Downarrow cononicd quentization
(5)

$$
\left[\phi(t, \vec{x}), \phi\left(t_{0}, \vec{y}\right)\right]_{1_{\text {spocelike }}}=0
$$

Micro-cousolity

- Micro-cousality $\xrightarrow{\text { LSz }}$ Analyticity -

Elereting (5) to axiom for ong local indipendent op., The $2-t_{0}-2$ scattering amplitudes can be written ria usz formula in thims of the retanded commutetors which thus venish at spoalille reparation (as well as in the pest):
(6) out $\langle 34112\rangle^{\text {in }}-\left\langle\begin{array}{l}\text { in } \\ \langle 31 / 2\rangle^{\text {in }}=i \delta^{4}\left(k_{1}+k_{2}-k_{3}-k_{4}\right) M(12-034) ~\end{array}\right.$

FAside comment:
The LSZ (7) diffens by LSZ with T-ondened openators by terms propontionel to ($3 F$ angthing) and $(1 \rightarrow$ engthing), which venish by stebility of 3 and 1 . This follows by the identity
(8) $T J(x) J^{+}(0)=\theta\left(x^{0}\right)\left[J(x), J^{+}(0)\right]_{\mp} \pm J^{+}(0) J(x)$ and by insarting in the last thrm a complete set of stotes.
See e.g. Weinbey chep. 10 for a simple proof. Or LSZ, -I \&-III $\left(\operatorname{LSt}_{2+4}\langle 3| \phi^{+}(0) \mid n S\langle n| \phi(x)|1\rangle \times \sum_{n} M(2+n \rightarrow 3) M(1 \rightarrow n+4)=0\right)$

The interesting point of (7) is that allows enolytic continuation to complex momenta, which are Key to positivitg.

Fonwand elastic sca thering
Let's disenss the simplest and pansdigmetic excemple of forwond elostic scatteing:
(8) $M(12 \rightarrow 12)=\int d^{4} x e^{i k_{2} x} \theta\left(x^{0}\right)\langle 1|\left[J(x), J^{\dagger}(0)\right]|1\rangle \quad \begin{aligned} & K_{1} \leftrightarrow K_{3} \\ & K_{2} \leftrightarrow K_{4}\end{aligned}$
without lost of genenality let's take \vec{K}_{i} dong the \hat{x} direction, and move to light-cone cooratinates
(g) $\begin{cases}u=x^{0}-x^{1} & v=x^{0}+x^{1} \\ d s^{2}=d u d v-d \vec{x}_{\perp}^{2} & g_{u \nu}=\left(\begin{array}{cc|c}0 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0 \\ 0 & -\mathbb{I}\end{array}\right) \quad g^{\prime \prime}=\left(\begin{array}{cc|c}0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & -1\end{array}\right)\end{cases}$
(10) $M(12 \rightarrow 12)=\int d u d v e^{\left.i \frac{\left(k^{u} v+k^{v} u\right.}{2}\right)}\left[\int d x_{1}^{2} \theta\left(x^{0}\right)\langle 1|\left[J(x), J^{f}(0)\right)|1\rangle\right]$ where we used tho coovolinete choice $\vec{K}_{\perp}=0 . \quad \xrightarrow{{ }_{l}} \xrightarrow{2} \begin{gathered}\pi \\ \binom{K}{\text { here }}\end{gathered}$

Ponsedigmetic Example of Anelytic Extension from couselity
(11)

$$
\hat{f}(k)=\int_{\|} d x e^{i k x} \theta(x) f(x) \quad k \in \mathbb{R}
$$

(12)

$$
\left\{\begin{array}{l}
\hat{f}(p=n+i q) \equiv \int d x e^{i p x} \theta(x) f(x)=\int d x e^{i k x-q x} \underbrace{i v(x)} f(x) \\
\underline{q \geqslant 0} \\
\text { exp. dumping } \\
\text { factor }
\end{array}\right.
$$

The (10) is just the 2Δ-version of this: the integrend inside $[\ldots]$ vanishes by microcauselity $+\theta\left(x^{\circ}\right)$ at
(13)

Support of integrand in (10) $u>0$ \& $v \geqslant 0$

$$
\left[0<x^{2}=u v-\vec{x}_{\perp}^{2} \Rightarrow u v>\vec{x}_{\perp}^{2}\right.
$$ with \vec{X}_{\perp} integrated over in (10)]

(14) $\left.M(12 \rightarrow 12)=N \cdot \int_{0}^{\infty} d u \int_{0}^{\infty} d v e^{\left.i \frac{\left(k^{u} v+k^{v} u\right.}{2}\right)}\left[\int d x_{1}^{2} \theta\left(x^{0}\right)\langle 1|\left[f(x), J^{t}(0)\right)\right]|1\rangle\right]$ defines Analytic Extension to complex $\kappa^{u, v}$ with
(15) $\quad \operatorname{Im} K^{n, V} \geqslant 0$

What does that mean for analyticity in the Mandelstam variables? Since $M(12 \rightarrow 12)$ is a scalar, it implies analyficity in s let $t=0)$. For instance, Let's take at loot one of them massive for concreteness, soy $1, k_{1}^{2}=m_{1}^{2} \Rightarrow$ in its c.o.m. $2 K_{1} \cdot K_{2}=2 m K_{2}^{0}=m\left(K_{2}^{u}+K_{2}^{v}\right)$. This is actually general:
(16) $M(12 \rightarrow 12)$ analytic in Mendelstem-s for $\operatorname{Im} s \geqslant 0$

The $M(12 \rightarrow 012)$ is the bounder y value $\operatorname{Im} s \rightarrow 0^{+}$for $\operatorname{Re} s>0$

Remonk: if 2 is massless $K_{2}^{2}=K_{2}^{u} K_{2}^{v}=0 \rightarrow K_{2}^{v}=0$, the enelytic extension in $K_{2}{ }^{n}$ is perfectly consistent with the on-shell condition $m_{2}^{2}=0$. On the the hand, for $m_{2} \neq 0$ one needs to wank harden to extend the primitive domain of enelyticity (15) \& (1 to include the moss-shell. this is possible, but not corned in this lectures.

From the "time-symmetric" vision of (8), namely
(13) $T J(x) J^{+}(0)=-\theta\left(-x^{0}\right)\left[J(x), J^{+}(0)\right]_{\bar{F}} \pm J(x) J^{+}(0)$
it follows (agein obrenwing the lest tam in (17) drops by stability)
the Advenced-commutatir version of LSZ reduction formula:
(18) $\left.M(1 \overline{2} \rightarrow 3 \overline{4})\right|_{\text {LSZ } 24-4}<-\int_{-}^{4} d x e^{\left.-i k_{2}+K_{4}\right) \frac{x}{2}} \theta\left(-x^{0}\right)\langle 3|\left[J(x), J^{t}(0)\right]|1\rangle$
for the hosed process $1 \overline{2} \rightarrow 3 \overline{4}$ (equivalently $\overline{1} 2 \rightarrow 0 \overline{3} 4$) with antiparticles (this is required by requiring dropping $\pm J(x) J^{+}(0)$ in $\left.(17)\right)$. Mutes mutandis, up to $x \rightarrow-x$ this is onelytic in upper $K_{2}^{u, v}$ plene (of course, whether we call it $\bar{\Sigma}$ or 2 dasn't matter!) The inthesting point, however, is to see it as function of $K^{\mu}=-\left(K_{2}+K_{4}\right)^{\mu} / 2=-K_{2}^{\mu}$
(19) $M(1 \overline{2} \rightarrow 1 \overline{2})\left(k=-K_{2}\right)=-N \cdot \int d^{4} x e^{+i k \cdot x} \theta\left(-x^{0}\right)\langle 1|\left[J(x), J^{+}(0)\right]|1\rangle$ andytic in lower $k^{u, v}$ plane

This is useful because the difference with $M(12 \rightarrow 12)(k)$ at the common boundary, real K^{μ}, is just the $F . T .[$,$] :$
(20) $\left.M(12 \rightarrow 12)-M(1 \overline{2} \rightarrow 1 \bar{\Sigma})=N \int d^{4} x e^{i k \cdot x}\langle 1|\left[J|x|, J^{f} \mid 0\right)\right]|1\rangle$
and the r.h. s vanishes for real valuer of k bors) "below treshold", where no intumediete state contributes:
(21) $\left.\int d d^{4} x e^{i k x}\langle 1| J(x)^{|n\rangle\langle n|} J^{t}(0)|1\rangle=\sum_{n}^{f} \int d^{4} x e^{+i\left(n+p_{1}-p_{n}\right) x}|\langle 1| J(0)| n\right\rangle\left.\right|^{2}$

$$
=Z_{n}(2 \pi)^{4} \delta^{4}\left(n+p_{1}-p_{n}\right)|\langle 1 / J(0) \mid n\rangle|^{2}
$$

(22) $\left.\int d^{4} x e^{i k x}\langle 1| J^{f}(0) J(x)|1\rangle=\ldots=f_{n}(2 \pi)^{4} \delta^{4}\left(n+p_{1}-p_{n}\right) k n|J(0)| 1\right\rangle\left.\right|^{2}$
(with $\left.\ngtr \int \prod_{n}(2 \pi) d\left(p_{n}^{2}-m_{n}^{2}\right) \theta\left(p_{n}^{0}\right) \ldots\right)$
so that if one takes o.g. $K^{0}+p_{1}^{0}=\sqrt{s}<m_{n}^{0} \leqslant p_{n}^{0}$ inoleed the r.th.s. of (20) hes no support.
We have thus two analytic functions that agree on a common bounolery on the real axis below thresbolol: by the Morere's theorem they define a unique function anelytic in both upper and lowe s-plene
(23) $M(s)=\left\{\begin{array}{ll}M(12 \rightarrow 12)(s) & \text { In } s>0 \\ M\left(1 \overline{2} \rightarrow(\overline{2})\left(-S^{\prime \prime}\right)\right. & \text { In } s<0\end{array}\right]$ Anelytic except where
(24)

Remonks

- The amplitude satisfies also a reality condition
(25) $\quad M^{*}\left(s^{*}\right)=M(s) \quad$ hermitian analgticity

This follows directly from definitions, or equivalently from schwartz reflection principle $+(24)$ being satisfied on the real axis bela threshold.

- The statements $(23+24)$ are basically casing symmetry in the special Kinematics $t=0$
In the absence of mass gap, when the branch cuts dose and separate the planes, cussing symmetry is taken as assumption
- Analiticity in s holds also for negative values (physical) of $t<0$, es long as its not too negative (e.g. $\pi \pi \rightarrow \pi \pi$ is s-enelytic for $0(100) m_{\pi}^{2}<t<0$) The proofs are wether cumbersome. For scattering the lightest state in the theory is conjectured Maximal Andylyicity where $0<-t<1 S 1$ (or M^{2} in EFT).
Extension to ort con reach $t \leqslant 4 m_{\pi}^{2}$ for instance. After the Z bes not allow to 80 further.

$$
\xrightarrow{\text { Anelyticity Unitanity }+ \text { locality }} \text { Positivity }
$$

Let's add now 2 more assumptions/facts:
(26) Decay-rate of amplitudes: $\lim _{\mid s-\infty)} \frac{M(12-012)(s)}{s^{2}}=0$ (weak form of locality)
(27) Unitanity: $s^{+} s=S S^{+}=1$

The (26) is actually a theorem in axiomatic QFT for aped theories Known as the Froissart-Martin bound
(28) $M \sim$ slog 2 s at laue s. aped theory.

Gravity actually marginally violates (26), but the following still holds (29) $\frac{M(s, t<0)}{s^{2}} \underset{s \rightarrow \infty}{ } 0$ in Gravity (zbiboclov-Hëring)
(the (29) is proven by obsening that for t-fixed $|t| /|S| \rightarrow 0$ so that one enter always the eikonal grevitatisnel regime (wee ats 221.00085), where the rexummetion of leading ladder diagrams confirms (29): see 2202.08280 for detailed discussion)

- The (27) implies the optical theorem, which in its $t \rightarrow 0$ is
(30) $\frac{D_{i s c} M(12-D 12) /(s)}{i} \equiv \frac{M(12 \rightarrow 12)(s+i \varepsilon)-M(n \rightarrow 012)(s-i \varepsilon)}{i}=\left\langle 12 / M^{+} M(12\rangle \geqslant 0\right.$
-Positivity in $\pi \pi \rightarrow \pi \pi-$
Let's consiter single-GB's EFT with venishing or negligible moss (Keeping: anolyticity + ussing + unitanity + energ-rate/localty)
(31) M(12-D34) $\underset{\left.\right|_{E<M} ^{2 M^{4}}}{ }=\frac{c_{2}\left(s^{2}+t^{2}+u^{2}\right)+\frac{c_{3} s^{6}}{M^{6}}+\frac{C_{4}}{4 M^{8}}\left(s^{2}+t^{2}+u^{2}\right)^{2}+\ldots}{}$
(32) $M(12 \rightarrow 12)(s, t \rightarrow 0) \underset{E<c M}{=} c_{2} s^{2}+c_{4} s^{4}+\ldots$ only even

Thenks to enelyticity, one cam extract $c_{2 n}$ coefficients vie Ceuchy theorem
(33)

$$
\frac{c_{2 n}}{M^{4 n}}=\frac{1}{2 \pi i} \oint \frac{M(s, t=0)}{s^{2 n}} \frac{d s}{s}
$$

if theory gepped, or IR branch-cuts belar M nayligibles (that is ignoring $I R$ running from $E=M$ to the scole of the EFT)

The (33) is cool becouse we con deform the contour to wrep axound the Disc's on the real axis:
(34)

dropping
 thenls to (26).
(35)

$$
\begin{aligned}
& \frac{C_{2 h}}{M^{4 n}}=\frac{1}{\pi}\left(\int_{M^{2}}^{\infty} \frac{d s}{s}+\int_{-\infty}^{M^{2}} \frac{d s}{s}\right) \frac{M(s+i \varepsilon)-M(s-i \varepsilon)}{2 i}+B_{\infty}^{(n \geqslant 1)} \\
& =\frac{1}{\pi} \int_{M^{2}}^{\infty} \frac{d s}{s} \frac{M(s+i \varepsilon)-M(s-i \varepsilon)}{2 i}+\int_{M^{2}}^{\infty} \frac{d u}{u} \frac{M(-u-i \varepsilon)-M(-u+i \varepsilon)}{2 i} \\
& =\frac{2}{\pi} \int_{M^{2}}^{\infty} \frac{d s}{s} \frac{M(s+i \varepsilon)-M(s-i \varepsilon)}{2 i} \\
& M_{1 \overline{2}-D \sqrt{2}}(u+i \varepsilon)-M_{1 \overline{2}-0 \sqrt{2}}(u-i \varepsilon) \\
& \text { by tossing: in our } \\
& \text { cone moreover } \\
& M_{1 \overline{2} \rightarrow 1 \overline{2}}=M_{12 \rightarrow / 2} \\
& =\frac{2}{\pi} \int_{M^{2}}^{\infty} \frac{d s}{s} \frac{\Delta i s c M(s)}{2 i} \underset{\substack{\text { Unitarily } \\
(30)}}{ }=\frac{1}{\pi} \int_{n^{2}}^{\infty} \frac{d s}{s}\langle 12| M^{f} M|12\rangle \geqslant 0
\end{aligned}
$$

(36) $\quad C_{2 n} \geqslant 0$ positivity of $s^{2 n}$-coefficients

Remarks:

- The $=0$ sign is reached only in free theory since $\left.\sum_{n}|<12| r^{+}|n\rangle\right|^{2}=0$ implies $\langle 12| \mu^{+}|n\rangle=0=\mid$ anything $\rangle \longrightarrow|12\rangle=0$
- In the presence of IR loops the one wants to Keep into eccount it's ectuelly bette to define "anas" $(s)=a_{n}(s)$ "Ares"
(37)

$$
a_{n}(s) \equiv \frac{1}{2 \pi i} \int_{\text {Arcs }} \int_{1+2} \frac{M\left(s^{\prime}\right)}{\left(s^{\prime}\right)} \frac{d s^{\prime}}{s^{\prime}} \geqslant 0
$$

which by onalyticity are related to the coefficients $c_{2 n}^{\left(m_{2 n}^{2}\right)}$ defined by expending M(I2-vi) below threshold (where is analytic) as
(38) $\left.\quad a_{2 n}(5)=\frac{c_{2 n}^{\left(m_{12}^{2}\right)}}{M^{4 n}}-\#^{2} \int_{m_{I R}^{2}\left(\text { egg. } 4 m^{2}\right)}^{S}\left\langle 12 / M^{+} M 12\right\rangle \rightarrow \frac{C_{2 n}^{\left(m_{ \pm 2}^{2}\right)}}{M^{4 h}}\right\rangle a_{2 n}$

More generally, $a_{n}(s)$ is calculable in EFT in this of Wilson coefficients matched et some $\mu, n 0$ the (37) will represent some positivity conditions on combinations of Wilson coefficients.
Notice, however that $c_{2}>0$ can't be undone in any whey (Keeping EFT fixed, without adding new light doff's) since
(39) $\quad M(12-12)=\frac{c_{2}}{M^{4}} s^{2}+\left(\# \frac{c_{2}^{2}}{16 \pi^{2}} \log s \mu^{2}+c_{4}(\mu 1) \frac{s^{4}}{M^{8}}+\cdots\right.$
(40)

$$
\begin{aligned}
& a_{2}(s)=\frac{1}{2 \pi i} \int_{0} \frac{d s l}{s^{1}} \frac{M(n \rightarrow 12)}{s^{\prime 2}} \sim \frac{c_{2}}{M^{4}}-\frac{ \pm}{\pi} \int_{m_{I R}^{2}}^{s} \frac{\operatorname{Disc}}{i} \frac{1}{s^{12}} \frac{d s^{\prime}}{s^{1}} \\
& =\frac{c_{2}}{M^{4}}(1-*(\underbrace{\left.\left.\frac{c_{2}}{16 \pi^{2}}\right) \frac{s^{2}}{M^{4}}+\ldots\right)} \\
& \underline{c_{2}>0} \underbrace{\left(\frac{c_{2}}{16 \pi}\right) M}_{<1} \operatorname{con}^{\text {'t revere the sign in EFT }}
\end{aligned}
$$

The story is not as simple for the higher Wilson coefficients, e.g.
(41) $M^{8} a_{4}(s)=\underbrace{c_{4}+\frac{c_{2}^{2}}{16 \pi^{2}} \log s}_{\text {running } c_{4}(s) \geqslant 0}+\ldots$ but: $M^{22} a_{6}(s)=\underbrace{c_{6}^{2}!}_{\text {dominated } \frac{c_{5}}{s^{2} 16 \pi^{2}}+\ldots!}$ no miter how small the coupling wens, sine $s / \mathrm{m}^{2} \ll 1$)

- Positivity in Eula-Heirenbery -

Let's study another case with spin: the theory of U(1) ga up boons below the moss of lightest changed state:
(42) $\quad \mathscr{L}_{\gamma}=-\frac{1}{4} F_{\mu \nu} F^{\prime \nu}-\frac{a}{M^{4}}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}-\frac{b}{M^{4}}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}+\cdots$

(44) $\begin{cases}M\left(1-2^{-}-3^{-} 4\right)=\left(\frac{\langle 12\rangle\langle 34\rangle}{[2][34]}\right) \frac{\left(s^{2}+t^{2}+u^{2}\right)}{M^{4}} & F_{--}(s, t, u) \\ F_{--}(s, t, u)_{I_{R}}=a-b+\ldots & k_{\text {fully }} s-t-u \text { symmetric }\end{cases}$

Once the little-group structure is removed, the F_{-+}and E_{-} have exactly the same andyyticity properties as in the scalar theory So it's actually irmediete to get $a+b>0$ since
(45) $\frac{\left.\frac{1}{2 \pi i} \oint \frac{M\left(i^{-} 2^{+} 3^{+} 4^{-}\right) M^{4}}{\langle 14\rangle^{2}[23]^{2}} \frac{d s}{s}\right|_{t=0}=a+b>0}{\sum_{\pi}^{\pi} \int_{M^{2}}^{\infty} \frac{d s}{s} \frac{v_{1}}{s^{2}} \frac{\operatorname{Disc} M\left(i^{+} 2^{+} 4^{-}\right)}{2 i}>0}$

In fact, one con do better since we can scatter cony stete
we like, e.g. lineary polanited stetes
(46) $\quad|\uparrow \uparrow\rangle \longrightarrow|\uparrow \uparrow\rangle \quad$ or $|\uparrow \downarrow\rangle \longrightarrow \mathbb{\uparrow} \downarrow\rangle$
or any linex combination in between. Since these one still dastic the r.h.s. of the doispasion reletion is still delivening a positivity:
(47) $\langle\uparrow \uparrow| M^{+} M|\Upsilon \uparrow\rangle \geqslant 0$ after

$$
\langle\uparrow \downarrow| M^{\dagger} M|\Upsilon \downarrow\rangle \geqslant 0
$$

What's interesting about this is that it will probe aho the inelostic-helicity configuretion
(48) $\quad|\uparrow\rangle=\frac{|+\rangle+|-\rangle}{\sqrt{2}} \quad|\downarrow\rangle=\frac{|+\rangle-|-\rangle}{\sqrt{2} i}$
(which are a nice besis under nossing since $|\uparrow\rangle \leftarrow \nabla|\uparrow\rangle,|v\rangle<\nabla N\rangle$ et $t=0$ when $3 \rightarrow 1,4 \rightarrow 2$)
(49) $4 \cdot\langle\uparrow \uparrow| M|\uparrow \uparrow\rangle_{t=0}=M\left(1^{+} 2^{+} 1^{+} 2^{t}\right)+M\left(1^{+} 2^{+} 1^{+} 2^{-}\right)+\ldots$

$$
\text { (50) }\left\{\begin{array}{l}
\langle\uparrow \uparrow| M|\uparrow \uparrow\rangle_{\substack{t=0 \\
I R}}=16 \frac{a}{M^{4}} \\
\langle\uparrow \downarrow| M|\uparrow \downarrow\rangle_{\substack{t=0 \\
I R}}=16 \frac{b}{M^{4}}
\end{array} \Rightarrow \begin{array}{l}
a \geqslant 0 \\
b \geqslant 0
\end{array}\right.
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\square
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad

- Heuristic Derivation Froissart Bound

$$
\text { coupling: } g=\left\{\begin{array}{l}
\text { strength: } \lambda E^{n} \\
\text { locality: } e^{-m b} \quad m \text { : mess of mediator }
\end{array}\right.
$$

Relevant range of $b: e^{-m b^{\max }} E^{m} \sim O(1) \rightarrow b^{\max }(E)=\frac{n}{m} \log E$

$$
\Rightarrow \sigma \sim\left(b^{\max }\right)^{2} \sim \frac{1}{m^{2}} \log ^{2} E
$$

main lesson: locality is uncial ingredient $\left\{\begin{array}{l}\text { coupling grouth-E: polynom. } \\ \text { decoupling distance: expon. }\end{array}\right.$ \Rightarrow range interact. $b \sim \log E$

- S-matrix Heuristic Derivation -
trade: $b \longleftrightarrow l=E \cdot b \quad$ angular momentum \rightarrow Partial Waves

$$
\left.\begin{array}{l}
M(s, t)=16 \pi \sum_{l}(2 l+1) a_{e}(s) I_{l}(\cos \theta) \\
1+\frac{2 t}{s}
\end{array}\right]\left[\begin{array}{l}
\left.s \sigma_{\text {Tor }}(s)\right|_{\text {opl.th. }} \alpha I_{m} M(s, t=0)=\sum_{l}(2 l+1) I_{m} a_{l}(s) \\
\left.\left|s_{l}\right|^{2} k^{2 i \delta_{l}}\right|^{2}=\left|1+2 i a_{l}\right|^{2} \leqslant 1 \quad a_{l} \equiv \frac{e^{2 i \delta_{l}(s)}}{2 i} \\
0 \leqslant\left|a_{e}\right|^{2} \leqslant \operatorname{Im} a_{e} \leqslant 1
\end{array}\right.
$$

$$
\left(1-2 \operatorname{Im} a_{l}\right)^{2}+\left(2 \operatorname{Re} a_{l}\right)^{2} \leqslant 1
$$

unitority $0 \leqslant \operatorname{Im} a_{l} \leq 1 \quad$ not enough $\quad \operatorname{Im} M(s, t=0) \leqslant 16 \pi \sum_{l}(2 l+1)=\infty$
needed: decoupling large $b \leftrightarrow$ decoupling large $-l$

$$
\operatorname{Im}_{16 \pi} M(s, t=0) \leqslant \underbrace{\sum_{l}^{\ln a x}(2 l+1)}_{l_{\max }^{2}}+\sum_{l>l_{\max }}^{\sum_{\substack{\infty}}^{\infty}(2 l+1) \operatorname{Im}_{l} a_{l}(s)}
$$

* $M(s, t)$ is analytic in $s \& t$, even for $0 \leqslant t \leqslant \mu_{12}^{2}$ doses
** Polgnomid Boundedness: $|M(s \rightarrow \infty, t)|<\operatorname{con} s \cdot 5^{N}$ some $N \quad \begin{gathered}\text { thrshhed } \\ \left(\text { l.g. } 4 \mathrm{~m}^{2}\right)\end{gathered}$

From *: $\operatorname{Im} M(s, t)=16 \pi \sum_{l}(2 l+1) \operatorname{Im} \alpha_{e} P_{l}\left(1+\frac{2 t}{s}\right)$ with $0 \leqslant t \leqslant \mu_{1 R}^{2}$ but now $P_{l}(\underbrace{1+2 t / s}_{>1}) \sim \frac{e^{+2 l \sqrt{t / s}}}{\sqrt{l}}$ o large l

From $*^{*}$: Um $a_{e}^{(s)}$ needs to decoy exponentially: best for $t=\mu_{T R}^{2}$

$$
I_{\operatorname{m}} M(s, t=0) \leqslant \underbrace{\sum_{l}^{\operatorname{lnax}^{2}}(2 l+1)}_{l_{\max }^{2}}+\underbrace{\sum_{l}^{\infty}(2 l+1) \operatorname{Im} a_{l}(s)}_{l>l_{\max }}
$$

\rightarrow con hoe this from $l_{\text {max }}: l^{2 \operatorname{limad}^{\frac{\mu_{5 S}}{S}}} \stackrel{S}{N}$
i.e. $l_{\max }(s)=\frac{N}{2 \mu_{z R}} \sqrt{s} \log s$

Froissent
$\begin{aligned} & \text { Mectin } \\ & \text { Bound }\end{aligned}$$\left\{\begin{array}{l}\sigma_{\text {ToT }}(s \rightarrow \infty) \leqslant \frac{\text { const }}{\mu_{I R}^{2}} \log ^{2} s \\ |M(s \rightarrow \infty, t=0)| \leqslant \frac{\text { const }}{\mu_{I R}^{2}} s \cdot \log ^{2} s \quad\left(\left|R_{e} M\right|<|M| \ldots\right)\end{array}\right.$
M is polynom. bounded by s^{N} with $N=2$

Summery: $\left[\begin{array}{l}\text { unitenity }\left(\left|S_{e}\right|^{2} \leqslant 1\right) \\ \text { causality }(M \text { anelgtic \& gepped) } \\ \text { locality }\left(\leqslant s^{N}\right)\end{array}\right] \Rightarrow \sigma_{T O T}(s \rightarrow \infty \infty)<\log ^{2} s^{\prime}$
Axiometic lorentizion QFT' setisfy these' \longrightarrow

$$
\Sigma_{l}(2 l+1) a_{e} x_{e}
$$

