Chromatic tower of $D(R) \quad 17^{\text {M May }}$ '3

- impired by eponymous paper by Neeman.
(I) $T=$ any triangulated category with all coproducts e.g. $T: D(R) \quad R$ comm. north. ring or $D(\varepsilon-\operatorname{coh} x)$, StModks, $H_{0}(s p), \ldots$
- A unblategory $s \leqslant T$ is thick if:
$f_{u} \prime \prime!\cdot S$ is triangulated:

$$
x \rightarrow y \rightarrow z \rightarrow \Sigma x
$$

Any two of x, y, z in $S \Rightarrow$ all hive e ins
S^{\prime} is closed undue refracts

$$
x \not y \in S \Rightarrow x, y \in S
$$

S closed under finite tums.
Example: $F: T \rightarrow U$ exact functor Kor (F) is a thick subcategory

If S is closed under all coproduct, then it is localizing.
Fix $x \in T$
Thick (x) : = Smallest thick Iublategory, Containing x
$\operatorname{Lor}(x)$: = Smallest loralizing subcategory containing x.
Examples: T : $D(R)$
(1) Thick $(R)=$ Perfect complexes

$$
\log (R)=D(R)
$$

(2) $I \leq R$ ideal. Then

$$
\begin{aligned}
\operatorname{Lur}(R / T)= & {[M \in D(R) / R \Gamma M \simeq M] } \\
& =\Gamma_{V(z)} H_{i}(M)=H_{i}(M) \not M i \\
& \equiv \operatorname{lop}_{R} H(I Y) \subseteq V(Z)
\end{aligned}
$$

Thick (R / I) has no such simple description in general
Exercise: Say R / I is regular (e.g. $I \subseteq R$ maximal)
Then Thick $\left(R / \frac{1}{1}\right)=\left\{M \in D^{b}(\bmod R) \mid R R_{V(2)} M M\right\}$

Basic question: Given $y \in T$, is

$$
y \in \text { Thick }(x) ? \quad y \in ?
$$

Why care: Properties of x are inherited by objects

$$
\text { in Thick }(x) \text {. }
$$

Example: $T=D(R)$ Say x is perfect, then any $y \in$ Thick (x) is perfect.
[But x projective $\Rightarrow Y$ projective]
Sometimes $y \in \operatorname{Loc}(x) \Rightarrow y \in$ Thick (x)
(Converse is clear)
An object $C \in T$ is Small (or Compact) if for any let $\left\{x_{i}\right\}$ in T, the natural map

$$
\underset{T}{\operatorname{Hom}\left(C, x_{i}\right)} \rightarrow \underset{T}{\operatorname{Hom}\left(C, \otimes_{i} x_{i}\right)}
$$

is bijective.

$$
T^{c}:=\text { Compact objects in } T
$$

- Thick subcategory

Example: (1) $D(B)^{c}=$ Perfect Completes
(2) $\left(S(-\operatorname{Mod} A)^{c}=\operatorname{sfmod} A\right.$

A any Arlin, Sorensteis algebra
(3) $H 0(S \beta)^{c}=$ Finite spectra

The: C, D compact and $D \in \operatorname{Loz}(c)$

$$
\Rightarrow D \in \text { Thick (c). }
$$

Neman?
(II) From now on $T=D(R)$

$$
p \in \int_{\text {pec }} R \text { tet } k(p) \therefore=\left(R_{p} / \text { PRS }\right)
$$

- Residue Field of Rp.

For $M \in D(R)$ jet

$$
\operatorname{uppp}_{R} M:=\left\{p \in \operatorname{Spec} R / M \otimes_{R}^{\ell} k(P) \neq 0\right\}
$$

("Small") Support of M
Notable features:
(1) $\operatorname{sopp}_{R} M=\phi \Leftrightarrow M=0$. Infact

$$
\left.\operatorname{Lor}(M)=\operatorname{Cor}\left(M s_{R}^{l} k(P)\right) P \in \operatorname{Spec} R\right)
$$

"M can be bailt out of its sfrata $\left\{M_{R}^{2} k(p)\right\}$ Lual- to-global principle for $D(R)$.
(2) $N \in \operatorname{Lon}(M) \Rightarrow \operatorname{lopp}_{R} N \leqslant \operatorname{Popp}_{R} M$
(3) $\quad \operatorname{Vupp}_{R}\left(\oplus M_{i}\right)=\bigcup_{i} \operatorname{Iopp}_{R}\left(\Pi_{i}\right)$
(4) $\operatorname{topp}_{R}\left(M_{R}^{\otimes} N\right)=\operatorname{lopp}_{R} M \cap \operatorname{lop} p_{R} N$
(5) Jopp $k(p)=\{p\}$

Hopkins : Fig perfect cx'es with roppp $F \subseteq$ tuppr 5 Hen $F \in$ Thick (s).
"Proof" Set $V=$ sopp 5 . Then

$$
\begin{aligned}
& \quad \operatorname{Rp} F \simeq F \quad(\because \operatorname{topp} F \leq v) \\
& \operatorname{cell} / / 2 \in \operatorname{Lo}(g)
\end{aligned}
$$

Thus $F \in \operatorname{los}(s)$

$$
\Rightarrow F \in \text { Thick }(S) \text { (Fis parfect) }
$$

What is hidden?
Application: Say $R \rightarrow S, N \in D^{b}(\bmod s)$
tinite map of rings
Wellknown: S penfect $/ R$ - N perfect $/ \mathrm{s}$
$\Rightarrow N$ pertect / R.

- cleanly S - N patect $/ R *$) N pertect/N
(Example?)
Thm: N pertect $/ R$ and vor $S \Rightarrow S$ patect $/ R$ on Topp N.
(i.e $\operatorname{prodim}_{\mathcal{R}_{\varepsilon, \Lambda}} \rho_{\varepsilon}<\infty \forall \varepsilon \in \pi$ opp,N)

Sketch of proof: May reduce to
$R \rightarrow S$ loral map of loral rings $0 \neq N \in D^{b}(\bmod)$
with N perfect $/ S^{\prime}$ and R.
Let $\underline{\rho}=1_{1}, \ldots, \rho_{n}$ be a generating tet for M, the maximal ideal of s.
$K=K(\underline{1}, s)$ the $K o l u c(x$. on $\underline{1}$.
Then $\operatorname{sopp}_{s} k=\left\{\eta_{s}\right\} \leq \operatorname{fopp}_{s} N$
non-emply closed labret of Spec s
Thus $K \in$ Thick, (N) (\because Hopkins)
So N perfect $/ R \Rightarrow k$ perfect $/ R$.
Now $K=K\left(s_{1}, \ldots, s_{1}\right): K(s_{1}, \overbrace{K\left(s_{2}, \ldots s_{1}\right)})$
Koozal c 2. an r_{1} with loettilient in $K\left(f_{2}, \ldots, f_{0}\right)$
Lemma: Say $x \in D^{b}(\bmod s)$ and $s \in M_{s}$.
If $K(g ; x)$ is perfect/ R, then to is x.

- Follows from

$$
0 \rightarrow x \rightarrow K(0 ; x) \rightarrow \Sigma x \rightarrow 0
$$

Applying $\operatorname{Tor}(k,-) \quad k$ the residue tipld of yields:

$$
\text { yields: } \operatorname{Tor}_{i}^{R}(k, x) \xrightarrow[p]{p} \operatorname{Tor}_{i}^{R}(k, x) \rightarrow \operatorname{Tor}_{i}^{R}(k, K(f, x)) \rightarrow
$$

To onto for $i \gg 0$.
$x \in D^{b}($ mods $\left.) \Rightarrow \operatorname{Tor}_{i}^{c} k, x\right)$ f.g. S- module

$$
\text { to } \left.\operatorname{Tar}_{i}^{R} k, x\right)=0 \quad \forall i \gg 0
$$

$i-e$. x pentect $/ R$.
Repeated appliation of this hemna yields:
$K(1)$ pentect $/ R \Rightarrow S$ pertect $/ R$. D
See: Finilnens in the derved calegory of
loal rinss, by DSI.

Neeman: For any $M, N \in D(R)$ if 1 Ippp $M \leq 1 \operatorname{lop}^{\wedge} N$ then $M \in \operatorname{Lar}(N)$.

- Implies Hopkins (explain):

Fig pertect with 10ppar \leqslant Jopp S

$$
\begin{aligned}
& \Rightarrow \quad F \in \operatorname{Los}(S) \quad(\text { Neeman) } \\
& \Rightarrow F \in \text { Thick(s) (} \because \text { iss Compact). }
\end{aligned}
$$

- Really a reformilation of the loral-to-global prinleple: $\quad \operatorname{sopp}_{\mathcal{R}} M \leqslant$ ūpp N

$$
\begin{gathered}
\Leftrightarrow \operatorname{Lor}\left(M \otimes_{R}^{e} k(p)\right) \leqslant \operatorname{Lor}\left(N \otimes_{R}^{e} k(p)\right) \\
(\because k(p) \text { Lield) }
\end{gathered}
$$

$\Rightarrow \quad \operatorname{Lor}(M) \leq \operatorname{Lor}(N)$
(III) Revisiting Durga/Sreenlees:

Fix $S \in D(R)$ perfect.

- Can assume y is a bounded Lx. of fig. projechives.
$E=\operatorname{End}(S) \quad d g R$-algebra
For any $M \in D(R)$

$$
R \operatorname{Hom}_{R}(S, M) \approx \underset{R}{\operatorname{Hom}(S, M)} \text { is a }
$$

dg E_{-}^{m} module.
One has

$$
D(R) \underset{\underset{\substack{\operatorname{Hom}(S,-) \\ R}}{\stackrel{-\infty}{\leftrightarrows} S} D\left(F^{-\infty}\right)}{\stackrel{e}{\leftrightarrows}}
$$

$$
\begin{gathered}
\operatorname{RHom}(S, M) \otimes_{E}^{\ell} S \rightarrow M \\
{ }_{112} \rightarrow M
\end{gathered}
$$

$$
\operatorname{Cell}(M)
$$

Implies $-\otimes_{\epsilon}^{l} g: D\left(C^{\sigma}\right) \equiv \operatorname{Lot}(G)=R R_{V} D(R)$

$$
V=\text { sop } S
$$

"Derived Morita theory"
There is move: Set $S^{\#}=\operatorname{Hom}_{R}(S, R)$

$$
\begin{aligned}
& M \rightarrow R \underset{F}{\operatorname{RHom}\left(S_{R}^{*}, \operatorname{RHom}(S, M)\right.} \\
& M \cong \underset{R}{\operatorname{RHom}(R, M)} \underset{R}{\longrightarrow} \operatorname{RH},-1) \underset{R}{\operatorname{RHom}}\left(\operatorname{RHom}_{R}(S R), \operatorname{RHom}(S, \Pi)\right)
\end{aligned}
$$

- This map is derived Completion u.v.t $V=$ tapes
we get

Then

$$
R P D(R) \rightleftarrows \angle \Lambda^{\prime} D(R)
$$

"Sreenless. May".

Back to the example: $R=\mathbb{E}, S=\mathbb{Z} / \mathrm{C} \simeq 0 \rightarrow \pi=2, z \rightarrow 0$

$$
E=\operatorname{End}_{\mathbb{Z}}(0 \rightarrow \mathbb{Z} \xrightarrow{p} \mathbb{\mathbb { R }}(0)
$$

Generated as a u module by:

$$
\begin{aligned}
& {\left[\partial, f_{-1}\right)_{2} p\left(f_{00}+f_{01}\right) \quad\left[\partial, f_{00}\right]=p f_{-1}} \\
& {\left[\partial, f_{01}\right]=-\rho f_{-1}} \\
& \therefore H^{0}(E)=H\left[f_{00}+f_{01}\right] \text { and } p .\left[f_{00}+f_{01}\right]=0 \\
& H^{\prime}(E)=\pi\left[f_{-1}\right] \text { and } p \cdot\left[f_{-1}\right]=0 \text {. }
\end{aligned}
$$

To compute $-\infty$ es one would have to resolve ζ as an E module.

NB. $\quad S \simeq$ Epa is a \mathbb{Z} morphiom, but not E - linear.

