

Infosys-ICTS Chandrasekhar Lectures, 2024 Aug. ICTS Program "Quantum Information, Quantum Field Theory and Gravity"

Gravity duals of CFTs on manifolds with boundaries (Lecture 2)

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics Kyoto University

Center for Gravitational Physics and Quantum Information Yukawa Institute for Theoretical Physics. Kyoto University

End-of-the-world brane (EOW brane)

Gravity EOW brane Bulk Spacetime (Boundary of "Our World" **Spacetime**)

Recently, EOW branes play crucial roles in holography.

This is much like how D-branes are important in string theory.

End-of-the-world brane (EOW brane)

EOW brane (Boundary of Spacetime)

Quantum system with a boundary (via Holography) e.g. BCFT

Examples of Applications of EOW branes in holography

This talk is mainly based on PRL133 (2024) 031501 [arXiv:2403.19934] (g-theorem from SSA) with Jonathan Harper, Hiroki Kanda and Kenya Tasuki (YITP, Kyoto)

We will also mention

JHEP 03 (2023) 105 [arXiv: 2302.03895] (AdS/BCFT with localized scalar)
JHEP 03 (2024) 060 [arXiv:2311.13201] (Hol. entanglement transition)
with Hiroki Kanda, Taishi Kawamoto, Masahide Sato, Yu-ki Suzuki,
Kenya Tasuki (YITP, Kyoto) and Zixia Wei (Harvard).

<u>Contents</u>

- 1 Introduction
- 2 Overview of AdS/BCFT
- ③ A new entropic g-theorem
- 4 Holographic g-theorem
- **(5)** AdS/BCFT with boundary localized scalar
- 6 Conclusions

② Overview of AdS/BCFT

The gravity action in Euclidean signature looks like

$$I = \frac{1}{16\pi G_N} \int_N \sqrt{-g} \left(R - 2\Lambda + L_{matter}\right) + \frac{1}{8\pi G_N} \int_Q \sqrt{-h} \left(K + L_{matter}^Q\right).$$

Bulk matter fields
Bulk matter fields
Gibbons
-Hawking term
 $\sqrt{-h} \left(K + L_{matter}^Q\right).$
Matter fields
localized on Q

The coordinate of Q and its induced metric are x^a and h^{ab} .

We define the extrinsic curvature and its trace

$$K_{ab} = \nabla_a n_b$$
, $K = h^{ab} K_{ab}$. (n^a is a unit vector normal to Q.)

e.g. Gaussian normal coordinate: $ds^2 = d\rho^2 + h_{ab}(\rho, x)dx^a dx^b$ $\downarrow K_{ab} = \frac{1}{2}\partial_{\rho}h_{ab}(\rho, x).$

Variation:
$$\delta I = \frac{1}{16\pi G_N} \int_Q \sqrt{-h} (K_{ab} - Kh_{ab} - T_{ab}^Q) \, \delta h^{ab}.$$

At the AdS boundary M, we impose the Dirichlet boundary condition $\delta h^{ab} = 0$ following the standard AdS/CFT argument.

On the other hand, at the new boundary Q, we argue to require the Neumann b.c. :

$$K_{ab} - Kh_{ab} - T_{ab}^Q = 0$$

`boundary Einstein eq.'

Why Neumann b.c. (brane-world type) ?

(1) Keep the boundary dynamical. New data at Q should not be required.

(2) Orientifolds in string theory lead to this condition.

In general, this AdS/BCFT description is a hard wall approximation.

CFT on a manifold M with a boundary ∂M

Gravity on an asymptotically AdS space N, s.t. ∂ N=MUQ

Extrinsic curvature:

 $K_{ab} = \nabla_a n_b, \quad K = h^{ab} K_{ab}$

We impose Neumann b.c.:

$$K_{ab} - Kh_{ab} - T^Q_{ab} = 0$$

Depend on types of EOW brane.

BCFT (Boundary Conformal Field Theory)

For special boundary conditions, a part of conformal symmetries are preserved, called the boundary conformal field theory (BCFT).

[Cardy 1984, .., McAvity-Osborn 1995, ··· ; Cond-mat application: Kondo effect]

Holographic Dual of BCFT

To preserve the BCFT symmetry, we choose

$$T^Q_{ab} \propto h_{ab} \implies T^Q_{ab} = -T h_{ab}$$
 (T is the tension of Q).

The Neumann b.c. looks like

$$K_{ab} = (K - T) h_{ab}$$

Example: Dual of BCFT on a half space

Double Holography

Wedge Holography

[Akal-Kusuki-Wei-TT 2020, Bousso-Wildenhain 2020]

Holographic Entanglement Entropy (HEE)

For static states in CFTs, SA is computed from the minimal area surface Γ A:

$$S_A = \min_{\Gamma_A} \left[\frac{\operatorname{Area}(\Gamma_A)}{4G_N} \right]$$

[Ryu-TT 2006]

For time-dependent states in CFTs,

$$\rho_A(t) = \mathrm{Tr}_B[|\Psi(t)\rangle\langle\Psi(t)|] \Longrightarrow S_A(t)$$

SA is found from the extremal surface area:

$$S_A(t) = \operatorname{Min}_{\Gamma_A} \operatorname{Ext}_{\Gamma_A} \left[\frac{A(\Gamma_A)}{4G_N} \right]$$
[Hubeny-Rangamani-TT 07]

Differences between two "subregion/subregion duality"

- [1] Entanglement Wedge
- ⇒ ГA is extremal surface. (no back-reactions)

$$h^{ab}K_{ab}=0$$

[2] AdS/BCFT

⇒ Q is totally geodesic surface or it generalizations.

$$K_{ab} = \text{fixed}$$

⇒ Surface Q back-reacts !

In this talk, we will see interesting interplay between them.

Holographic Entanglement Entropy in AdS/BCFT

[TT 2011, Fujita-Tonni-TT 2011]

$$S_{A} = \operatorname{Min} \operatorname{Ext}_{\Gamma_{A}, B} \left[\begin{array}{c} \operatorname{Area}(\Gamma_{A}) \\ 4G_{N} \end{array} \right] \quad \partial \Gamma_{A} = \partial A \cup \partial B$$

$$\bigwedge AdS/BCFT$$

$$AdS/BCFT$$

$$\square \Gamma_{A} \qquad AdS/BCFT$$

$$\square \Gamma_{A} \qquad Bdy$$

HEE in AdS3/BCFT2

③ New Entropic g-theorem

(3-1) Entropic c-theorem

Entanglement entropy

→ a measure of degrees of freedom in quantum systems

In two dimensional CFTs,

$$S_A = \frac{c}{3} \log \frac{l}{\varepsilon}.$$

Central charge ~ # of fields

C-theorem in 2d CFT

The central charge c monotonically decreases under the RG flow. [Zamolodchikov1986]

Quantum information gives an entropic proof of c-theorem! [Casini-Huerta 2004]

- The most fundamental inequality of EE.
- Analogous to 2nd law of thermodynamics.
- SSA follows from monotonicity of relative entropy. $S(\rho|\sigma) = \text{Tr}[\rho(\log\rho - \log\sigma)]$

 $S(\rho_{ABC}|\rho_A \otimes \rho_{BC}) \ge S(\rho_{AB}|\rho_A \otimes \rho_B) \Leftrightarrow \mathbf{SSA}$

Tracing out C

AUB

We rewrite SSA as:

Nulline

$$S_A + S_B \ge S_{A \cup B} + S_{A \cap B}$$

We apply SSA to a 1+1 dim relativistic field theory vacuum.

Х

Nullline

Lorentz inv. and translational invariant (→subsystem can be boosted)

A|=Lorentz invariant length

Important geometric relation: |A|•|B|=|A∪B|•|A∩B| By introducing $|A \cup B| = e^x$ and $|A \cap B| = e^y$, we obtain $|A| = |B| = e^{\frac{x+y}{2}}$.

Then the SSA
$$S_A + S_B \ge S_{A \cup B} + S_{A \cap B}$$

leads to $2S\left(\frac{x+y}{2}\right) \ge S(x) + S(y)$. Concave
 $S''(x) \le 0$.
Entropic c-theorem: $C'(x) \le 0$
For 2d CFT, we have
 $S_A = \frac{c}{3}\log\frac{e^x}{\epsilon}$

Here we introduced entropic c-function: C(x) = 3S'(x)

g-theorem

g-function (boundary entropy) monotonically decreases under boundary RG flow.

[Affleck-Ludwig 1991]

g-function = (UV regularized) disk partition function

boundary RG flow:
$$\int dt O(t, x = 0)$$

Known proofs of g-th

- (i) Field theoretic proof [Friedan-Konechny 2003]
- (ii) QI proof using relative entropy [Casini-Landea-Torroba 2016,2022]
- (iii) Proof from symmetry argument [Cuomo-Komargodski-Raviv-Moshe 2021]

We will give the simplest direct proof of g-th from SSA which give a more geometric insight ! [Harper-Kanda-Tasuki-TT 2024]

(3-3) EE in 2d BCFT and g-function

When the bdy breaks conformal invariance, though the bulk is CFT, the **bdy entropy log g** depends on the size of A, i.e. |A|=L.

Below, we will show log g monotonically decreases as a function of L.

A few useful properties

(i) Due to the complete reflection at the boundary, we find

$$S_{A'} = S_A$$

We simply call this $S_{dis}(L)$.

(ii) In general, EE non-trivially depends on the two end points:

 $S(x_1, t_1; x_2, t_2)$

However, when A gets closer to light-like,

$$S(x_1, t_1; x_2, t_2) \approx \frac{c}{3} \log \sqrt{(x_2 - x_1)^2 - (t_2 - t_1)^2} / \varepsilon.$$

(3-4) Proving entropic g-theorem from SSA

We consider the following setup of SSA:

Now we take the limit $u \rightarrow s$, where $A \cap B$ and B become light-like.

$$\Delta S \equiv S_A + S_B - S_{A \cap B} - S_{A \cup B}$$

$$\approx S_{dis}(2s - v) - S_{dis}(2s - w) + \frac{c}{6}\log\frac{s - w}{s - v}.$$

By taking the limit $v \rightarrow w$, the SSA inequality $\Delta S \ge 0$ leads to

$$\frac{dS_{dis}(L)}{dL} \leq \frac{c}{6} \cdot \frac{1}{L-s} \quad , \quad (L \equiv 2s - w).$$

Since L and s are arbitrary, we can choose L>>s, which leads to

.

$$L\frac{dS_{dis}(L)}{dL} \le \frac{c}{6}$$

By introducing the entropic g-function as

$$\log g(L) \equiv S_{dis}(L) - \frac{c}{6} \log \frac{2L}{\epsilon},$$

we are now able to derive the entropic g-theorem:

$$L\frac{d}{dL}\log g(L) \le 0.$$

(3-5) Entropic g-theorem for Interface CFTs

Consider a 2d CFT on a plane with a defect line at x=0.

[Oshikawa-Affleck 1996, Bachas -de Boer-Dijkgraaf-Ooguri 2001]

Its EE looks like $S_A = \frac{c}{3} \log \frac{L}{\epsilon} + \log g(L)$.

[Azeyanagi-Karch-Thompson-TT 2007]

Again we can derive the entropic g-theorem from the SSA, by doubling the setup:

Note: for Interface of two different CFTs, we can simply take c=(c1+c2)/2 and the Proof follows similarly.

[cf. Other types of constraint from SSA Karch-Kusuki-Ooguri-Sun-Wang 2023]

(4) Holographic g-theorem

(4-1) SSA in a static AdS/BCFT

SSA in static setups of AdS/BCFT (or a more generally SSA on A time symmetric slice) is satisfied for any shapes of EOW branes.

Similarly we can derive the MMI. [MMI in AdS/CFT: Hayden-Headrick-Maloney 2011]

(4-2) SSA in Lorentzian setups of AdS/BCFT

Generally, a 2d CFT on a half space (x>0) with a bdy RG flow is dual to a generic shaped EOW brane in AdS3.

Below we evaluate the HEE: $S_{dis}(L) = \frac{c}{6} |\Gamma_P|$ as a function of L.

For a generic profile of EOW brane: z=z(x), we can relate the boundary point x=L and the intersection of the minimal surface and EOW brane x=a by $z(a) = \sqrt{2(a)} + \sqrt{2(a)} + \sqrt{2(a)}$

$$L = a - \frac{z(a)}{\dot{z}(a)} + z(a) \sqrt{1 + \frac{1}{\dot{z}(a)^2}}$$

The geodesic length reads $|\Gamma_P| = \log \left[\frac{2z(a)\sqrt{1+\dot{z}(a)^2}}{\epsilon(\sqrt{1+\dot{z}(a)^2}+1)} \right].$

Finally we obtain
$$\frac{6}{c} \cdot L \frac{dS_{dis}(L)}{dL} - 1 = \frac{a\dot{z}(a) - z(a)}{z(a)\sqrt{1 + \dot{z}(a)^2}}.$$

The SSA is satisfied if this is non-negative.

We can guarantee this by assuming the null energy condition on the EOW brane. $T_{ab}^Q N^a N^b \propto -\ddot{z}(a) \ge 0$

[SSA in Lorentzian AdS/CFT: Wall 2012]

g-theorem and wormhole

(5) AdS/BCFT with boundary localized scalar

[Kanda-Sato-Suzuki-Wei-TT 2023]

(5-1) Localized scalar model

Another Example: we can also find rotationally invariant solutions. Boundary RG flows on a disk and annulus.

(5-3) Entanglement Phase Transition

[Kanda-Sato-Suzuki-Wei-TT 2023] [Kanda-Kawamoto-Suzuki-Tasuki-Wei-TT 2023]

Consider the AdS3/BCFT2 with V(ϕ)=0 for a 2d CFT on a cylinder. ("Boundary Janus solutions")

Phase diagram based on the free energy

Double Wick Rotation and Time Evolution

This result looks very analogous to

Entanglement Phase Transition

(Measurement Induced Phase Transition)

[Skinner-Ruhman-Nahum, Li-Chen-Fisher 2018]

[For other holographic approaches refer to Antonini-Bentsen-Cao-Harper -Jian-Swingle, 2022, Goto-Nozaki-Tamaoka, -Tan 2022] However, note that this entropy SA computed in the AdS/BCFT should be regarded as the pseudo entropy instead of EE.

Pseudo Entropy
$$S(\mathcal{T}_{A}^{\psi|\varphi}) = -\operatorname{Tr}\left[\mathcal{T}_{A}^{\psi|\varphi}\log\mathcal{T}_{A}^{\psi|\varphi}\right]$$

Transition matrix Initial state
(Non-Hermitian in general) $\mathcal{T}^{\psi|\varphi} := \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle} \quad \mathcal{F}$ inal state
 $\left(\mathcal{T}_{A}^{\psi|\varphi} := \operatorname{Tr}_{\bar{A}}\mathcal{T}^{\psi|\varphi}\right)$

Holographic pseudo entropy

$$S(\mathcal{T}_A^{\psi|\varphi}) = \min_{\Gamma_A} \frac{\operatorname{Area}(\Gamma_A)}{4G_N}$$

For pseudo entropy, refer to lecture 3

6 Conclusions

- SSA provides a new geometric proof of g-theorem under boundary RGs for 2d CFTs.
- In the holographic analysis of AdS/BCFT, SSA is automatically satisfied in static backgrounds.
- In Lorentzian boosted setups of AdS/BCFT, SSA is satisfied if the null energy condition is imposed on the EOW brane.
- We constructed a class of explicit gravity duals of boundary RG flow by adding a scalar field localized on the EOW brane.
- When two boundary conditions are different in a BCFT on a cylinder, its gravity dual predicts entanglement phase transition.

Future directions

- Higher (co-)dimensional generalizations ?
- SSA in Time-dependent cases ?
- SSA in AQFT and c/g theorem ?

Thank you very much !