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Part I: continuous-time QND measurement
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Stochastic stability

Definition. Let xz
t be a diffusion process on the metric state

space X , started at x0 = z and let z̃ denote an equilibrium
position of the diffusion, i.e. x z̃

t = z̃. Then
I the equilibrium z̃ is said to be stable in probability if

lim
z→z̃

P

(
sup

0≤t<∞
||xz

t − z̃|| ≥ ε

)
= 0 ∀ε > 0.

I the equilibrium z̃ is globally stable if it is stable in
probability and additionally

P( lim
t→∞

xz
t = z̃) = 1, ∀z ∈ X .
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Stochastic Lyapunov theory

Stochastic differential equation: dxt = b(xt )dt + σ(xt )dwt
with x0 as initial condition.

Infinitesimal generator: L := b(x) ∂
∂x + 1

2σ(x)2 ∂2

∂x2 .

Lyapunov function:

E
(dV (xt )

dt
)

= LV (xt ) =
∂V
∂x

(xt )b(xt )+
1
2
∂2V
∂x2 (xt )σ(xt )

2 ≤ 0.

Kushner’s theorem: Convergence in probability towards the
invariant set is included in L(V ) = 0.
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Problem presentation for quantum spin-1
2 systems

State space: S2 = {ρ ∈ C2×2| ρ ≥ 0, ρ = ρ∗, Tr(ρ) = 1}.

dρt = −iut [σy , ρt ] dt +
1
2

(2σzρtσz − σ2
zρt − ρtσz) dt

+ (σzρt + ρtσz − 2Tr(σzρt )ρt )dWt .

I Two equilibriums are ρg =

(
1 0
0 0

)
and ρe =

(
0 0
0 1

)
I Main problem: To stabilize deterministically one of these states.

Consider the Lyapunov function: V (ρt ) = 1− Tr(ρtρe)2

LV (ρt ) = 2utTr(i[σy , ρt ]ρe)− 4Tr(ρtρe)2(1− Tr(σzρt ))2.

ut = −Tr(i[σy , ρt ]ρe).
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Previous results

I R. Van Handel, J. K. Stockton, and H. Mabuchi, Feedback
control of quantum state reduction, IEEE TAC, 50(6),
768–780, 2005; (2-level, continuous)

I M. Mirrahimi and R. Van Handel, Stabilizing feedback
controls for quantum systems, SIAM Journal on Control
and Optimization, 46(2), 445–467, 2007; (N-level,
switching)

I K. Tsumura, Global stabilization at arbitrary eigenstates of
N-dimensional quantum spin systems via continuous
feedback, ACC, 4148–4153, 2008; (N-level, continuous)
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Van Handel, Stockton, Mabuchi, 2005
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dxt = (B(t)zt −
1
2

Mxt )dt −
√

Mηxtztdwt

dyt = −1
2

Mytdt −
√

Mηytztdwt

dzt = −B(t)xtdt +
√

Mη(1− z2
t )dwt

Aim: stabilizing (x , z) = (0,1) =⇒ B(t) = −λxt − µ(1− z) with
λ > 0 and a Lyapunov function

V (x , z) = (α + βz − x)(1− z)
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Mirrahimi and Van Handel, 2007

dρt = −iut [σy , ρt ] dt +
1
2

(2σzρtσz − σ2
zρt − ρtσz) dt

+ (σzρt + ρtσz − 2Tr(σzρt )ρt )dWt .

Theorem (M. Mirrahimi and R. van Handel, 2007.) Consider the
following control law
I ut = − tr

(
i[σy , ρt ]ρe

)
if tr (ρtρe) ≥ γ

I ut = 1 if tr (ρtρe) ≤ γ/2

I If ρt ∈ B = {ρ : γ/2 < tr (ρρe) < γ}, then
ut = − tr

(
i[σy , ρt ]ρe

)
if the last entry of ρt into B has been

via the boundary tr (ρρe) = γ and ut = 1 if not. Then there
exists a γ > 0 s.t. u(t) globally stabilizes the system
around ρe and E(ρt )→ ρe as t →∞.



9

Main ideas of the proof

Consider V (ρ) = 1− tr (ρρe) and for α ∈ [0,1] define the set
Sα = {ρ ∈ S2 : V (ρ) = α}, S>α, S≥α, S<α, and S≤α.

I Step 1. When the initial state is in the set S1, the control
u = 1 ensures the exit of the trajectories in expectation
from S1.

I Step 2. There exists a γ > 0 such that whenever the initial
state lies inside the set S>1−γ and the control field is taken
to be u = 1, the expectation value of the first exit time from
this set takes a finite value.
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Main ideas of the proof

I Step 3. Whenever the initial state lies inside the set S≤1−γ
and the control is given by the feedback law
u(t) = − tr

(
i[σy , ρt ]ρe

)
, the sample paths never exit the set

S<1−γ/2 with a probability uniformly larger than a strictly
positive value. Then, almost all paths that never leave
S<1−γ/2 converge to the equilibrium point ρe.

I Step 4. There is a unique solution ρt under the control u(t)
by piecing together the solutions with fixed controls
u(t) = 1 and u(t) = − tr

(
i[σy , ρt ]ρe

)
.
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K. Tsumura, 2008

Theorem (Tsumura, 2008). Consider the quantum spin−1/2
system evolving in the set S2, then

u(t) = −α tr
(
i[σy , ρt ]ρe

)
+ β(1− tr (ρρe))

globally stabilizes the system evolution of quantum spin−1/2
system around ρe and E(ρt )→ ρe as t →∞ when β2

8αη < 1.

Main ideas of the proof
I ρ = ρe is stable in probability.

I there exists 0 < γ < 1 and almost all sample paths which
never leave the domain S<1−γ converge to ρe.

I for almost all sample paths there exists a finite time T and
after it, they never leave S<1−γ .
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Exponential stabilization of quantum spin-1/2 systems
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Bures distance
The Bures distance 1 between two quantum states ρa and ρb
lying in S2 is given by

dB(ρa, ρb) :=

√
2− 2Tr

(√√
ρbρa
√
ρb

)
which is equal to for the 2-dimensional state space

dB(ρa, ρb) =

√
2− 2

√
Tr(ρaρb) + 2

√
det(ρa) det(ρb).

Also, the Bures distance between a quantum state ρa and a set
E ⊆ S2 is

dB(ρa,E) = min
ρ∈E

dB(ρa, ρ).

Given E ⊂ S2, we define the neighborhood Br (E) of E as

Br (E) = {ρ ∈ S2 : dB(ρ,E) < r}.
1I. Bengtsson, K. Zyczkowski, Cambridge University Press, 2017.
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Stochastic stability2

Definition. Consider the SDE: dρt = f (ρt )dt + g(ρt )dWt .
Equilibrium: ρ̄

I stable in probability for every ε ∈ (0,1) and r > 0
∀ ρt0 ∈ Bδ(ρ̄), there exists a δ = δ(ε, r , t0) s.t.
P {ρt ∈ Br (ρ̄) for t > t0} > 1− ε.

I exponential stable in mean there exists α, β > 0, ∀ ρt0 ∈ S2
s.t. E [dB(ρt , ρ̄)] 6 α dB(ρt0 , ρ̄)e−β(t−t0).

I almost surely exponentially stable ∀ ρt0 ∈ S2
lim supt→∞

1
t log dB(ρt , ρ̄) < 0, a.s.

2H. K. Khalil, 1996 and X. Mao, Elsevier, 2007.
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Itô’s formula

Suppose that the function V (ρ, t) : S × R+ → R+ is
continuously twice differentiable in ρ and once in t . The
infinitesimal generator L associated with
dρt = FN(ρt )dt + GN(ρt )dWt is

L =
∂

∂t
+

∂

∂ρ
FN(ρt ) +

1
2
∂2

∂ρ2 G2
N(ρt )

If L acts on such V (ρ, t) and by Itô’s formula, then

dV (ρ, t) = L V (ρ, t)dt +
∂V (ρ, t)
∂ρ

GN(ρt )dWt .

Hence, dE(V (ρ, t))/dt = E(L V (ρ, t)).
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2-level quantum systems: spin-1
2 systems

The state of 2-level quantum system can be represented by

S2 = {ρ ∈ C2×2 : ρ = ρ∗,Tr(ρ) = 1, ρ > 0}

Bloch sphere coordinates:

ρ =
1 + xσx + yσy + zσz

2
=

1
2

[
1 + z x − iy
x + iy 1− z

]
where σx ,y ,z are the Pauli matrices. The vector (x , y , z)

belongs to the ball,

B(R3) = {(x , y , z) ∈ R3 : x2 + y2 + z2 6 1}

Two orthonormal states of 2-level quantum system:
I Ground state: ρg = |0〉〈0| ←→ (0,0,1) of energy ωg

I Excited state: ρe = |1〉〈1| ←→ (0,0,−1) of energy ωe
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Stochastic master equation

Time evaluation of the quantum state of the quantum spin-1
2

systems under the imperfect continuous measurement is
described by:

dρt =

(
−i
ωeg

2
[σz , ρt ] +

M
4

(σzρtσz − ρt )− i
ut

2
[σy , ρt ]

)
dt

+

√
ηM
2

[σzρt + ρtσz − 2Tr(σzρt )ρt ]dWt

I Wt is the 1-dimensional standard Wiener process.
I ut scalar control input.
I η ∈ [0,1] is determined by the efficiency of the

photo-detectors, and M > 0 is the strength of the
interaction between the light and the atoms, ωeg = ωe − ωg .
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Evolution in Bloch sphere respresentation

dxt =

(
−ωegyt −

Mxt

2
+ utzt

)
dt −

√
ηMxtztdWt

dyt =

(
ωegxt −

Myt

2

)
dt −

√
ηMytztdWt

dzt = −utxtdt +
√
ηM

(
1− z2

t

)
dWt .
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Strook-Varadhan support theorem

Consider the Ito SDE,

dxt = b(xt )dt + σ(xt )dw(t)

and the associated deterministic controlled equation

dxu
t

dt
= b(xu

t )− 1
2
Oσ(xu

t )xu
t + u(t)σ(xu

t )

Consider U the set of all piecewise constant functions from R+

to R and define
Γx = {xu : u ∈ U}

the set of all controlled trajectories starting at x . The set Γx is
the smallest closed set of the continuous trajectories starting at
x such that

P({ω ∈ Ω| x(ω) ∈ Γx}) = 1.
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Never reach lemma

Never reach lemma 1 (without feedback)
Assume that ρt0 /∈ Ē2 with Ē2 := {ρe, ρg} and that ut = 0. Then

P{ρt /∈ Ē2,∀t > t0} = 1

Never reach lemma 2 (with feedback)
Assume that ρt0 6= ρ̄ with ρ̄ ∈ Ē2 and that ut is continuous,
continuously differentiable in S2 \ ρ̄ and |ut | 6 C

√
1− Tr(ρt ρ̄)

for some C ∈ R+. Then

P{ρt 6= ρ̄, ∀t > t0} = 1

Remark. The above lemmas are inspired by analogous results
in 3 4.

3X. Mao, Elsevier, 2007.
4R. Khasminiskii, Springer, 2011.
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2-level quantum state reduction
Theorem (Liang, A., Mason, 2018). When ut = 0 and ρt0 ∈ S2,
the set Ē2 := {ρe, ρg} is exponentially stable in mean and a.s.
exponentially stable with the rate ηM

2 . Moreover, the probability
of convergence to ρ̄ ∈ Ē2 is Tr(ρt0 ρ̄).
Proof:

Step 1:

V (ρt ) =
√

1− Tr2(σzρt )⇒ L V (ρt ) = −ηM
2 V (ρt )⇒

E[V (ρt )] = V (ρt0)e−
ηM
2 (t−t0)

Step 2: C1dB(ρt , Ē2) 6 V (ρt ) 6 C2dB(ρt , Ē2)⇒
E[dB(ρt , Ē2)] 6 C2

C1
dB(ρt0 , Ē2)e−

ηM
2 (t−t0)

⇒ lim supt→∞
1
t log dB(ρt , Ē2) 6 −ηM

2 , a.s.
Step 3:
ρ∞ := Peρe + Pgρg and L Tr(ρt ρ̄) = 0, then Tr(ρt ρ̄) is a
positive martingale, and Pe = E[Tr(ρ∞ρe)] = Tr(ρt0ρe),
Pg = E[Tr(ρ∞ρg)] = Tr(ρt0ρg).
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Numerical simulation
Recall:

dρt =

(
−i
ωeg

2
[σz , ρt ] +

M
4

(σzρtσz − ρt )− i
ut

2
[σy , ρt ]

)
dt

+

√
ηM
2

[σzρt + ρtσz − 2Tr(σzρt )ρt ]dWt

In order to guarantee ρt remains in S2, we rewrite

ρt + dρt =
MdYtρtM∗dYt

+ 1−ηM
4 σzρtσzdt

Tr
(
MdYtρtM∗dYt

+ 1−ηM
4 σzρtσzdt

)
where

MdYt = 1−
[

i
2

(ωegσz + utσy ) +
M
8
1

]
dt +

√
ηM
2

σzdYt

dYt = dWt +
√
ηMTr(σzρt )dt
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Numerical simulation

Figure: Quantum state reduction starting at (0,0,0), when ωeg = 0,
η = 0,3, M = 1. The black curve represents the mean value of the 10
samples, the red curve represents the exponential reference.
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Almost surely global exponential stabilization

Theorem, Liang, A., Mason, 2018. Assume that the feedback
law ut satisfies the condition of Never reach lemma and ut = 0
iff ρt = ρ̄. Suppose that there exists a function V (ρ), which is
continuous on S2 and twice continuously differentiable on the
set S2 \ Ē2, and positive constants C1, C2 and positive function
C(r) such that

(i) C1 dB(ρ, ρ̄) 6 V (ρ) 6 C2 dB(ρ, ρ̄), ∀ ρ ∈ S2 \ Ē2

(ii) L V (ρ) 6 −C(r) V (ρ), ∀ r ∈ (0,
√

2) , ∀ ρ ∈ Br (ρ̄) \ ρ̄.
Then ρ̄ is a.s. exponentially stable.
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Almost surely global exponential stabilization

Proof:
Step 1: ρ̄ is stable in probability;

Step 2: For almost all sample path, there exists T <∞
such that, for all t > T , ρt ∈ Br (ρ̄);

Step 3: ρ̄ is almost surely exponentially stable.
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Other related works

- Liang, A., Mason, On exponential stabilization of N-level
quantum angular momentum systems, Siam journal on Control
and Optimization 2019.

- Liang, A., Mason, Robust feedback stabilization of N-level
quantum spin systems, Siam journal on Control and
Optimization, 2021.

- Liang, A., Mason, Feedback exponential stabilization of GHZ
states of multiqubit systems, IEEE Transactions on Automatic
Control, 2021.

- Liang, A., Model robustness for feedback stabilization of open
quantum systems, Automatica, 2024.

- A., Mason, Ramadan, Feedback stabilization via a quantum
projection filter, Siam journal on Control and Optimization, 2025.
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Part II: Discrete-time generic (non-QND) measurement
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Discrete-time quantum trajectories

State space :

S = {ρ ∈ Cd×d | ρ = ρ∗, ρ ≥ 0, tr (ρ) = 1}

quantum channel:

Φ(X ) =
∑

i

ViXV †i with
∑

i

V †i Vi = Id , Vi ∈ Cd×d

The open quantum system, whose transitions are described by
Φ, is a Markov chain defined by:

ρn+1 =
VinρnV †in

tr
(

VinρnV †in
) with P(in = i) = tr

(
ViρnV †i

)

Here Φ(ρ) =
∑m

i=1 ViρV †i and E(ρn+1|ρn) = Φ(ρn)
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QND measurements

A measurement is Quantum Non Demolition (QND) if there
exists a basis {|α〉 〈α|} of the Hilbert space s.t.

∀i ,
Vi |α〉 〈α|V †i

tr
(

Vi |α〉 〈α|V †i
) = |α〉 〈α| .

−→ The elements |α〉 〈α| are called pointer states.

Example: LKB photon box where |n〉 〈n| are pointer states
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Selection of the pointer state

Theorem 5 6 Suppose that ∀ α 6= β, p(i |α) 6= p(i |β) for some
i ∈ {1, · · · ,m}. Then,

- there exists a random variable Υ (among pointer states)

lim
n→∞

ρn = |Υ〉 〈Υ| .

- P(Υ = α) = tr (|α〉 〈α| ρ0) .

5A., Rouchon, Mirrahimi, 2011.
6Bauer and Bernar, 2011.
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Beyond QND case: invariant subspaces

Recall : S = {ρ ∈ Cd×d | ρ = ρ∗, ρ ≥ 0, tr (ρ) = 1}

Invariant state space: D = S ∩ {Φ(X ) = X |X ∈ B(Cd )}

Decomposition of Cd : into a recurrent subspace
R = sup{supp(ρ)| ρ ∈ D} and a transient subspace T = R⊥
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Decomposition of the Hilbert space

Extreme invariant states: extreme points of the set of fixed
points of Φ, which is a convex set

Baumgartner, Narnhofer, 2012: R =
N⊕

u=1
Hu, where

Hu : support of an extreme invariant state ρu
∞

QND case:

H = R =
⊕̀
α=1

C|eα〉

{|eα〉, α = 1, . . . , `} : set of the pointer states.
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Form of the Kraus operators

QND

Vi =


∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · 0
...

...
...

. . .
...

0 0 0 · · · ∗



General case

Vi =


(*) (0) (0) (∗)
(0) (*) (0) (∗)

(0) (0)
. . . (∗)

(0) (0) (0) (*)
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Identifiability hypothesis

In absence of transient part, the Kraus operators have the form

ID Hypothesis: Let ρu
∞ 6= ρv

∞ be two distinct extreme invariant
states. Then there exists a sequence (i1, ..., il) ∈ {1, ...,m}l s. t.

tr
(

Vil ...Vi1ρ
u
∞V ∗i1 ...V

∗
il

)
6= tr

(
Vil ...Vi1ρ

v
∞V ∗i1 ...V

∗
il

)
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Random selection of a minimal subspace

=⇒ Under ID, quantum trajectories become supported in one of
its minimal invariant subspaces.7

Question: What is the speed of convergence ?

7A., Bompais, Pellegrini, 2021.
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Exponential convergence in mean

Take the operator Mα as the orthogonal projector onto Hα.

Lyapunov function:

W (ρ) =
1
2

∑
α 6=β

√
tr (Mαρ) tr (Mβρ)

Theorem (A., Bompais, Pellegrini, 2024) Under ID hypothesis,
we have

E(W (ρn)) 6 Ce−γn

Key point: ID implies the identifiability of all states supported by
different minimal invariant subspaces (uniform ID)
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I Uniform ID ensures that there exists a length N ∈ N such
that ∀ρ(α) with supp ρ(α) ⊂ Hα, for all ρ(β) with
supp ρ(β) ⊂ Hβ, α 6= β, there exists a word IN ∈ ON such
that Pρ(α)(IN) 6= Pρ(β)(IN).

I Compute the increment:
E[W (ρk+N) | ρk ]

≤ sup
α 6=β

sup
ρ∈Aα,β

∑
I∈ON

√
tr
(

VI ρ̃
(α)
k V †I

)
tr
(

VI ρ̃
(β)
k V †I

)
︸ ︷︷ ︸

κ

W (ρk )

I Uniform ID gives κ < 1.
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Feedback stabilisation of a minimal subspace
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Feedback stabilisation of a minimal subspace
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Stabilization of an invariant subspace

Goal: stabilize the target minimal subspace ᾱ

Lyapunov function:

Z (ρ) = V (ρ) + εR(ρ)

=
√

1− tr (Mᾱρ) + ε
∑
β 6=ᾱ

√
tr (Mβρ)

Take the feedback control

un =

arg min
u∈[−ū,ū]

Z (U(u)ρn+ 1
2
U(u)†) if n = qN − 1, q ∈ N

0 if n 6= qN − 1, q ∈ N

Here ρn+ 1
2

is the intermediate state after measurement
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Stabilization of an invariant subspace

Assumption: Let {|φj〉 , j = 1, . . . ,dᾱ} be an orthonormal basis
of Hᾱ.

Vect{Hk |φj〉 , k = 1, . . . ,d , j = 1, . . . ,dᾱ} ⊃
⊕
β 6=ᾱ
Hβ

A., Bompais, Pellegrini, 2024: there exists ε̄ such that for all
0 < ε < ε̄, there exist C̄ > 0 and γ̄ > 0 (depending on ε) such
that for all n > 0,

E
(
Z (ρn)

)
6 C̄e−γ̄n

In particular, for all n > 0,

E
√

1− tr (Mᾱρn) 6 C̄e−γ̄n
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Proof idea:

S<δ := {ρ ∈ S(H) | tr (Mᾱρ) < δ} for δ > 0. Similar notation
shall be used with >, ≤ and ≥ .

region
function

V (ρ) R(ρ) Z (ρ) = V (ρ) + εR(ρ)

S<δ X X X
S≥δ ∩ S≤1−δ X X X

S>1−δ X X X

Table: Exponential decay of the function every N steps, depending on
the region.
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Conclusion and perspective

- We have shown exponential convergence in mean for
discrete-time quantum trajectories

- We have shown exponential convergence almost surely for
continuous-time quantum trajectories with QND
measurements

- See the work in 8, considering the transient part and
imperfections

- Work in progress for continuous-time quantum trajectories
with generic measurements

- Application of results in stabilization of subspaces in
quantum error correction

- Finding physical examples and implementation

8Benoist, Greggio, Pellegrini, 2024.
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Thank you!
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