Neutrinos in cosmology

Yvonne Y. Y. Wong, UNSW Sydney

Understanding the Universe through Neutrinos, ICTS-TIFR Bengaluru, April 22 – May 3, 2024

Or, how neutrinos fit into this grand scheme?

The grand lecture plan...

Part 1: Neutrinos in homogeneous cosmology

- 1. The homogeneous and isotropic universe
- 2. The hot universe and the cosmic neutrino background
- 3. Precision $C\nu B$

Part 2: Neutrinos in inhomogeneous cosmology

- 1. Theory of inhomogeneities
- 2. Neutrinos and structure formation
- 3. Relativistic neutrino free-streaming and non-standard interactions

Useful references...

Textbook

• J. Lesgourgues, G. Mangano, G. Miele & S. Pastor, *Neutrino cosmology*

Lecture notes

- Baumann, Cosmology (many different versions)
- Seljak, Lectures on dark matter, ICTP Lect. Notes Ser. 4 (2001) 33
- Hu, Covariant linear perturbation formalism

Reviews

- A. D. Dolgov, Neutrinos in cosmology, Phys. Rept. 370 (2002) 333 [hep-ph/0202122]
- J. Lesgourgues & S. Pastor, *Massive neutrinos and cosmology*, Phys. Rept. **429** 307 [astro-ph/0603494]

Part 1: Neutrinos in homogeneous cosmology

- 1. The homogeneous and isotropic universe
- 2. The hot universe and the cosmic neutrino background
- 3. Precision $C\nu B$

1. The homogeneous and isotropic universe...

The concordance flat ACDM model...

The simplest model consistent with present observations.

Composition today

Plus flat spatial geometry+initial conditions from single-field inflation

FLRW = Friedmann-Lemaître-Robertson-Walker

Cosmological principle: our universe is spatially homogeneous and isotropic on sufficiently large length scales (i.e., we are not special).

- Homogeneous → same everywhere
- Isotropic → same in all directions
- Sufficiently large scales $\rightarrow > O(100)Mpc$

FLRW universe...

Cosmological principle: our universe is spatially homogeneous and isotropic on sufficiently large length scales (i.e., we are not special).

- Homogeneous → same everywhere
- Isotropic → same in all directions
- Sufficiently large scales $\rightarrow > O(100)Mpc$
- 1 pc = 1 parsec = 3.0856×10^{18} cm
 - Distance from Sun to Galactic centre $\sim 10 \; \rm kpc$
 - Distance to the Virgo cluster $\sim 20~Mpc$
 - Size of the visible universe $\sim O(10 \text{ Gpc})$

Evidence for large-scale homogeneity and isotropy:

Local galaxy distribution as measured by the 2Mass Redshift Survey

Evidence for large-scale homogeneity and isotropy:

Cosmic microwave background (temperature)

State-of-the-art: Temperature and polarisation fluctuations in the cosmic microwave background as seen by Planck. (Latest results 2018)

Polarisation

FLRW universe...

Homogeneity and isotropy imply maximally symmetric 3-spaces (3 translational and 3 rotational symmetries).

• A spacetime geometry that satisfies these requirements is the Friedmann-Lemaître-Robertson Walker (FLRW) geometry:

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta \ d\phi^{2}) \right]$$
 FLRW metric

$$a(t) = \text{scale factor}$$
Spatial geometry

$$K = -1 \text{ (hyperbolic), 0 (flat), +1 (spherical)}$$

• $\frac{a(t_2)}{a(t_1)}$ = factor by which a physical length scale increases between time t_1 and t_2 .

An observer at rest with the FLRW spatial coordinates is a **comoving observer**.

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

→ The **physical distance** between two comoving observers increases with time, but the coordinate distance between them remains unchanged.

Geodesics...

In the **absence of other forces**, test particles move on the **geodesics** of a spacetime geometry, i.e., the "straight lines" of a curved spacetime.

• It's like flight paths, which follow (more or less) the geodesics on the surface of the Earth.

Geodesics and cosmological redshift...

All test particles (massive or massless) moving on geodesics of an FLRW universe suffer cosmological redshift of its momentum:

 A particle emitted at a very early time t when the scale factor a was very small would be observed today with a very large redshift z

\rightarrow There is a one-to-one correspondence between t, a, and z:

 \rightarrow We use them interchangeably as a measure of time.

Matter/energy content (stuff in the universe).

In GR, the stress-energy tensor $T_{\mu\nu}$ encodes the matter/energy content.

Matter/energy content (stuff in the universe).

In GR, the stress-energy tensor $T_{\mu\nu}$ encodes the matter/energy content.

• Homogeneity and isotropy imply **only one viable form**:

ρ(*t*) and *P*(*t*) can depend on time, but **not** on the spatial coordinates.
 → How do they evolve with time?

Matter/energy content: conservation law...

Local conservation of energy-momentum in an FLRW universe implies:

Energy density $\frac{d\rho_{\alpha}}{dt} + 3\frac{\dot{a}}{a}(\rho_{\alpha} + P_{\alpha}) = 0$ Pressure
Continuity equation
(from $\nabla_{\mu}T^{\mu\nu}_{(\alpha)} = 0$)

- There is one such continuity equation for each substance α.
- We need in addition to specify a relation between $\rho(t)$ and P(t), i.e., the equation of state of the substance α , which is a property of the substance.
 - It's common to use an equation of state parameter w: $w_{\alpha}(t) \equiv \frac{P_{\alpha}(t)}{\rho_{\alpha}(t)}$
 - Assuming a constant w: $\rho_{\alpha}(t) \propto a^{-3(1+w_{\alpha})}$

How energy density evolves with the scale factor.

Matter/energy content: what's there?

Non-relativistic matter

- Atoms (or constituents thereof)
- Dark matter (does not emit light but feels gravity); GR people call it "dust"
- Ultra-relativistic radiation
 - Photons (main the CMB)
 - Relic neutrinos (at early times at least)
 - Gravitational waves
- Other funny things
 - Cosmological constant/vacuum energy
 - ??

$$w_m \simeq 0$$

 $\Rightarrow \rho_m \propto a^{-3}$

 $\rho_{\alpha}(t) \propto a^{-3(1+w_{\alpha})}$

Volume expansion

 $w_r = 1/3$ $\Rightarrow \rho_r \propto a^{-4}$

Volume expansion + momentum redshift

 $w_{\Lambda} = -1$ More space, $\Rightarrow \rho_{\Lambda} \propto \text{constant}$ more energy

Different evolution for different forms of energy densities means that radiation dominated in the early universe, while dark energy was unimportant.

Friedmann equation...

The Friedmann equation describes the evolution of the scale factor a(t).

• The Friedman equation is itself derived from Einstein's equation:

$$\begin{array}{c} R = \text{Ricci scalar and tensor} \\ \text{(nonlinear functions of the} \\ 2^{\text{nd}} \text{ derivative of the} \end{array} \rightarrow R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu} \\ \text{Stress-energy tensor} \\ \text{spacetime metric} \end{array}$$

Friedmann equation...

You may also have seen the Friedmann equation in this form:

$$H^2(t) = H^2(t_0)[\Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_\Lambda + \Omega_K a^{-2}]$$

Present-day
reduced energy
$$\Omega_{\alpha} = \frac{\bar{\rho}_{\alpha}(t_0)}{\rho_{\text{crit}}(t_0)}, \qquad \rho_{\text{crit}}(t) \equiv \frac{3H^2(t)}{8\pi G}, \qquad \Omega_K \equiv -\frac{K}{H^2(t_0)}$$

density Critical density

• A flat universe means

$$\Omega_K = 0 \qquad \longrightarrow \qquad \Omega_m + \Omega_r + \Omega_\Lambda \simeq \Omega_m + \Omega_\Lambda = 1$$

From measuring the CMB temperature a and energy spectrum:

 $\Omega_r \sim 10^{-5}$

Radiation energy density is negligibly small today:

Friedmann equation...

You may also have seen the Friedmann equation in this form:

$$H^{2}(t) = H^{2}(t_{0})[\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{\Lambda} + \Omega_{K}a^{-2}]$$

Present-day
reduced energy
$$\Omega_{\alpha} = \frac{\bar{\rho}_{\alpha}(t_0)}{\rho_{\text{crit}}(t_0)}, \qquad \rho_{\text{crit}}(t) \equiv \frac{3H^2(t)}{8\pi G}, \qquad \Omega_K \equiv -\frac{K}{H^2(t_0)}$$

density Critical density

• From current observations:

$$\begin{split} \Omega_m &\sim 0.3, \qquad \Omega_\Lambda \sim 0.7, \qquad |\Omega_K| < 0.01 \\ H_0 &\equiv H(t_0) \sim 70 \ \mathrm{km s^{-1} Mpc^{-1}} \end{split} \qquad \text{e.g., Aghanim et al.} \\ \end{split}$$

Friedmann equation: accelerated expansion...

Yet another form of the Friedmann equation:

Obtained by combining the usual Friedmann equation for H(t) and the continuity equation.

Acceleration of
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{\alpha} (\rho_{\alpha} + 3P_{\alpha})$$

the scale factor

Compare with

$$H^{2}(t) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \sum_{\alpha} \rho_{\alpha} - \frac{K}{a^{2}}$$

• Accelerated or decelerated expansion happens when:

2. The hot universe and the cosmic neutrino background...

The hot universe...

The early universe was a **very hot and dense place**.

- Particle interactions (e.g., scattering) can happen very frequently.
- What interactions are available depends on the particle physics theory.
- But if an interaction rate (per particle) far exceeds the Hubble expansion rate,

$\Gamma_{\rm int} \gg H$

the interaction can be taken to be in a **state of equilibrium**.

Classic example: weak interaction...

Say you have a gas of ultra-relativistic particles with temperature T.

• The Weak interaction rate per particle is estimated to be

$$\Gamma_{\text{int}} = n \langle \sigma v \rangle \sim G_F^2 T^5$$
Fermi constant

Number density

of scattering

centres $n \sim T^3$
Fermi constant

Relative velocity $v \sim 1$

Cross-section $\sigma \sim G_F^2 T^2$

• The Hubble expansion rate is

$$H = \sqrt{\frac{8\pi G}{3} \sum_{\alpha} \rho_{\alpha}} \sim \frac{T^2}{m_{\text{planck}}}$$
Planck mass

 $m_{\rm pl} \sim 10^{19} \, {\rm GeV}$ Ratio increases with temperature $\frac{\Gamma_{\rm int}}{H} \sim m_{\rm planck} G_F^2 T^3 \sim \left(\frac{T}{1 \, {\rm MeV}}\right)^3$ Weak interactions are in equilibrium at $T \gg 1 \, {\rm MeV}$.

 $G_F \sim 10^{-5} \, {\rm GeV^{-2}}$

Equilibrium thermodynamics...

In the ideal gas limit, when an interaction is in equilibrium, all participating particles have phase space distributions described by one of the equilibrium forms:

$$f(p) = \text{Phase space} \qquad f_{eq}(p) = \frac{1}{\exp[(E(p) - \mu)/T] \pm 1} + \text{Fermi-Dirac} - \text{Bose-Einstein}$$

$$\mu = \text{Chemical potential} \quad T = \text{Temperature}$$

- All participating particles in that interaction have the same temperature T.
- Their chemical potentials satisfy $\sum_{\text{initial}} \mu_i = \sum_{\text{final}} \mu_i$.
- In standard cosmology μ is generally related to the $\sim 10^{-10}$ matterantimatter asymmetry; for most applications, it suffices to set $\mu = 0$.

Equilibrium thermodynamics...

Given its phase space distribution f(p), it is straightforward to find a particle species' bulk properties:

Number density:

$$n_{\alpha} = \frac{g_{\alpha}}{(2\pi)^{3}} \int d^{3} p f_{\alpha}(\vec{p})$$
Internal d.o.f.
Energy density:

$$\rho_{\alpha} = \frac{g_{\alpha}}{(2\pi)^{3}} \int d^{3} p E f_{\alpha}(\vec{p})$$

$$\neg T^{4}$$
Ultra-relativistic $T \gg m$

$$\neg m(mT)^{3/2} e^{-m/T}$$
Non-relativistic
$$T \ll m$$
The energy density of a non-relativistic
particle species is highly suppressed!
• We can therefore express the
Hubble expansion rate in the
early universe as:

$$H^{2}(t) = \frac{8\pi G}{3} \sum_{\alpha} \rho_{\alpha} \equiv \frac{8\pi G}{3} \frac{\pi^{2}}{30} \frac{g_{*}(T_{\gamma})}{f_{\gamma}} P^{4}$$
Photon
temperature
$$g_{*}$$
 is a temperature-dependent function, dominated by
relativistic species, specific to a particle physics theory.

g_* of the standard model of particle physics:

Cosmic neutrino background ...

The CvB is formed when neutrinos decouple from the cosmic plasma.

 e^+ v e^+ v e^+ v

Neutrinos "free-stream" to infinity.

 $(T_{\odot \text{core}} \sim 1 \text{ keV})$

Above $T \sim 1$ MeV, even weakly-interacting neutrinos can be produced, scatter off e^+e^- and other neutrinos, and attain thermodynamic equilibrium

Below $T \sim 1$ MeV, expansion dilutes plasma, and reduces interaction rate: the universe becomes transparent to neutrinos.

Particle content at 0.1 < T < 10 MeV...

The particle content and interactions at 0.1 < T < 10 MeV determine the properties of the CvB.

• **QED** plasma: e^{\pm} , γ

 $e^+e^- \leftrightarrow \gamma\gamma$

 $e^+e^- \leftrightarrow e^+e^-$

 $e^{\pm}e^{\mp} \leftrightarrow e^{\pm}e^{\mp}$

 $e^{\pm}e^{\pm} \leftrightarrow e^{\pm}e^{\pm}$

 $\gamma e^{\pm} \leftrightarrow \gamma e^{\pm}$

EM interactions (always in equilibrium @ 0.1 < T < 10 MeV):

• 3 families of
$$v + \overline{v}$$
: $v_{\mu}, \overline{v}_{\mu}, \overline{v}_{\mu}, v_{\tau}, \overline{v}_{\tau}$

Weak interactions (in equilibrium @ T > O(1)MeV):

$$\begin{array}{l}
\nu_{\alpha}\nu_{\beta} \leftrightarrow \nu_{\alpha}\nu_{\beta} \\
\nu_{\alpha}\bar{\nu}_{\beta} \leftrightarrow \nu_{\alpha}\bar{\nu}_{\beta} & \alpha, \beta = e, \mu, \tau \\
\bar{\nu}_{\alpha}\bar{\nu}_{\beta} \leftrightarrow \bar{\nu}_{\alpha}\bar{\nu}_{\beta}
\end{array}$$

Weak interactions (in equilibrium @ T > O(1)MeV)

Coupled @ T > O(1)MeV

 $\nu_{\alpha}e^{\pm} \leftrightarrow \nu_{\alpha}e^{\pm}$

 $\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$

Particle content at 0.1 < T < 10 MeV...

The particle content and interactions at 0.1 < T < 10 MeV determine the properties of the CvB.

• **QED** plasma: e^{\pm} , γ

EM interactions (always in equilibrium @ 0.1 < T < 10 MeV):

• 3 families of
$$\boldsymbol{\nu} + \overline{\boldsymbol{\nu}}$$
: $\begin{array}{c} \nu_e, \overline{\nu}_e, \\ \nu_\mu, \overline{\nu}_\mu, \\ \nu_\tau, \overline{\nu}_\tau \end{array}$

Weak interactions (**not** in equilibrium @ $T \ll O(1)$ MeV):

Events

			Time
A Photon temperature T_{γ}	1 MeV	$m_e = 0.5 \; { m MeV}$	
Neutrino temperature			
Phase space distribution			

g_* of the standard model of particle physics:

Comoving entropy density & conservation...

Where expansion is **quasi-static** so that equilibrium is maintained, the comoving entropy density *S* is approximately conserved.

Time

Time

Evolution of the $C\nu B...$

At formation $(T \sim O(1) MeV \gg m_{\nu})$, the **CvB phase space distribution** is well described by the relativistic Fermi-Dirac distribution:

$$f_{\nu}(p) \approx \frac{1}{\exp[p/T_{\nu}] + 1} \qquad \text{with } T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$$

$$\Rightarrow T_{\nu,0} = 1.95 \text{ K} = 1.7 \times 10^{-4} \text{ eV}$$
Present-day temperature

- Since the CvB do not scatter anymore, only the following can happen:
 - Temperature redshift: $T_{\nu} \propto a^{-1}$
 - Momentum redshift: $p \propto a^{-1}$

 $\rightarrow f_{\nu}(p)$ must always take the same relativistic FD form, even after the CvB has become NR with redshift (a consequence of Liouville's theorem).

→ The comoving number density remains constant: $n_{\nu_{\alpha},0} = \frac{6}{4} \frac{\zeta(3)}{\pi^2} T_{\nu,0}^3 = 112 \text{ cm}^{-3}$

Evolution of the $C\nu B...$

But the CvB energy density depends on kinematics, scaling as $\rho \propto a^{-4}$ when the neutrinos are relativistic, and like $\rho \propto a^{-3}$ when NR.

Summary of the $C\nu B...$

Standard hot big bang predicts a cosmic neutrino background with the properties:

• **Temperature**:
$$T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\text{CMB},0} = 1.95 \text{ K} = 1.7 \times 10^{-4} \text{ eV}$$

- Present-day number density per family: $n_{\nu,0} = \frac{6}{4} \frac{\zeta(3)}{\pi^2} T_{\nu,0}^3 = 112 \text{ cm}^{-3}$
- Energy density:
 - If neutrinos are relativistic:

$$\rho_{\nu_{\alpha}} = \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} \rho_{\gamma}$$

 $\Omega_{\nu,0} = \sum \frac{m_{\nu}}{94 \ h^2 \text{eV}} \quad \begin{array}{l} \text{Present-day reduced} \\ \text{energy density} \end{array}$