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@ Introduction

End-of-the-world brane (EOW brane)

EOW brane

(Boundary of
Spacetime)

Recently, EOW branes play crucial roles in holography.

This is much like how D—branes are important in string theory.



@ Introduction

End-of-the-world brane (EOW brane)

EOW brane

(Boundary of
Spacetime)

S

N

Quantum system with a boundary
(via Holography) e.g. BCFT



Examples of Applications of EOW branes in holography

[1] Quantum systems with boundaries
(Boundary conformal field theory: BCFT)

Quantum

System

Boundary

[2] Black hole information problem EOW brane

(AdS/BCFT + brane—world) . :
Localized Gravity

Anti de Sitter sp on EOW brane
[Randall-Sundrum 1999]

[3] Non—equilibrium dynamics T Lorentzian Time

Quantum
System T Euclidean Time

(Quantum quenches,-.

Entanglement Transition)

[Calabrese—Cardy 2005, Hartman—Maldacena 2013]



This talk is mainly based on
PRL133 (2024) 031501 [arXiv:2403.19934] (g-theorem from SSA)
with Jonathan Harper, Hiroki Kanda and Kenya Tasuki (YITP, Kyoto)

We will also mention

JHEP 03 (2023) 105 [arXiv: 2302.03895] (AdS/BCFT with localized scalar)
JHEP 03 (2024) 060 [arXiv:2311.13201] (Hol. entanglement transition)

with Hiroki Kanda, Taishi Kawamoto, Masahide Sato, Yu-ki Suzuki,
Kenya Tasuki (YITP, Kyoto) and Zixia Wei (Harvard).
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2 Overview of AdS/BCFT

End—of-the—world
AdS/CFT AdS/BCFT brane (EOW brane)

d dim. d+1 dim. d dim. d+1 dim.

CFT Gravity BCFT Gravity
on Rd on AdS on M with EOW




The gravity action in Euclidean signature looks like

Gibbons
-Hawking term

I F(R ZA + Lmatter) + I F(K + Lmatter

167ZG Matter fields

Bulk matter flelds

localized on Q

The coordinate of Q and its induced metric are X® and h? :

We define the extrinsic curvature and its trace
a
K,=V.n, K=h*K_ . (" isaunitvector normal to Q.)

e.g. Gaussian normal coordinate: ds® = dp” +h,, (o, X)dx*dx"

1
- Kab = E@phab (/0! X)'



Variation: j [ (K _TQ)sh?
167ZG a ab

At the AdS boundary M, we impose the Dirichlet boundary
condition sh® =(Q following the standard AdS/CFT argument.

On the other hand, at the new boundary Q, we argue to require
the Neumann b.c. :

— ~TO = ‘boundary Einstein eq.
K b Khab Tab =0 oundary Einstein eq

Why Neumann b.c. (brane-world type) ?
(1) Keep the boundary dynamical. New data at Q should not be required.
(2) Orientifolds in string theory lead to this condition.

In general, this AdS/BCFT description is a hard wall approximation.



AdS/BCFT construction

CFT on a manifold M
with a boundary d M

am/.

-
-
-
-
-
-
-

Extrinsic curvature:

K,=V.n, K=h*K

[TT 2011, See also Karch—Randall 2001]

Gravity on an asymptotically
AdS space N, st. aN=MUQ

Q : End of the world (EOW) brane

N

We impose Neumann b.c.:

Kab o Khab _Ta(g =0

/

Depend on types of EOW brane.




BCFT (Boundary Conformal Field Theory)

For special boundary conditions, a part of conformal symmetries

are preserved, called the boundary conformal field theory (BCFT).

[Cardy 1984, .., McAvity—Osborn 1995, --- : Cond—mat application: Kondo effect]
d dim CFT : SO(2,d) > j‘/]
e » CFT
=
d dim. BCFT: 30(2 d-1) ©
ha] Energy flux
f Boundary

(Ln o I:—n) ‘ B> —
Boundary state

Ttx X [T(Z) —-F(Z)]de =0



Holographic Dual of BCFT | -~ Q
|
|
To preserve the BCFT symmetry, we choose :
|
Ta?, o hab = Ta% =—T hab (T is the tension of Q).

The Neumann b.c. looks like

Kab — (K _T) hab.

Example: Dual of BCFT on a half space

<2 _ —dt® +dz® + dx* + dW’

L
Zmz: l—TZX
—=—==p X T




Double Holography

AdS/BCFT / \
CFTd | Bdy —

— Q
M AdSd+1
Localized Gravity
“AdSd/CFTd-1”  \\ y, on EOW brane
/Brane-world
CETq |Gravityd holography

[Karch—Randall 2000]

M Q




Wedge Holography  [a..i-kusuki-wei-TT 2020, Bousso-Wildenhain 2020]

d+1 dim. Classical Gravity
on the wedge Wd+1

d dim. Quantum Gravity
on EOW branes Q1 U Q2

M

AdSd+1

‘ Zero width limit 1

d-1 dim. CFT on 2

$

Codimension Two
Holography !




Holographic Entanglement Entropy (HEE)
For static states in CFTs, SA is computed
from the minimal area surface [ A: /

Area(Ty)
S, = min &) 1-‘A
FA ] 4GN

[Ryu-TT 2006]

For time—dependent states in CFTs,

pa(t) = Try[[PONP )] WS, (t) B

SA is found from the extremal surface area: FT _ Gravity
[A(m dy  (AdS)

54 (t) = 1vIlnFAEXtFA 4Gy Note: d [ A=9 A and
[Hubeny—Rangamani-TT 07] [ A is homologous to A.




Differences between two “subregion/subregion duality”

) | [1] Entanglement Wedge

= A is extremal surface.
(no back-reactions)

A WK =0

LT [2] AdS/BCFT

= Q is totally geodesic surface
or it generalizations.

Q K , =fixed

! = Surface Q back-reacts !

-
-
-
-
-
-
-

“In this talk, we will see interesting interplay between them.



Holographic Entanglement Entropy in AdS/BCFT

[TT 2011, Fujita-Tonni-TT 2011]

SA = Min Ext

[y, B
e

AdSd+1

Area(ly)
4Gy

AdS/BCFT

emal Surfaces
cNj endon Q!

4

or, = A U OB

CFTd @ 3dy
M

This region B is now known as an Island !

Island formula: S, =M

_ [Area(Z)
in

4Gy + SAUZ]



HEE in AdS3/BCFT2

The holographic EE is obtained as
Length ¢ 2L C 1+T

S, = = Zlog=— + —Io .
AT 46y 6 8 T2 T
cf. CFT Result
5, =Sl0gt 4+
4 = ¢log— ogg -

—— Boundary Entropy (g—function)
Bulk Part




3 New Entropic g-theorem

(3-1) Entropic c-theorem

Entanglement entropy
=> a measure of degrees of freedom in quantum systems

In two dimensional CFTs, SAj/%Iogl.
E

Central charge ~ # of fields
C-theorem in 2d CFT

The central charge c monotonically decreases under the RG flow.
[Zamolodchikov1986]

» Quantum information gives an entropic proof of c-theorem!
[Casini—Huerta 2004]



Strong subadditivity (SSA) [Lieb-Ruskai 1973]

Hiot = Hy ® Hg ® He @ Hotner c(B @ >

Sap + Spc = Sapc + 5B Sap = Saus

* The most fundamental inequality of EE.
* Analogous to 2" law of thermodynamics.

e SSA follows from monotonicity of relative entropy.
S(plo) = Tr[p(logp — logo)]

S(Papclpa ® psc) = S(Paplpa Q pp) & SSA
\_/

Tracing out C



Entropic c-theorem (¢, iuerta 2004] @

We rewrite SSA as: SA + SB

Saup T S4nB

We apply SSA to a 1+1 dim relativistic field theory vacuum.

Lorentz inv. and translational invariant
(= subsystem can be boosted)

>

%, .
%, | A|=Lorentz invariant length
e

Important geometric relation:
|Al-|B|=|AUB| - |ANB|




By introducing |AUB| =e* and |ANnB| =e¥
Xty
we obtain |A| =|B|=e 2

Then the SSA SA + SB SAUB + SAﬂB

Xty
leadsto 25 (T) > S(x) +S(y). Concave /\

m) S'(x)<0.
For 2d CFT we have

! o

Sy = §log—

Entropic c-theorem: ('(x) < 0 ‘ -

Here we introduced entropic c-function: C(x) = 3S5'(x)



(3-2) g-theorem
Definitions of g-function (boundary Entropy) (affleck-Ludwig 1991]

Def 1 (Disk Amplitude) a

Swy <1099, , 9, =(0[B,)
Def 2 (Cylinder Amplitude) ) L )
ZW =(B,le"™|B,) ~ 9,9, " a

(. ) (B, | ‘ ﬁ>Hoo B 3

Boundary Part Bulk Part time
Def 3 (Entanglement Entropy) T
In 2d BCFT, the EE behaves like CFT
c. 2L 5 | Bdy
Sa =—log?+logga p (a)

N J H_J
Y Boundary Part [Calabrese-Cardy 2004]
Bulk Part




g-theorem

g-function (boundary entropy) monotonically

decreases under boundary RG flow.
[Affleck-Ludwig 1991]

g-function = (UV regularized) disk partition function

boundary RG flow: fdt O(t,x =0)

Known proofs of g-th
(i) Field theoretic proof [Friedan-Konechny 2003]

(i) Ql proof using relative entropy [Casini-Landea-Torroba 2016,2022]

(iii) Proof from symmetry argument [Cuomo-Komargodski-Raviv-Moshe 2021]

» We will give the simplest direct proof of g-th from SSA
which give a more geometric insight | [Harper-Kanda-Tasuki-TT 2024]



(3-3) EE in 2d BCFT and g-function

For BCFTs (conformal b.c.),
the replica method calculation leads to

C 2L
Sy=—-log—+1logg
6 €
[Calabrese-Cardy 2004] f
A constant fixed by
X its bdy condition

When the bdy breaks conformal invariance, though the bulk is CFT,
the bdy entropy log g depends on the size of A, i.e. |A|=L.

Below, we will show log g monotonically decreases as a function of L.



A few useful properties

(i) Due to the complete reflection
at the boundary, we find

SAI — SA

We simply call this Sdis(L) :

(ii) In general, EE non-trivially t
depends on the two end points: (x2,t2)
5(x1,t15 %2, t2) A
. . (x1,t1) X
However, when A gets closer to light-like, >

S5(x1,t15 %3, t2) = glog\/(xz —x1)% — (t; — t1)?/e.



(3-4) Proving entropic g-theorem from SSA

We consider the following setup of SSA:

\ Boundary

G
(&)
C
o

(2s-w,w)

Saus = Sais (2s —w), Sa= Sais (2s —v),
Sing = S(u,u;2s — v, v), Sg=Su,u;2s —w,w)




Now we take the limit u->s, where ANB and B become light-like.

AnB 4(S— —
= |B| C 4(s—u)(s—w)
-‘E —log —log = .
c
-

(@)
a8
y
X=0
B
(2s-w,w)

AS =54+ 55 —Sang — Saus
~ Sais(2s — V) — Sgis(2s —w) + = logS_W



By taking the limit v>w, the SSA inequality AS=0 leads to

By introducing the entropic g-function as
. C 2L
log g(L) = Sa;is(L) ——log—,

we are now able to derive the entropic g-theorem:

Ldl (L)<0
ar, gV ="



(3-5) Entropic g-theorem for Interface CFTs

Consider a 2d CFT on a plane with a defect line at x=0.
[Oshikawa-Affleck 1996, Bachas

C L -de Boer-Dijkgraaf-Ooguri 2001]
Its EE looks like S4 = glog; + log g(L) .

[Azeyanagi-Karch-Thompson-TT 2007]

Again we can derive the entropic g-theorem from the SSA,
by doubling the setup:

A=AlﬂA2, B:BlnBz
54+ S5p = Saup t Sans

4

d & Mo ____T™
L Elogg(L) < 0. (-2s+w,w) § A1UB1UA2UB2 (2s-w,w)
o
. : E1X=0
Note: for Interface of two different CFTs,
we can simply take c=(c1+c2)/2 and the [cf. Other types of constraint from SSA

Proof follows similarly. Karch-Kusuki-Ooguri-Sun-Wang 2023]



@ Holographic g-theorem
(4-1) SSA in a static AdS/BCFT

SSA in static setups of AdS/BCFT (or a more generally SSA on

A time symmetric slice) is satisfied for any shapes of EOW branes.

The minimal surfaces I are
all on the same time slice.

\ 4

We can prove SSA as in the
case without the EOW branes.

[SSA in Static AdS/CFT: Headrick-TT 2007]

Similarly we can derive the MMI. [MMiIin AdS/CFT: Hayden-Headrick-Maloney 2011]



(4-2) SSA in Lorentzian setups of AdS/BCFT

Generally, a 2d CFT on a half space (x>0) with a bdy RG flow
is dual to a generic shaped EOW brane in AdS3.

X=0 —-a X=L

Below we evaluate the HEE: § ;. (L) = % |l'p| @s a function of L.



For a generic profile of EOW brane: z=z(x), we can relate the
boundary point x=L and the intersection of the minimal surface
and EOW brane x=a by

_ . z(a)
L= prom + z(a) \/ 1+

Z(ol)2 '

2 J1+z(a)?
The geodesic length reads ITp| = log L(Z\j?ﬁ—m)zz(?l)]

L —1= .
dL z(a)\/1 + z(a)?

6 dSqs(L) az(a) — z(a)
Finally we obtain p

The SSA is satisfied if this is non-negative.

L

We can guarantee this by assuming the null energy condition
on the EOW brane. beNaNb o« —%(a) = 0

[SSA in Lorentzian AdS/CFT: Wall 2012]



g—theorem and wormhole

“Topological Censorship with Bdy”
Null Energy Condition No traversable wormhole
TONAN® >0 In classical gravity
ab —

> X

[cf. top. censorship without boundary
Galloway—Schleich-Witt—Woolgar 99]




(B AdS/BCFT with boundary localized scalar

[Kanda—Sato—Suzuki-Wei-TT 2023]
(5-1) Localized scalar model

1 W
Lyane = / d*cvV h(K — h*0,00,0 — V (¢))
Q

SWG,'\" -

We can design the shape of Q
by choosing the potential V(@ ).

Bdy condition: Ky — Khay = — (h0:0040 + V(9)) hap + 20,0056



(5-2) Gravity dual of Bdy RG flow
Boundary EOMs lead to

"9 Z (Null energy
= : 5 =0 ndition)
2zv1 + 22 conditio
2.2
) oty 1
V(o)

— : . } .
1+22 /14 22

Plots for z(1) = 7 + T°

V() Z(v) T(T)
H\\ m fﬁf 10 a"
\R\\“--R ,m -________;__,..a-"'f |

2 @ T 2

Geodesic length

08

02

PR RNEY - WO N - M )

10 20 30 20 10 20 40 80

K/,_,_. Boundary entropy log g
e O,GI

> Z



Another Example: we can also find rotationally invariant solutions.
» Boundary RG flows on a disk and annulus.




(5-3) Entanglement Phase Transition
[Kanda—Sato—Suzuki-Wei—TT 2023] [Kanda—Kawamoto—Suzuki—Tasuki-Wei—-TT 2023]

Consider the AdS3/BCFT2 f? ¢tA0 B
with V(¢ )=0 [ =
. © I o
for a 2d CFT on a cylinder. g | -
(“Boundary Janus solutions”) S\ N
- Ax -
Phase diagram based on the free energy
0
§ G aAZH
© | BTZ Phase
5 a | Q Q
a £ 1
———————————————————— o .
N N = =X X: X
/ ey TAdS Phase
=Xe X« | A® =>The difference

Poincare AdS A ¢, = of boundary condition



A P<A @, Adp>A o,
oA B d,;tAd B

g -l

‘ Double Wick Rotation ‘

(a) BTZ phase (c) Thermal AdS phase
= i - f_—;-“"‘ i
) t "y t

bo



Double Wick Rotation and Time Evolution

We take B—>o° limit. Imaginary valued scalar field
on EOW brane = Non—unitary

— £+it H — ﬁ—it H
o |Blp, + 49))(B(w; )| o

pr)=e

|IB>=Boundary state ~ Direct product state

Ap=Ao, Ad>Ad,
/7 (b) Poincare (c) Thermal AdS
s I./ AdS phase phase
6 2a ~\ Sa~3g-logt S, ~ const.

[A ¢ =0—Hartman—Maldacena 2013]



This result looks very analogous to

Entanglement Phase Transition  [skinner-Ruhman-Nahum,
(Measurement Induced Phase Transition) Li-Chen-Fisher 2018]

End—of—the—world brane

™

Time

$ 44 ¢ ¢ 9 AdS
P s [ s [ s t
U . I+ +I r +I I .
nitary N S B Holographic
it
|+ +| |+ +| Model ? _I ary
* ¢ ¢ ¢ ics
’II |I I| \I I| |I
Projection -

Euclidean
~\>.ﬂnne

> Z

($) p<p.: Saort

(i1) p=p,: Ssxlogt,

(i) p> p,: S, = finite,

[For other holographic approaches refer to Antonini-Bentsen—Cao—Harper
—Jian—Swingle, 2022, Goto—Nozaki—Tamaoka, —Tan 2022]



However, note that this entropy SA computed in the AdS/BCFT
should be regarded as the pseudo entropy instead of EE.

Pseudo Entropy S(T‘bl"o) —Tr {74/490 logTwlt‘O}

Transition matrix Initial state ~ w> (  Final state
(Non-Hermitian in general) 7'¢| (T‘”"P Tr T?Pleo)
(plypy N !

’.a

Holographic pseudo entropy E
S I
@
Area(l' 4 e o
.S(?"w):mm (a) o o
A 4G 2 ;

I'a N g
_|
m —
3
D

» For pseudo entropy,
refer to lecture 3




®) Conclusions

¢ SSA provides a new geometric proof of g-theorem
under boundary RGs for 2d CFTs.

¢ In the holographic analysis of AdS/BCFT, SSA is automatically
satisfied in static backgrounds.

¢ In Lorentzian boosted setups of AdS/BCFT, SSA is satisfied if
the null energy condition is imposed on the EOW brane.

¢ We constructed a class of explicit gravity duals of boundary RG
flow by adding a scalar field localized on the EOW brane.

¢ When two boundary conditions are different in a BCFT on a
cylinder, its gravity dual predicts entanglement phase transition.



Future directions

e Higher (co-)dimensional generalizations ?

 SSAin Time-dependent cases ?

* SSAin AQFT and c/g theorem ?



Thank you very much !
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