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① Introduction

End-of-the-world brane (EOW brane)

EOW brane
(Boundary of 
Spacetime)

Bulk Spacetime
“Our World”

Gravity

Recently, EOW branes play crucial roles in holography.  

This is much like how D-branes are important in string theory. 



① Introduction

End-of-the-world brane (EOW brane)

EOW brane
(Boundary of 
Spacetime)

Gravity

Quantum system with a boundary
(via Holography)  e.g. BCFT



Examples of Applications of  EOW branes in holography

[1] Quantum systems with boundaries

(Boundary conformal field theory: BCFT)

[2] Black hole information problem 

(AdS/BCFT + brane-world)

[3] Non-equilibrium dynamics

(Quantum quenches,….

Entanglement Transition) 

Quantum 
System

B
o
un

da
ry

Anti de Sitter space

EOW brane

Time

Localized Gravity 
on EOW brane 

[Randall-Sundrum 1999]

Quantum 
System

Lorentzian Time

Euclidean Time

[Calabrese-Cardy 2005, Hartman-Maldacena 2013]



This talk is mainly based on

PRL133 (2024) 031501 [arXiv:2403.19934] (g-theorem from SSA) 

with Jonathan Harper, Hiroki Kanda and Kenya Tasuki (YITP, Kyoto)

We will also mention

JHEP 03 (2023) 105 [arXiv: 2302.03895]     (AdS/BCFT with localized scalar)

JHEP 03 (2024) 060 [arXiv:2311.13201]      (Hol. entanglement transition)

with Hiroki Kanda, Taishi Kawamoto, Masahide Sato, Yu-ki Suzuki, 

Kenya Tasuki (YITP, Kyoto) and Zixia Wei (Harvard).
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AdS/CFT AdS/BCFT

Bulk AdSd+1

d+1 dim. 
Gravity
on AdS

d dim. 
CFT

on Rd
=

Q
NM

Boundary

∂M

d+1 dim. 
Gravity
with EOW

d dim. 
BCFT
on M

=

Bulk AdSd+1

End-of-the-world 
brane (EOW brane)

② Overview of AdS/BCFT



The gravity action in Euclidean signature looks like

The coordinate of Q and its induced metric are        and         . 

We define the extrinsic curvature and its trace

(      is a unit vector normal to Q.)

e.g.   Gaussian normal coordinate:
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Variation:

At the AdS boundary M,  we impose the Dirichlet boundary 

condition                  following the standard AdS/CFT argument.

On the other hand, at the new boundary Q,  we argue to require

the Neumann b.c. :

`boundary Einstein eq.’

Why Neumann b.c. (brane-world type) ? 

(1) Keep the boundary dynamical.  New data at Q should not be required. 

(2) Orientifolds in string theory lead to this condition.

In general, this AdS/BCFT description is a hard wall approximation.
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AdS/BCFT construction [TT 2011, See also Karch-Randall 2001] 

Q

NM

z

AdS boundary
: End of the world (EOW) brane

0=−− Q

ababab TKhK
∂M

Gravity on an asymptotically 
AdS space N, s.t. ∂N=M∪Q =

ab

ab

baab KhKnK ==    ,

Extrinsic curvature:

We impose Neumann b.c.:

CFT on a manifold M 

with a boundary ∂M 

  

Depend on types of EOW brane.



BCFT (Boundary Conformal Field Theory)

For special boundary conditions, a part of conformal symmetries 

are preserved, called the boundary conformal field theory (BCFT).         

[Cardy 1984, .., McAvity-Osborn 1995, …  ;   Cond-mat application: Kondo effect]

d dim CFT   :  SO(2,d)            

           Ｕ                             

d dim. BCFT:  SO(2,d-1)                
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Holographic Dual of BCFT

To preserve the BCFT symmetry, we choose 

(T is the tension of Q). 

The Neumann b.c. looks like                                .         

Example: Dual of  BCFT on a half space 
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Double Holography

CFTd

M

Bdy
M

Q=
AdS/BCFT

AdSd+1

Brane-world 
holography

CFTd

M

Gravity d

Q

“AdSd/CFTd-1”

[Karch-Randall 2000] 

Localized Gravity 
on EOW brane 



Wedge Holography

d+1 dim. Classical Gravity 
on the wedge Wd+1

d dim. Quantum Gravity 
on EOW branes Q1∪Q2

d-1 dim. CFT on ∑

=

Codimension Two 
Holography !

=

[Akal-Kusuki-Wei-TT 2020, Bousso-Wildenhain 2020]

M
Q2Q1

AdSd+1

Σ
Q2

Wd+1

Q1

Zero width limit



A

B
Gravity

(AdS)=

For static states in CFTs, SA is computed 
from the minimal area surface ΓA:

CFT 
on bdy

𝑺𝑨 = 𝐦𝐢𝐧
𝐀𝐫𝐞𝐚(Γ𝑨)

𝟒𝑮𝑵Γ𝑨

𝚪𝐀

Note: ∂ΓA=∂A  and 

ΓA is homologous to A. 

Holographic Entanglement Entropy (HEE)

For time-dependent states in CFTs,

SA is found from the extremal surface area:

𝜌𝐴 𝑡 = Tr𝐵[| ۧΨ(𝑡) Ψۦ 𝑡 |] 𝑆𝐴 𝑡

𝑆𝐴 𝑡 = MinΓ𝐴
ExtΓ𝐴

𝐴(Γ𝐴)

4𝐺𝑁
[Hubeny-Rangamani-TT 07]

[Ryu-TT 2006]



Differences between two “subregion/subregion duality”

ΓA
MAA

[2] AdS/BCFT

⇒ Q is totally geodesic surface       
or it generalizations.

⇒  Surface Q back-reacts ! 
Q

NM

[1] Entanglement Wedge

⇒ ΓA is extremal surface.
(no back-reactions) 

In this talk, we will see interesting interplay between them.



Holographic Entanglement Entropy in AdS/BCFT

𝑺𝑨 = 𝐌𝐢𝐧 𝐄𝐱𝐭
𝐀𝐫𝐞𝐚(Γ𝑨)

𝟒𝑮𝑵Γ𝑨, 𝑩
𝜕Γ𝑨 = 𝝏𝑨 ∪ 𝝏𝑩

=
AdS/BCFT

CFTd

M

BdyA
M

Q

AdSd+1
Γ𝑨

This region B  is now known as an Island !

[TT 2011, Fujita-Tonni-TT 2011]

Extremal Surfaces 
can end on Q !

𝐈𝐬𝐥𝐚𝐧𝐝 𝐟𝐨𝐫𝐦𝐮𝐥𝐚: 𝑺𝑨 = 𝐌𝐢𝐧
𝐀𝐫𝐞𝐚(Σ)

𝟒𝑮𝑵
+ 𝑺𝑨∪Σ



HEE in AdS3/BCFT2

The holographic EE is obtained as

cf.  CFT Result
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③ New Entropic g-theorem

(3-1) Entropic c-theorem

Entanglement entropy 

➔ a measure of degrees of freedom in quantum systems

C-theorem in 2d CFT

The central charge c monotonically decreases under the RG flow.

.log
3

          CFTs, ldimensiona In two


lc
SA =

[Zamolodchikov1986]

Central charge ~ # of fields

Quantum information gives an entropic proof of c-theorem!
[Casini-Huerta 2004]



Strong subadditivity (SSA) [Lieb-Ruskai 1973]

• The most fundamental inequality of EE.

• Analogous to 2nd law of thermodynamics.

• SSA follows from monotonicity of relative entropy.

B AC

𝑆𝐴𝐵 + 𝑆𝐵𝐶 ≥  𝑆𝐴𝐵𝐶 + 𝑆𝐵 

𝐻𝑡𝑜𝑡 = 𝐻𝐴 ⊗ 𝐻𝐵 ⊗ 𝐻𝐶 ⊗ 𝐻𝑜𝑡ℎ𝑒𝑟

𝑆𝐴𝐵 ≡ 𝑆𝐴∪𝐵

𝑆 𝜌𝐴𝐵𝐶|𝜌𝐴 ⊗ 𝜌𝐵𝐶 ≧ 𝑆 𝜌𝐴𝐵|𝜌𝐴 ⊗ 𝜌𝐵 ֞ 𝐒𝐒𝐀

𝑆 𝜌|𝜎 = Tr[𝜌(log𝜌 − log𝜎)]

Tracing out C



Entropic c-theorem [Casini-Huerta 2004]

We rewrite SSA as:

We apply SSA to a 1+1 dim relativistic field theory vacuum.

𝑆𝐴 + 𝑆𝐵 ≥  𝑆𝐴∪𝐵 + 𝑆𝐴∩𝐵 

A∪B

A∩B

A B

t

x

|A|=Lorentz invariant length

Important geometric relation:
|A|・|B|=|A∪B|・|A∩B|

Lorentz inv. and translational invariant
(→subsystem can be boosted)



By introducing                                                       ,

we obtain                              .

Then the SSA

leads to 

|A∪B| =𝑒𝑥 and |A∩B| =𝑒𝑦

|A| =|B|=𝑒
𝑥+𝑦

2

𝑆𝐴 + 𝑆𝐵 ≥  𝑆𝐴∪𝐵 + 𝑆𝐴∩𝐵 

2𝑆
𝑥 + 𝑦

2
≥ 𝑆(𝑥) + 𝑆(𝑦). Concave

𝑆′′ 𝑥 ≤ 0.

Here we introduced entropic c-function: C 𝑥 = 3𝑆′ 𝑥

Entropic c-theorem: C′ 𝑥 ≤ 0

For 2d CFT, we have

𝑆𝐴 =
𝑐

3
log

𝑒𝑥

𝜀



Def 2 (Cylinder Amplitude)

Def 3 (Entanglement Entropy)

In 2d BCFT, the EE behaves like

[Calabrese-Cardy 2004]
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Def 1 (Disk Amplitude)

.0       , log)(  BggSbdy = Disk

α

Definitions of g-function (boundary Entropy) [Affleck-Ludwig 1991]

(3-2) g-theorem



g-theorem

  g-function = (UV regularized) disk partition function

boundary RG flow:

Known proofs of g-th

(i) Field theoretic proof

(ii) QI proof using relative entropy

(iii) Proof from symmetry argument 

g-function (boundary entropy) monotonically 
decreases under boundary RG flow.

න 𝑑𝑡 𝑂(𝑡, 𝑥 = 0)

[Affleck-Ludwig 1991]

[Friedan-Konechny 2003]

[Casini-Landea-Torroba 2016,2022]

We will give the simplest direct proof of g-th from SSA  
which give a more geometric insight !

[Cuomo-Komargodski-Raviv-Moshe 2021]

[Harper-Kanda-Tasuki-TT 2024] 



BCFT
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A B
𝑆𝐴 =

𝑐

6
log

2𝐿

𝜀
+ log g

[Calabrese-Cardy 2004]

(3-3) EE in 2d BCFT and  g-function 

For BCFTs (conformal b.c.), 
the replica method calculation leads to 

A constant fixed by 
its bdy condition

When the bdy breaks conformal invariance, though the bulk is CFT,  
the bdy entropy log g depends on the size of A, i.e. |A|=L.

Below, we will show log g monotonically decreases as a function of L.

𝑳



A few useful properties 

A
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X

A’
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𝑆𝐴′ = 𝑆𝐴

(i) Due to the complete reflection 
at the boundary, we find

(ii) In general, EE non-trivially 
depends on the two end points:

However,  when A gets closer to light-like,

We simply call this                        . 𝑆𝑑𝑖𝑠(𝐿)

t

x
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(x2,t2)
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X

ｔ
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(2s-w,w)

(u,u)

(s,s)

(2s-v,v)

X=0

(3-4) Proving entropic g-theorem from SSA

We consider the following setup of SSA:

𝑆𝐴∪𝐵 = 𝑆𝑑𝑖𝑠 2𝑠 − 𝑤 ,    𝑆𝐴= 𝑆𝑑𝑖𝑠 2𝑠 − 𝑣 , 
𝑆𝐴∩𝐵 = 𝑆 𝑢, 𝑢; 2𝑠 − 𝑣, 𝑣 , 𝑆𝐵 = 𝑆 𝑢, 𝑢; 2𝑠 − 𝑤, 𝑤

0 < 𝑢 < 𝑠,
w < v < s



Now we take the limit u→s, where A∩B and B become light-like.
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By taking the limit v→w,   the SSA inequality ΔS≧0  leads to

Since L and s are arbitrary,  we can choose L>>s, which leads to

By introducing the entropic g-function as

we are now able to derive the entropic g-theorem:

(𝐿 ≡ 2𝑠 − 𝑤).
𝑑𝑆𝑑𝑖𝑠(𝐿)

𝑑𝐿
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𝑐

6
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(3-5) Entropic g-theorem for Interface CFTs

Consider a 2d CFT on a plane with a defect line at x=0.

Its EE looks like

Again we can derive the entropic g-theorem from the SSA, 
by doubling the setup:

𝑆𝐴 =
𝑐

3
log

𝐿

𝜀
+ log g(L) .

𝐿
𝑑

𝑑𝐿
log 𝑔 𝐿 ≤ 0.

𝐴 = 𝐴1 ∩ 𝐴2, 𝐵 = 𝐵1 ∩ 𝐵2

𝑆𝐴 + 𝑆𝐵 ≥  𝑆𝐴∪𝐵 + 𝑆𝐴∩𝐵 

[Oshikawa-Affleck 1996, Bachas
-de Boer-Dijkgraaf-Ooguri 2001]

[Azeyanagi-Karch-Thompson-TT 2007]

Note: for Interface of two different CFTs,   
we can simply take c=(c1+c2)/2 and the 
Proof follows similarly.

[cf. Other types of constraint from SSA 
Karch-Kusuki-Ooguri-Sun-Wang 2023]



④ Holographic g-theorem

(4-1)  SSA in a static AdS/BCFT

SSA in static setups of AdS/BCFT (or a more generally SSA on 

A time symmetric slice) is satisfied for any shapes of EOW branes.

The minimal surfaces Γ* are 
all on the same time slice.

We can prove SSA as in the 
case without the EOW branes.

[SSA in Static AdS/CFT: Headrick-TT 2007]

Similarly we can derive the MMI. [MMI in AdS/CFT: Hayden-Headrick-Maloney 2011]



(4-2) SSA in Lorentzian setups of AdS/BCFT

Generally, a 2d CFT on a half space (x>0) with a bdy RG flow

is dual to a generic shaped EOW brane in AdS3.

Below we evaluate the HEE:                                  as a function of L.                             
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P
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𝟔
𝜞𝑷



For a generic profile of EOW brane:  z=z(x),   we can relate the 
boundary point x=L  and the intersection of the minimal surface 
and EOW brane x=a by

The geodesic length reads

Finally we obtain

𝐿 = 𝑎 −
𝑧 𝑎

ሶ𝑧 𝑎
+ 𝑧(𝑎) 1 +

1

ሶ𝑧(𝑎)2 .

Γ𝑃 = log
2𝑧(𝑎) 1+ ሶ𝑧(𝑎)2

𝜖 1+ ሶ𝑧(𝑎)2+1
.

6

𝑐
∙ 𝐿

𝑑𝑆𝑑𝑖𝑠 𝐿

𝑑𝐿
− 1 =

𝑎 ሶ𝑧 𝑎 − 𝑧 𝑎

𝑧 𝑎 1 + ሶ𝑧 𝑎 2
.

The SSA is satisfied if this is non-negative.

We can guarantee this by assuming the null energy condition 
on the EOW brane. 𝑇𝑎𝑏

𝑄
𝑁𝑎𝑁𝑏 ∝ − ሷ𝑧(𝑎) ≥ 0

[SSA in Lorentzian AdS/CFT: Wall 2012]
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[cf. top. censorship without boundary

Galloway-Schleich-Witt-Woolgar 99]

“Topological Censorship with Bdy”
No traversable wormhole 

in classical gravity
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Null Energy Condition

g-theorem and wormhole



⑤ AdS/BCFT with boundary localized scalar

(5-1)  Localized scalar model

Bdy condition:

We can design the shape of Q
by choosing the potential V(φ).

[Kanda-Sato-Suzuki-Wei-TT 2023]



(5-2) Gravity dual of Bdy RG flow

Boundary entropy log g

Plots for 𝑧 𝜏 = 𝜏 + 𝜏2

Boundary EOMs lead to

Geodesic length

V(φ) Z(τ)
φ(τ)

≧0
(Null energy 
condition)



Another Example:  we can also find rotationally invariant solutions.
Boundary RG flows on a disk and  annulus.

V(φ)V(r)

z(r)
Φ(r)

V(r)

z(r)

V(φ)

φ(r)

φ(r)z(r) z(r)



(5-3) Entanglement Phase Transition

Consider the AdS3/BCFT2 
with V(φ)=0 
for a 2d CFT on a cylinder.
(“Boundary Janus solutions”)

Phase diagram based on the free energy
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[Kanda-Sato-Suzuki-Wei-TT 2023]

➔The difference 
of boundary condition 
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Poincare AdSΔφ*

[Kanda-Kawamoto-Suzuki-Tasuki-Wei-TT 2023]
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Double Wick Rotation
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(a) BTZ phase (c) Thermal AdS phase



Double Wick Rotation and Time Evolution

Δφ=Δφ*

Δφ>Δφ*

(a) BTZ phase (b) Poincare 
AdS phase

(c) Thermal AdS 
phase

HitHit

e)B(φΔφ)B(φeρ(t)
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SA  const.AS

|B>=Boundary state ～ Direct product state

𝚪𝐀 𝚪𝐀 𝚪𝐀

τ=it

A= a half space

Imaginary valued scalar field 
on EOW brane ➔ Non-unitary

We take β→∞ limit.

[Δφ=0→Hartman-Maldacena 2013] 



Entanglement Phase Transition 
(Measurement Induced Phase Transition)

[Skinner-Ruhman-Nahum, 
Li-Chen-Fisher 2018]

Time 
t

End-of-the-world brane

AdS 
geometry

Holographic 
Model ?

Unitary

Projection

z

Euclidean 
time

Non-unitary 
dynamics

This result looks very analogous to 

[For other holographic approaches refer to Antonini-Bentsen-Cao-Harper
-Jian-Swingle, 2022, Goto-Nozaki-Tamaoka, -Tan 2022] 



Initial stateTransition matrix 
(Non-Hermitian in general)

Final state

Pseudo Entropy

E
uclidean T

im
e
 

AdSd+1

B
o
u
n
da

ry
 (

C
F
T
d
) 

ΓA

A
ۧ|𝝍

ۧ|𝝋

However, note that this entropy SA computed in the AdS/BCFT 
should be regarded as the pseudo entropy instead of EE.

Holographic pseudo entropy

For pseudo entropy, 
refer to lecture 3



⑥ Conclusions

       SSA provides a new geometric proof of g-theorem
under boundary RGs for 2d CFTs. 

       In the holographic analysis of AdS/BCFT, SSA is automatically 
satisfied in static backgrounds. 

   In Lorentzian boosted setups of AdS/BCFT, SSA is satisfied if 
the null energy condition is imposed on the EOW brane.

   We constructed a class of explicit gravity duals of boundary RG 
flow by adding a scalar field localized on the EOW brane.

     When two boundary conditions are different in a BCFT on a   
cylinder, its gravity dual predicts entanglement phase transition. 



Future directions

• Higher (co-)dimensional generalizations ?

• SSA in Time-dependent cases ?

• SSA in AQFT and c/g theorem ?



Thank you very much ！
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