Loral cohomoloryy. Cellular approomation 15 May 23 Some references:
Duyer = Greenlees: Complete modules 2 Forsion moduler DG a I: Dually in algcbra a lopology.

- Hovey, Palmier; strickland: Axiomatic stable homotopy theory Benson, I., Krause: Warious reforences
-x
My lectures are intended to Complement thore of Sreenlees \& Krause
(1) Cellular cpprosimatoons:

Throughout R commatative noeth. ring.
Examples: Z, polynomial rings, and quotients thoreq.
R-Complex:

$$
M=\cdots-M_{i+1}, M_{i} \rightarrow M_{i-1}-1,
$$

- Lower gurading.

$$
H(M):=\left\{H_{i}(M)\right\}_{i \in Z}
$$

$D(R):=$ Derived Category of all R-complexes

- Viewed as a miangulated calegory

$$
Z:=\text { Thift/rans/ation }
$$

Desides this $1 / r a c t u r e:$

$$
-\otimes_{R}^{L}-\quad=R \operatorname{Hom}(-,-)
$$

All this makes $D(R)$ a Compartly generatede, symmetric monoidal category
i.e. a Eensor. hiangulated category

- This is the link to homotopy Heory / sticle module theory.
Often mainly inforested is

$$
\begin{aligned}
& D^{b}(\bmod p)=\{M \in R / H(M) \text { f.g. } R \text {-modil }\} \\
& \text { ce. } H_{i}(M) \text { F.g. } \forall i \text { and } \\
& =0 \forall|i|>0 \\
& \operatorname{Hom}_{D}(M, N)=H_{0}(\underset{R}{\operatorname{RHom}}(M, N)
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{Hom}_{D}^{*}(M, N)=H^{*}\left(\operatorname{Hom}_{R}(M, N)\right) \tag{3}
\end{equation*}
$$

FR $\quad X \in D(R)$.

- Lo r $(x):=$ Smallest triangulated kubcalegory of $D(R)$ Containing x and closed under anbitrany Coproduct.
- These are the R - complexes built out of x.

Example: $\quad \operatorname{Lor}(R)=D(R)$

- Just the statement that each Complex has a projective resla.

The X-cellular approximation of $M \in D(R)$ is a Map $\operatorname{Cel} \|_{x} M M \ldots$.
(1) $\operatorname{Cell}_{x} M$ is built ont of x;
(2) The map is an X-equivalence:

$$
\operatorname{Hom}_{D}^{*}\left(x, \operatorname{Cell}_{x} M\right) \stackrel{\operatorname{Hom}_{D}^{*}}{\cong}(x, M)
$$

Equivalently: $\quad \mathrm{Cell}_{x} M \longrightarrow M$

So "C ell M^{M} " is the best approximation to M by object built out of x.
Fact: $\quad X$ - cellular approximations exist and ane unique ipo unique iso.

- Due to Farjoun / N/eerra, depending on who you ask.
Condition 2 equivalent to: $\operatorname{flom}\left(x, L_{x} M\right)=0$ Where $\quad \operatorname{Cell} M \rightarrow M \rightarrow L_{x} M \rightarrow \sum \operatorname{Cel} l_{x} M$.
- Un derscores need to understand whin form $(M, N)=0$.

Example: (1) $R=\mathbb{Z} \quad x=\mathbb{E} / p=\mathbb{E}_{\beta}$
Then $\quad 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}\left[\frac{1}{p}\right] \rightarrow \mathbb{Z}\left[\frac{p}{\square} / \square \rightarrow 0\right.$
gives

$$
\Sigma^{-1} \frac{B\left[p^{-1}\right]}{z} \rightarrow Z \text { is } D(z)
$$

- This is the Ep - cellular approx. of A (justify later)
(2) $R=\mathbb{Z}$ (or any domain)

Q : rationch (field of fractions of R)

$$
\operatorname{Cell} R=\frac{R}{R} \operatorname{Hom}(Q, R)
$$

- A complicated deject.
- Non-tero if $P=B$, or $K(x)$
- Zero if $R=k\langle\mid x\rangle\rangle k$ field.
(II) Lord Cohonology: Fix $V \leqslant$ Spec R closed, or even just spelid-zclion closed.
For any $M \in R$ Mod tet

$$
\Gamma_{V} M=\operatorname{Kor}\left(M \rightarrow \prod_{p_{q}} M_{p}\right)
$$

- fections supported on M.

Say $V=V(I) \quad I \leq R$ ideal. Then

$$
\Gamma_{V} M=\bigcup_{n \geqslant 0}\left(0: I_{n}^{n}\right)=\bigcup_{n \geqslant 0} \operatorname{Hom}_{R}\left(R I_{n}, M\right)
$$

For any $M \in D(R)$ iyective resoluton

$$
R_{L} M:=P_{V}(i M)
$$

I app led component. Wiss.
$R P_{V}(M)=P_{L}(i M) \longleftrightarrow i M \simeq M$ to we get

$$
R P_{L_{1}}(M) \longrightarrow M
$$

the lord cohomalesy of M repported on V.

$$
\operatorname{Say} x \in D^{b}(\bmod R)
$$

$$
\operatorname{Sopp}_{R} x:=\left\{\rho \in \operatorname{Sece} R / H(x)_{p} \neq 0\right\}
$$

- Clood rublet of Spar R

$$
=V\left(\operatorname{ann}_{R} H(R)\right)
$$

Fact: Wik $V=\operatorname{lop}_{p} x$, for any $M \in D(R)$ $R P_{L} M \rightarrow M$ is the X. cellular approx. of 11 .

- So cellxM anly dependo an 碃px. This holdo
in general.
Various methods exist $/ \frac{\circ}{o}$ compute RPM:
Say $V=V(I) \quad I=\left(r_{1}, \ldots, r_{1}\right)$
Set $K_{\infty}(\underline{v})=\otimes\left[0 \rightarrow R \rightarrow R\left[\frac{1}{r_{i}}\right] \rightarrow 0\right]$
triable Kostul (x. or "Extended' Lech $C x$.

$$
0 \rightarrow R \rightarrow \oplus R\left(\frac{1}{r_{c}}\right] \rightarrow \oplus R\left(\frac{1}{r_{i} r_{j}}\right] \rightarrow \cdots R\left(\frac{1}{r_{1}-r_{i}} \cdot\right)
$$

1 degree 0
One has $K^{\infty}(\underline{r}) \rightarrow R \quad$ (project onto degree 0)
This indules.

$$
\begin{aligned}
& K(\Sigma) \otimes M \rightarrow M \\
& R_{L} M
\end{aligned}
$$

Requires

Example: $\quad R \Gamma Z=0 \rightarrow Z \rightarrow \mathbb{(p)}\left[\frac{1}{p}\right) \rightarrow 0$

$$
\simeq \quad \Sigma^{-1} \pi\left(p^{-1}\right) / q
$$

- This explains the earlier Computation.
(III) Now suppose X is perfect:

$$
x_{\bar{\prime}}=0 \rightarrow p_{b} \rightarrow \cdots \rightarrow p_{a} \rightarrow 0
$$

Maybe only each P_{i} a Fig. projective R. module. up to iso.

$$
\operatorname{Set} E:=\operatorname{End}_{R}(x)=\operatorname{Hon}_{R}(x, x)
$$

Viewed as $a^{\prime} d y \quad c=$ differential algebra. graded)

- product $=$ Composition of maps
- usual different $\left[-d\right.$: $\left[2^{x},-\right]$
$D\left(E^{-\infty}\right):=$ Derived Calfegary of right dg E modules.
Note: X is a left E module, and this is Compatible with P-action:
$R \rightarrow E \quad \operatorname{map}$ of $d g$ algebras
In partalar, for any $N \in D\left(E^{\sigma}\right)$

$$
N \otimes_{E}^{l} x \in D(R)
$$

Also $\quad R \operatorname{Hom}_{R}\left(X_{,}\right): D(R) \rightarrow D\left(F^{(\infty)}\right)$

One has an adjoint pair:

One has a natural map:
$\forall M \in D(R)$
When X is perfect, this is the X-cellular a pprosamaton of M.

Sketch of proof: Since $\operatorname{RHom}(x, M) \in \operatorname{Los}(\epsilon)$ (projective vests exit)
 Always enos ${ }^{R}=T(1)$

$$
R \operatorname{Hom}_{R}(X, M) \otimes \operatorname{RHom}_{R}(x, X)
$$

When X is perfect. Q is an iso. in $D(R)$.
Thus (2) is also an iso.
One get another model for RPM $V=\operatorname{Kip}_{2} x$.

Then $E=\operatorname{Cnd}_{R}(x)$, basic $\left(c l l y M_{2}(z)\right.$

$$
R \operatorname{Hom}_{R}(b / p, z) \simeq \Sigma^{-1} \pi / p z .
$$

This is tome what surprising be cause.

$$
H^{*}(E)=E p_{2}[\eta) \quad|\eta|=1 \quad \text { (oppes) }
$$

Exterior algebus / E/pa.
So p. $H^{x}(E)=0$.
However, p. $\underbrace{H^{*}\left(z / p_{b} e_{\varepsilon}^{e} b / p_{0}\right)}_{\operatorname{Tor}^{e}\left(k / p_{0}, b / p_{2}\right)} \neq 0$
Point is $p: \quad \pi_{p_{B}} \longrightarrow b / p_{3}$ is 0 in $D(z)$
but not in $D(E)$.
Proxy. Imallnen:

