Lecture \#2
Last time: For E / \mathbb{Q} elliptic unve of conn $=N$, $p+2 N$ good ordinary prime, \& K / Q suitable imaginary quadratic field:
(1) Mazur's MC $\Rightarrow p$-part of BSD formula in $r k 0$
(2) Perrin-Riou's MC $\Rightarrow p$-converse to Gross-Zagier, Kolyvasin.
(3) BDP IMC $\underset{\uparrow}{\Rightarrow} p$-part of $B S D$ formula in $r k 1$.
if p-part of BSD formula
Known for E^{k} / Q in re 0 .
When $G_{Q} \vee E[p]$ has "big image" $(\Rightarrow E[p]$ irreducible $)$
these 3 Main Conj. are known under mild ramif. hyp. on $E[p]$ by blending:
(i) Euler/Kolyvagin systems (Kato, Howard)
(ii) Vast generalization of Ribet's method. $\begin{array}{cc}\left(\begin{array}{c}\text { Skinner-Urban } \\ G \cup(2,2)\end{array}\right. & \text { X. Wan) } \\ G \cup(3,1)\end{array}$

From now on suppose $E[p]$ reducible as $G a$-module:

$$
E[p]^{s s} \simeq \mathbb{F}_{p}(\phi) \oplus \mathbb{F}_{p}(\psi)
$$

where $\phi, \psi: G_{\mathbb{Q}_{2}} \rightarrow \mathbb{F}_{p}^{x}, \quad \phi \psi=w$ - Teichmiller character.

Today's goal
Theorem A (C. - Grosil-Skinner).
Supp. $\left.\phi\right|_{G_{Q_{p}}} \neq \mathbb{1}, w$, where $G_{\mathbb{Q}_{p}} \subset G_{Q}$ a de comp. gp. at p.
Let K/Q image. quadratic st.

- Heegner hyp. holds.
- $p O_{K}=v \bar{v}$ splits.

Then $X_{v}\left(E / K_{\infty}^{-}\right)$is Λ^{-}-torsion, with $\operatorname{char} \tilde{\Lambda}^{-} X_{v}\left(E / K_{\infty}^{-}\right)=\left(L_{v}^{B D P}(E / K)^{2}\right)$.

Hence BDP IMC holds.

The proof is in 2 steps:
(1) Exploit the congruence $E[p]^{S S} \simeq \mathbb{F}_{p}(\phi) \oplus \mathbb{F}_{p}(\psi)$ to show $X_{v}\left(E / K_{\overline{-}}^{-}\right) \times K_{v}^{B D P}(E / K)^{2}$ have both $\mu=0$ \& the same λ-invariant.
(2) $X_{v}\left(E / K_{\infty}^{-}\right)$is Λ^{-}-torsion, with

$$
\begin{aligned}
\text { char } \tilde{\Lambda}^{-}
\end{aligned} X_{v}\left(E / K_{\infty}^{-}\right) \supseteq\left(\mathcal{L}_{v}^{B D P}(E / K)^{2}\right) .
$$

§2. Anti-cyclotomic Greenbeng-Valsal method.
Let $\Sigma=\left\{w \mid N_{p}\right\} \supset S=\{w \mid N\}$, and consider the S-imprimitive Selmer $g p$.

$$
\begin{aligned}
& \operatorname{Sel}_{v}^{S}(E / K \infty):=\operatorname{Ker}[H^{1}\left(K^{\Sigma} / K_{\infty}^{-}, E\left[p^{\infty}\right]\right) \\
& \downarrow \operatorname{res} \bar{v} \\
&\left.H^{1}\left(K_{\infty}^{-}, \bar{v}, E\left[p^{\infty}\right]\right)\right] .
\end{aligned}
$$

$$
\begin{gathered}
X_{v}^{S}\left(E / K_{\infty}^{-}\right):=\operatorname{Sel}_{v}^{S}\left(E / K_{\infty}^{-}\right)^{v} \\
\operatorname{Sel}_{v}^{S}\left(E[p] / K_{\infty}^{-}\right):=\operatorname{ker}\left[H^{1}\left(K^{\Sigma} / K_{\infty}^{-}, E[p]\right)\right. \\
\text { "residual Selmer gp." } \quad \downarrow \\
\left.H_{v}^{S}\left(K_{\infty, \bar{v}}^{-}, E[p]\right)\right] \\
\\
\left.X_{v}[p] / K_{\infty}^{-}\right):=\operatorname{Sel}_{v}^{S}\left(E[p] / K_{\infty}^{-}\right)^{v}
\end{gathered}
$$

Basic principle:
$\operatorname{char}_{\wedge^{-}} X_{v}\left(E / K_{\infty}^{-}\right)=\left(L_{v}^{B D P}(E / K)^{2}\right)$

$\pi_{\pi}^{\operatorname{char} \sim-} X_{v}^{S_{(}}\left(E / K_{\infty}^{-\infty}\right)=\left(\mathcal{V}_{v}^{B D P, S}(E / K)^{2}\right)$ "remove Euler factors" at $w \in S$.
advantage: letter behaved wit congruences mod p.

Proposition 1 Supp. $\left.\phi\right|_{G_{\mathbb{Q}_{p}}} \neq \mathbb{1}, w$.
Then $X_{v}^{S}\left(E / K_{\infty}^{-}\right)$is Λ-torsion
with $\mu=0 \quad \& \quad \lambda=\lambda \phi+\lambda \psi$
introduced in the proof.
Proof. Write

By standard arguments (Greenbeng) the Selmer gp.

$$
\begin{aligned}
& \operatorname{Sel}_{v}^{S}\left(\tilde{\phi} / K_{\infty}^{-}\right):=\operatorname{Ker}\left[H^{1}\left(K^{\Sigma} / K_{\infty}^{-}, \mathbb{Q}_{p} Z_{p}(\tilde{\phi})\right)\right. \\
& \downarrow \text { res } \bar{v} \\
& \left.H^{1}\left(K_{\infty, \bar{v}}^{-}, \mathbb{Q}_{p} /_{p}(\tilde{\phi})\right)\right] \\
& \cong \underset{\text { cts }}{\operatorname{Hom}}\left(\operatorname { G a l } \left(\underset{\left.\left.M_{\infty} / K_{\infty}{\underset{Q}{K_{\phi}}}_{M_{Q} \operatorname{ken}\left(\left.\phi\right|_{G K}\right)}^{K_{p}}\right), \mathbb{Q}_{p / \mathbb{Z}_{p}}\right)}{ }\right.\right.
\end{aligned}
$$

max d ab. prop un outride $v * S$.
is Λ-torsion with no proper finite Λ-submodules.

By Hida \& Rubin, $\operatorname{Sel}_{v}^{S}\left(\tilde{\phi} / K_{\infty}^{-}\right)$has $\mu_{\phi}=0$.

$$
\begin{array}{r}
\Rightarrow \operatorname{Sel}_{v}^{s}\left(\tilde{\phi} / K_{\infty}^{-}\right) \text {is divisible, } \cong\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\lambda_{\phi}} \\
\Rightarrow \lambda_{\phi}=\operatorname{dim}_{\mathbb{F}_{p}} \underbrace{\operatorname{Sel}_{v}^{S}\left(\tilde{\phi} / K_{\infty}^{-}\right)[p]}_{\| 2} \\
\operatorname{Sel}_{v}^{S}\left(\phi / K_{\infty}^{-}\right):=\operatorname{ker}\left[H^{1}\left(K^{\Sigma} / K_{\infty}^{-}, \mathbb{F}_{p}(\phi)\right)\right. \\
\downarrow^{\operatorname{res}_{\bar{v}}} \\
\\
\left.H^{1}\left(K_{\infty, \bar{v}}^{-}, \mathbb{F}_{p}(\phi)\right)\right] .
\end{array}
$$

\Rightarrow get the exact sequence

$$
0 \rightarrow \operatorname{Sel}_{v}^{S}\left(\phi / K_{\infty}^{-}\right) \rightarrow \operatorname{Sel}_{v}^{S}\left(E[p] / K_{\infty}^{-}\right) \rightarrow \operatorname{Sel}_{v}^{S}\left(\Psi / K_{\infty}\right) \rightarrow 0
$$

$\Rightarrow X_{v}^{S}\left(E / K_{\infty}^{-}\right)$is Λ^{-}-torsion with $\mu=0$

$$
\& \lambda=\lambda_{\phi}+\lambda_{\psi} \text { 四 }
$$

On the analytic side,

$$
\Rightarrow L_{v}^{B D P, S}(E / K)^{2} \equiv L_{v}^{S}(\phi) \cdot L_{v}^{S}(\psi)\left(\bmod p \tilde{\wedge}^{-}\right)
$$

Kriz

$$
\Rightarrow \mu\left(L_{V}^{B D P, S}(E / K)\right)=0
$$

$$
\text { \& } \lambda\left(\mathcal{K}_{v}^{B D P, S}(E / K)\right)=\lambda \underbrace{\left(\mathcal{L}_{V}^{S}(\phi)\right.})+\underbrace{\left(\mathcal{L}_{v}^{S}(\psi)\right.})
$$

Rubin
But by Prop.1, $\lambda\left(X_{v}^{S}\left(E / K_{\infty}^{-}\right)\right)=\lambda_{\phi}+\lambda_{\psi}$

$$
\mu\left(X_{v}^{S}\left(E / K_{\infty}^{-}\right)\right)=0
$$

\therefore This concludes step 1 .

$$
\begin{aligned}
& E[p]^{J S} \simeq \mathbb{F}_{p}(\phi) \oplus \mathbb{F}_{p}(\psi) \\
& \Rightarrow \underset{\substack{\hat{\uparrow} \\
\text { newform } \\
\text { assox. to } E}}{f} \equiv E_{\substack{\phi, \psi \\
\uparrow}} \quad(\bmod p)
\end{aligned}
$$

§3. Kolyvagin system argument " with error terms"
Prop. 2 Supp. $E(K)[p]=0$.
Then TFAE:

$$
厶_{v}^{\operatorname{BPP}(E / K) \neq 0}
$$

(1) $X_{v}\left(E / K_{\infty}^{-}\right)$is Λ^{-}-torsion, V and

$$
\operatorname{char}_{\tilde{n}^{-}} X_{v}\left(E / K_{\infty}^{-}\right) \supseteq\left(L_{v}^{B D P}(E / K)^{2}\right)
$$

$$
\text { in } \tilde{\Lambda}-\left[\frac{1}{p}\right]
$$

(2) $X\left(E / K_{\infty}^{-}\right)$has $\Lambda^{-}-\operatorname{rank} 1,^{2}$ and

$$
\begin{aligned}
\operatorname{char}_{\Lambda^{-}}\left(X\left(E / K_{\infty}^{-}\right)_{\text {tors }}\right) \geq \operatorname{char}_{\Lambda^{-}} & \left(\frac{\stackrel{V}{S}\left(E / K_{\infty}^{-}\right)}{\left(K_{\infty}^{\left.H_{E}\right)}\right)}\right)^{2} \\
& \text { in } \Lambda^{[}\left[\frac{1}{p}\right]
\end{aligned}
$$

The same holds for the divisibilitirs " \subseteq ".

Proof. By the Λ^{-}-adic BDP formula (C. - Hsieh) \exists big logarithm map
$C O l_{V}: \lim _{n} H_{\text {ord }}^{1}\left(K_{n, v}^{-}, T_{p} E\right) \hookrightarrow \tilde{\Lambda}^{-}$with $\underset{\text { finite }}{\text { CoRer }}$ sending res $\left(K_{\infty}^{\mathrm{Hg}}\right) \longmapsto L_{v}^{B D P}(E / K)$.

Then use Poitou-Tate duality. 四
Proposition 3. Supp. $E(K)[p]=0$.
Then $X\left(E / K_{\infty}^{-}\right)$has $\Lambda^{-}-r k 1$, and

$$
\begin{aligned}
\operatorname{char}_{\wedge^{-}}\left(X\left(E / K_{\infty}^{-}\right)_{t a s}\right) \supseteq \operatorname{char}_{\Lambda^{-}}\left(\frac{\stackrel{V}{S}\left(E / K_{\infty}^{-}\right)}{\left(K_{\infty}^{A_{s}}\right)}\right)^{2} \\
\text { in } \Lambda^{-}\left[\frac{1}{p}\right] .
\end{aligned}
$$

Proof. A refinement of Kolyvagin's methods.
diffivety: no "big image" hypothesis.

Standard arguments (Howard) give

$$
X\left(E / K_{\infty}^{-}\right) \sim \Lambda^{-} \oplus M \oplus M
$$

with $M=f \cdot g . \Lambda=$-tors.
Let $\beta \neq p \Lambda^{-}$ht 1 prime, \& take $\beta_{m} \xrightarrow{m \rightarrow \infty} \beta$

From a Cebotarev argument (to inductively choose a seq. of "Kolyvagin primes")
depth $k, k \gg 0$
get

$$
\begin{gathered}
\operatorname{length}_{\beta_{m}}\left(M_{\beta_{m}}\right) \leqslant \operatorname{longth}_{\beta_{m}}\left({\left.\stackrel{V}{S_{\beta_{m}}} / K_{\infty, \beta_{m}}\right)}^{H_{q}}\right) \\
+E_{m}
\end{gathered}
$$

with "fro term" $E_{m}\left(\approx v_{p}\left(\alpha_{m}(\gamma)-\alpha_{m}^{-1}(\gamma)\right)\right)=(\mathcal{\text { as }} \quad \underset{m \rightarrow \infty}{ }$ unless $\beta=(\gamma-1)$.

To handle $\beta=(\gamma-1)$, take $\beta_{m}=\left(T+p^{m}\right)$

$$
\begin{aligned}
\stackrel{\downarrow}{(T)} & \stackrel{\downarrow}{\alpha_{m}}: \Gamma^{-} \rightarrow \mathbb{Z}_{p}^{x}, \\
& \alpha_{m} \equiv 1\left(\bmod p^{m}\right) .
\end{aligned}
$$

Choose Kolyragin primes by working over

$$
\operatorname{depth} k, k \gg 0
$$

$$
\left(T_{p} E \otimes \alpha_{m}\right) / p^{m}
$$

$$
\begin{aligned}
& \text { U } \\
& \tau
\end{aligned}
$$

and do a new induction argument

$$
\begin{aligned}
n \text { get } \text { length }_{z_{p}}\left(M_{\beta_{m}}\right) \leqslant & \text { length }_{z_{p}}\left(S_{\beta_{m} /\left(r_{m,}^{H_{6}}, \beta_{m}\right)}\right) \\
& +E_{\pi_{\text {indep. of } m} .}
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow \text { length }_{\beta}(M) \leqslant \text { length }_{\beta}\left(\stackrel{v}{S} /\left(K_{\infty}^{H_{g}}\right)\right), \\
& \beta \neq(\gamma-1) \text {. }
\end{aligned}
$$

Prop 1-3 \Rightarrow Thm.A.
Remark Equality in $\tilde{\Lambda}-\left[\frac{1}{T}\right]$ enough for arithmetic applications to p-conv of GZK 4 p-part of $B S D$ in $r k$ 1,
but equality in $\tilde{\Lambda}^{-}$
will be essential to the proof of Mazur's MC
(next time)

