Neutrinos in cosmology

Yvonne Y. Y. Wong, UNSW Sydney

Understanding the Universe through Neutrinos, ICTS-TIFR Bengaluru, April 22 – May 3, 2024

The grand lecture plan...

Part 1: Neutrinos in homogeneous cosmology

- 1. The homogeneous and isotropic universe
- 2. The hot universe and the cosmic neutrino background
- 3. Precision $C\nu B$

Part 2: Neutrinos in inhomogeneous cosmology

- 1. Theory of inhomogeneities
- 2. Neutrinos and structure formation
- 3. Relativistic neutrino free-streaming and non-standard interactions

Part 1: Neutrinos in homogeneous cosmology

- 1. The homogeneous and isotropic universe
- 2. The hot universe and the cosmic neutrino background
- 3. Precision $C\nu B$

3. Precision $C\nu B...$

Observable $C\nu B...$

We cannot detect the $C\nu B$ in the lab. But we can discern its presence from its impact on the events that take place after its formation.

CMB anisotropies

Large-scale matter distribution

 N_{eff} (expansion rate) $\sum m_{\nu}$ (perturbation growth) Interactions (free-streaming) Part 2 Lifetime (free-streaming)

 $\sum m_
u$ (perturbation growth)

The concordance flat ACDM model...

The simplest model consistent with present observations.

Composition today

Plus flat spatial geometry+initial conditions from single-field inflation

Neutrino-to-photon energy density ratio...

Recall the standard hot big bang prediction for the $C\nu B$ temperature:

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$$

→ At early times when $T_{\nu} \gg m_{\nu}$ (i.e., relativistic neutrinos), the energy density in one family of $\nu + \bar{\nu}$ is:

$$\rho_{\nu_{\alpha}} \simeq \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} \rho_{\gamma} \simeq 0.227 \rho_{\gamma}$$

Fermion vs boson/

• Summing over all three families:

$$\rho_{\nu_{\alpha}} \approx 3 \times 0.227 \ \rho_{\gamma} \approx 0.68 \ \rho_{\gamma}$$

Effective number of neutrinos...

A common practice is to express the neutrino-to-photon energy density ratio in terms of the **effective number of neutrino** N_{eff} parameter.

$$\sum_{\nu_{e},\nu_{\mu},\nu_{\tau}} \rho_{\nu_{\alpha}} = \frac{N_{\text{eff}}}{8} \times \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

The SM value is $N_{\rm eff}^{\rm SM} = 3.0440 \pm 0.0002$, for

- 3 families of neutrinos + antineutrinos
- A variety of %-level SM effects that alter **both** $\rho_{\nu_{\alpha}}$ and ρ_{γ} from their naïve expectations.

More on this later on.

Energy density in one thermalised species of massless fermions with 2 internal d.o.f. and temperature $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$.

Extending $N_{\rm eff}$ to light BSM thermal relics...

Any light (~sub-eV mass), feebly-interacting particle species produced by scattering in the early universe will **look sort of like a neutrino** as far as cosmology is concerned.

- E.g., light sterile neutrinos, thermal axions, ...
- At leading order, these **light thermal relics** add to the SM neutrino energy density as if $N_{\rm eff} \gtrsim 3$.

 \rightarrow Re-interpret $N_{\rm eff}$ as the early-time non-photon radiation content:

$$\sum_{\nu_{e},\nu_{\mu},\nu_{\tau}} \rho_{\nu_{\alpha}} + \rho_{\text{other}} = N_{\text{eff}} \times \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

$$N_{\text{eff}} = N_{\text{eff}}^{\text{SM}} + \Delta N_{\text{eff}}$$

$N_{\rm eff}$ and the expansion rate...

The primary impact of N_{eff} is on the expansion rate during & shortly after radiation domination.

Hubble expansion rate (Friedmann equation)

$$H^{2}(t) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \sum_{\alpha} \rho_{\alpha} - \frac{K}{a^{2}}$$

$$N_{\text{eff goes in here}}$$
At $a \leq O(10^{-3}) \approx \frac{8\pi G}{3} \sum_{\text{relativistic}} \rho_{\alpha}$

 Light element abundances (particularly Helium-4) from primordial nucleosynthesis and the CMB anisotropies are sensitive to this parameter.

Primordial nucleosynthesis takes place at $T \sim O(100) - O(10)$ keV, shortly after neutrino decoupling.

- Changing the expansion rate affects the production of **all** light elements.
- The largest effect is on He4, because
 - Almost all neutrons end up in He4.
 - The neutron-to-proton ratio depends strongly on how expansion affects the β-processes:

$$\begin{array}{l} \nu_e + n \leftrightarrow p + e^- \\ \bar{\nu_e} + p \leftrightarrow n + e^+ \end{array}$$

Primordial nucleosynthesis takes place at $T \sim O(100) - O(10)$ keV, shortly after neutrino decoupling.

- Changing the expansion rate affects the production of **all** light elements.
- The largest effect is on He4, because
 - Almost all neutrons end up in He4.
 - The neutron-to-proton ratio depends strongly on how expansion affects the β-processes:

$$\begin{array}{l} \nu_e + n \leftrightarrow p + e^- \\ \bar{\nu_e} + p \leftrightarrow n + e^+ \end{array}$$

Primordial nucleosynthesis takes place at $T \sim O(100) - O(10)$ keV, shortly after neutrino decoupling.

- Changing the expansion rate affects the production of **all** light elements.
- The largest effect is on He4, because
 - Almost all neutrons end up in He4.
 - The neutron-to-proton ratio depends strongly on how expansion affects the β-processes:

$$\begin{array}{l} \nu_e + n \leftrightarrow p + e^- \\ \bar{\nu_e} + p \leftrightarrow n + e^+ \end{array}$$

Helium-4 mass fraction

Primordial nucleosynthesis takes place at $T \sim O(100) - O(10)$ keV, shortly after neutrino decoupling.

- Changing the expansion rate affects the production of **all** light elements.
- The largest effect is on He4, because
 - Almost all neutrons end up in He4.
 - The neutron-to-proton ratio depends strongly on how expansion affects the β-processes:

$$\begin{array}{l} \nu_e + n \leftrightarrow p + e^- \\ \bar{\nu_e} + p \leftrightarrow n + e^+ \end{array}$$

Pitrou, Coc, Uzan & Vangioni 2018

$N_{\rm eff}$ and the CMB anisotropies...

 $N_{\rm eff}$ also affects the **expansion rate at recombination** ($T \sim 0.2 \ eV$), observable in the CMB temperature power spectrum

$N_{\rm eff}$ and the CMB anisotropies...

 $N_{\rm eff}$ also affects the **expansion rate at recombination** ($T \sim 0.2 \, {\rm eV}$), observable in the CMB temperature power spectrum

• Adjusting ω_m and h to match the first peak height and location, the irreducible signature of N_{eff} is in the damping tail.

Diffusion damping scale

Precision N_{eff}SM...

The **SM value of** *N*_{eff} can be calculated very precisely:

$$\sum_{\nu_{e},\nu_{\mu},\nu_{\tau},}\rho_{\nu_{\alpha}} = N_{\text{eff}}^{\text{SM}} \times \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$$

with $N_{eff}^{SM} = 3.0440 \pm 0.0002$, where the %-level corrections come from Bennett et al. 2019, 2020; Froustey, Pitrou & Volpe 2020; Drewes et al. 2024

- Non-instantaneous neutrino decoupling
- Neutrino flavour oscillations
- Non-relativistic electron gas across neutrino decoupling
- Finite-temperature QED effects in the photon/electron plasma

Deviations, or what's wrong with this picture?

Neither neutrino decoupling nor annihilation is instantaneous.

Tracking non-instantaneous decoupling...

The effect of an out-of-equilibrium interaction on a particle species can be tracked using the Boltzmann equation.

Tracking decoupling including oscillations...

Tracking neutrino decoupling is complicated by **neutrino oscillations**.

• We promote the classical Boltzmann equation for the phase space density to a quantum kinetic equation (QKE) for the density matrix of the neutrino ensemble.

BoltzmannQuantum kinetic equation
$$\frac{\partial f_1}{\partial t} = -\{f_1, H\} + C[f_1]$$
 $\widehat{\rho}_1 = -\frac{1}{i\hbar} [\widehat{\rho}_1, \widehat{H}] + \widehat{C}[\widehat{\rho}]$ Collision termDensity matrix (momentum-dependent) $\widehat{\rho}_1 = -\frac{1}{i\hbar} [\widehat{\rho}_1, \widehat{H}] + \widehat{C}[\widehat{\rho}]$ e.g., Sigl & Raffelt 1993 $\widehat{\rho} = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} & \rho_{e\tau} \\ \rho_{\mu e} & \rho_{\mu\mu} & \rho_{\mu\tau} \\ \rho_{\tau e} & \rho_{\tau\mu} & \rho_{\tau\tau} \end{pmatrix}$ Hamiltonian $\widehat{H} = \frac{1}{2p} U \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix} U^{\dagger} + \widehat{V}_{matter}$ Diagonal ~ occupation numbersVacuum oscillations + matter effects

Off-diagonal ~ oscillation phases

Interactions at 0.1 < T < 10 MeV...

The particle content and interactions at 0.1 < T < 10 MeV determine the properties of the CvB.

• QED plasma: e^{\pm} , γ

EM interactions (always in equilibrium @ 0.1 < T < 10 MeV):

$$e^{+}e^{-} \leftrightarrow \gamma\gamma$$

$$e^{+}e^{-} \leftrightarrow e^{+}e^{-}$$

$$e^{\pm}e^{\mp} \leftrightarrow e^{\pm}e^{\mp}$$

$$e^{\pm}e^{\pm} \leftrightarrow e^{\pm}e^{\pm}$$

$$\gamma e^{\pm} \leftrightarrow \gamma e^{\pm}$$

Coupled @ T > O(1)MeV $\nu_{\alpha} e^{\pm} \leftrightarrow \nu_{\alpha} e^{\pm}$ $\nu_{\alpha} \bar{\nu}_{\alpha} \leftrightarrow e^{+} e^{-}$

Weak interactions (in equilibrium @ T > O(1)MeV)

• 3 families of $v + \overline{v}$: $v_{\mu}, \overline{v}_{\mu}, v_{\mu}, \overline{v}_{\mu}, v_{\tau}, \overline{v}_{\tau}$

Weak interactions (in equilibrium @ T > O(1)MeV):

$$\begin{aligned} \nu_{\alpha}\nu_{\beta} \leftrightarrow \nu_{\alpha}\nu_{\beta} \\ \nu_{\alpha}\bar{\nu}_{\beta} \leftrightarrow \nu_{\alpha}\bar{\nu}_{\beta} & \alpha, \beta = e, \mu, \tau \\ \bar{\nu}_{\alpha}\bar{\nu}_{\beta} \leftrightarrow \bar{\nu}_{\alpha}\bar{\nu}_{\beta} \end{aligned}$$

These processes go into the collision integral and matter effects.

Collision integrals @ NLO...

Weak annihilation and scattering rates are currently computed to $O(G_F^2)$.

• Recent interest in computing QED corrections (T = 0 + finitetemperature) to these rates

Significant effect claimed in Cielo, Escudero, Mangano & Pisanti 2023

Versus negligible effect Jackson & Laine 2023 Drewes, Georis, Klasen, Wiggering & Y³W 2024

 No complete picture yet, but there's work in progress. So stay tuned!

Aside: sterile neutrinos...

See Physics Reports by Dasgupta & Kopp 2021 Abazajian 2017

The QKE formalism can also be used to compute sterile neutrino production.

- Light (sub-eV to eV mass) sterile states motivated by the short-baseline anomalies
- keV sterile neutrino dark matter

Differences:

- Sterile states have **no** matter effects or collisions.
- Sub-eV to eV sterile states are produced most efficiently at $T \sim O(1)$ MeV, while keV states are produced much earlier at $T \sim O(100)$ MeV, i.e., subject to different background expansion.

Aside: non-standard neutrino interactions...

You can also use the QKE formalism to compute the effects of nonstandard neutrino interactions (NSI) on the N_{eff} .

- NSI can change neutrino scattering and annihilation through the collision integral.
- NSI can add to the matter effects through the oscillation Hamiltonian.

De Salas, Gariazzo, Martinez-Mirave, Pastor & Tortola 2021

$arepsilon_{ee}^{L}$	$\varepsilon_{ au au}^L$	$N_{ m eff}$	$N_{ m eff}$ - $N_{ m eff}^{ m no~NSI}$	$N_{ m eff}^{ m osc}$	$N_{ m eff}^{ m osc}$ - $N_{ m eff}^{ m no~NSI}$	$N_{ m eff}^{ m coll}$	$N_{ m eff}^{ m coll}$ - $N_{ m eff}^{ m no~NSI}$
0.2	-0.3	3.05714	1.4×10^{-2}	3.04357	-7×10^{-5}	3.05714	1.4×10^{-2}
-0.3	0.2	3.03199	-1.2×10^{-2}	3.04367	3×10^{-5}	3.03198	-1.2×10^{-2}

Table 3: Comparison between the value of N_{eff} obtained for two sets of NSI parameters considering only its impact on oscillations through equation (16) $(N_{\text{eff}}^{\text{osc}})$ or in the collisional integrals through the G^X matrices in equation (11) $(N_{\text{eff}}^{\text{coll}})$. The deviation from the value of N_{eff} expected in the absence of NSI under the same assumptions is presented as a reference, where $N_{\text{eff}}^{\text{no NSI}} = 3.04364$ (muons are not included).

DIY: neutrino QKE codes...

Two **publicly available neutrino QKE codes** for fully momentumdependent decoupling/sterile neutrino production calculations.

• FortEPiaNO:

- 3 active +3 sterile
- CP symmetric only
- Precision mode includes corrections to the QED equation of state to $O(e^3)$.
- <u>https://bitbucket.org/ahep_cosmo/fortepiano_public</u>

• LASAGNA:

- 1 active + 1 sterile
- Can handle CP asymmetry
- <u>https://github.com/ThomasTram/LASAGNA_public</u>

Deviations, or what's wrong with this picture?

Neither neutrino decoupling nor annihilation is instantaneous.

Interactions at 0.1 < T < 10 MeV...

The particle content and interactions at 0.1 < T < 10 MeV determine the properties of the CvB.

• **QED** plasma: e^{\pm} , γ

EM interactions (always in equilibrium @ 0.1 < T < 10 MeV):

$$e^{+}e^{-} \leftrightarrow \gamma\gamma$$

$$e^{+}e^{-} \leftrightarrow e^{+}e^{-}$$

$$e^{\pm}e^{\mp} \leftrightarrow e^{\pm}e^{\mp}$$

$$e^{\pm}e^{\pm} \leftrightarrow e^{\pm}e^{\pm}$$

$$\gamma e^{\pm} \leftrightarrow \gamma e^{\pm}$$

Deviations from an ideal gas described by thermal QED

Coupled @ T > O(1)MeV $\nu_{\alpha}e^{\pm} \leftrightarrow \nu_{\alpha}e^{\pm}$ $\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^{+}e^{-}$

• 3 families of $v + \overline{v}$: $v_{\mu}, \overline{v}_{\mu}, v_{\mu}, \overline{v}_{\mu}, v_{\tau}, \overline{v}_{\tau}$

Weak interactions (in equilibrium @ T > O(1)MeV):

$$\begin{array}{l} \nu_{\alpha}\nu_{\beta} \leftrightarrow \nu_{\alpha}\nu_{\beta} \\ \nu_{\alpha}\bar{\nu}_{\beta} \leftrightarrow \nu_{\alpha}\bar{\nu}_{\beta} \\ \bar{\nu}_{\alpha}\bar{\nu}_{\beta} \leftrightarrow \bar{\nu}_{\alpha}\bar{\nu}_{\beta} \end{array} \qquad \alpha,\beta = e,\mu,\tau$$

Weak interactions (in equilibrium @ T > O(1)MeV) Finite-temperature QED...

Lowest-order correction of the QED partition function $\ln Z^{(2)} = -\frac{1}{2}$

Interactions of e^{\pm} , γ modify the QED plasma away from an ideal gas.

Energy = kinetic energy + rest mass

Pressure = from kinetic energy

T-dependent dispersion relation + Forces

Energy = modified kinetic energy + T-dependent masses + interaction potential energy Pressure = from modified kinetic energy + EM forces Modified QED equation of state

Summary of precision $N_{\rm eff}^{\rm SM}$...

Accounting for all corrections, the current SM benchmark for N_{eff} is:

 $N_{\rm eff}^{\rm SM} = 3.0440 \pm 0.0002$

Standard-model corrections to $N_{\rm eff}^{\rm SM}$	Leading-digit contribution				
m_e/T_d correction	+0.04				
$\mathcal{O}(e^2)$ FTQED correction to the QED EoS	+0.01				
Non-instantaneous decoupling+spectral distortion	-0.006				
$\mathcal{O}(e^3)$ FTQED correction to the QED EoS	-0.001				
Flavour oscillations	+0.0005				
Type (a) FTQED corrections to the weak rates	$\lesssim 10^{-4}$				
Sources of uncertainty					
Numerical solution by FortEPiaNO	± 0.0001				
Input solar neutrino mixing angle θ_{12}	± 0.0001				

Drewes, Georis, Klasen, Wiggering & Y³W 2024

Summary: Part 1...

- SM+FLRW cosmology predicts a cosmic neutrino background.
- The homogeneous properties of this background can be computed very precisely.
- A central technique in this computation are the Quantum Kinetic Equations (QKEs), which track how neutrinos go out of equilibrium in an expanding space.
- The QKEs also have uses beyond SM neutrino decoupling calculations.

Part 2: Neutrinos in inhomogeneous universe

- 1. Theory of inhomogeneities
- 2. Neutrinos and structure formation
- 3. Relativistic neutrino free-streaming and non-standard interactions

1. Theory of inhomogeneities...

Overview...

The distribution of matter in the universe, even on large scales, is **not** homogeneous and isotropic!

Red galaxies observed by the Sloan Digital Sky Survey

Intergalactic hydrogen clouds (simulations)

Overview...

The cosmic microwave background radiation is anisotropic.

Theory of inhomogeneities...

Our current understanding of the inhomogeneous universe:

Neutrino decoupling

Matter-radiation equality

time

Photon decoupling

- Inflation: Quantum fluctuations on a scalar field
- → initial perturbations on spacetime metric
- → initial conditions for CMB & large-scale structure

Gravity competes with pressure to amplify primordial inhomogeneities

CMB anisotropies: Perturbations in photon energy density and polarisation

Structure formation:

Perturbations in nonrelativistic matter

Theory of inhomogeneities...

We study large-scale inhomogeneities by perturbing around the FLRW spacetime geometry and stress-energy tensor:

- Linear perturbations suffice for large length scales (e.g., CMB):
 - Einstein's equation \rightarrow How $h_{\mu\nu}$ evolves due to $\delta T_{\mu\nu}$
 - **Boltzmann equation** \rightarrow How $\delta T_{\mu\nu}$ evolves due to $h_{\mu\nu}$ and the properties of the "stuff"

Theory of inhomogeneities...

Like any space metric, the perturbed part of the metric has **10 degrees** of freedom

$$\bar{g}_{\mu\nu} = \text{Unperturbed}$$

FLRW metric
 $g_{\mu\nu} = \bar{g}_{\mu\nu} + a^2 h_{\mu\nu}$
 $|h_{\mu\nu}| \ll 1$

- 4 are gauge degrees of freedom
- Of the 6 physical degrees of freedom:
 - 2 are relevant for structure formation: scalar modes
 - 2 represent gravitational waves: tensor modes
 - 2 are not present in standard inflationary Λ CDM: vector modes

Theory: scalar perturbations...

A physically intuitive way to represent and understand the behaviours of the two scalar modes is to use the **conformal Newtonian gauge**:

$$ds^{2} = a^{2}(\eta) \left[-(1+2\Psi)d\eta^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j} \right]$$

Cosmic time $\longrightarrow dt = a \, d\eta \, \longleftarrow$ Conformal time

- Cf the weak-field metric: $ds^2 = -(1 + 2\Psi)dt^2 + (1 2\Psi)\delta_{ij}dx^i dx^j$
- In the non-relativistic limit, $\Psi = \Phi$ corresponds to the Newtonian gravitational potential.
- I use the conformal Newtonian gauge in the following.

There is one set of perturbations for each matter/energy component, e.g., one for cold dark matter, one for photons, etc.

In standard inflationary Λ CDM, we track 4 forms of matter/energy.

Non-Relativistic non-interacting

Cold

dark matter

In standard inflationary ΛCDM, we track 4 forms of matter/energy.

• Each matter/energy form develops its own perturbations, tracked by the **Boltzmann equation**:

Nonrelativistic interacting

🔨 Coulomb

Electrons

Compton

Protons,

He4 nuclei

Spacetime

metric

Ionisation & recombination

Non-Relativistic non-interacting

In standard inflationary Λ CDM, we track 4 forms of matter/energy.

• But all forms of matter/energy "interact" with the spacetime metric (i.e., gravity), whose evolution is governed by **Einstein's equation**:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu}$$

Metric goes in here

Matter/energy

Linear Einstein-Boltzmann system...

A selection of the relevant equations

Metric $ds^2 = a^2(\tau) \left\{ -(1+2\psi)d\tau^2 + (1-2\phi)dx^i dx_i \right\} \,.$

Stress-energy tensor

 $\begin{array}{lll} T^0{}_0 &=& -(\bar{\rho}+\delta\rho)\,, \\ T^0{}_i &=& (\bar{\rho}+\bar{P})v_i = -T^i{}_0\,, \\ T^i{}_j &=& (\bar{P}+\delta P)\delta^i{}_j + \Sigma^i{}_j\,, \qquad \Sigma^i{}_i = 0\,, \end{array}$

Einstein's equation

$$\begin{split} k^2\phi + 3\frac{\dot{a}}{a}\left(\dot{\phi} + \frac{\dot{a}}{a}\psi\right) &= 4\pi G a^2 \delta T^0_0(\mathrm{Con})\,,\\ k^2\left(\dot{\phi} + \frac{\dot{a}}{a}\psi\right) &= 4\pi G a^2(\bar{\rho} + \bar{P})\theta(\mathrm{Con})\,,\\ \ddot{\phi} + \frac{\dot{a}}{a}(\dot{\psi} + 2\dot{\phi}) + \left(2\frac{\ddot{a}}{a} - \frac{\dot{a}^2}{a^2}\right)\psi + \frac{k^2}{3}(\phi - \psi) &= \frac{4\pi}{3}G a^2 \delta T^i_{\ i}(\mathrm{Con})\,,\\ k^2(\phi - \psi) &= 12\pi G a^2(\bar{\rho} + \bar{P})\sigma(\mathrm{Con})\,, \end{split}$$

Linear Einstein-Boltzmann system...

There are several publicly available numerical codes that solve the full linear Einstein-Boltzmann system:

- CAMB: <u>https://camb.info</u>
- CLASS: <u>http://class-code.net/</u>
- Mostly optimised for for standard inflationary Λ CDM, but can be fairly easily modified to accommodate "exotic" models.
- More on cosmological perturbation theory, e.g.,
 - Hu, Covariant linear perturbation formalism, astro-ph/0402060
 - Seljak, Lectures on dark matter, ICTP Lect.Notes Ser. 4 (2001) 33-77

How real neutrinos fit into this picture...

Real neutrinos are of course **massive**.

• For sub-eV masses, relativistic-to-NR transition happens at redshifts z =O(100) - O(1000).

→ Technically NR today but may not be totally "cold".

 → Spend a substantial amount of time in the CMB/structure formation epoch as relativistic particles.

Massive neutrino Boltzmann equation...

We also use the linearised Boltzmann equation to track the massive neutrino phase space density $f_{\nu}(p, x, t)$ and how inhomogeneities evolve in their presence.

$$P^{\mu} \frac{\partial f_{\alpha}}{\partial x^{\mu}} - \prod_{\mu\nu}^{i} P^{\mu} P^{\nu} \frac{\partial f_{\alpha}}{\partial P^{i}} = 0 \quad \longleftarrow \quad \text{No non-gravitational}$$
Interactions for neutrinos
Gravity

- Fundamentally **no different** from the massless case.
- However, adding masses leads to new energy/time scales in the problem.
 - Need to track how each momentum mode goes NR and responds to gravity (in contrast with the massless case, where every mode has speed c and hence evolves in the same way).
 - $\sim 10-20$ times more equations to solve numerically for every new mass.

Massive neutrino Boltzmann equation...

Split into background + perturbed part

$$f(x^i, P_j, au) = f_0(q) \left[1 + \Psi(x^i, q, n_j, au)
ight]$$

Legendre decomposition

$$\Psi(ec{k}, \hat{n}, q, au) = \sum_{l=0}^{\infty} (-i)^l (2l+1) \Psi_l(ec{k}, q, au) P_l(\hat{k} \cdot \hat{n}) \,.$$

Legendre-decomposed Boltzmann equation aka Boltzmann hierarchy

$$\begin{split} \dot{\Psi}_0 &= -\frac{qk}{\epsilon} \Psi_1 - \dot{\phi} \frac{d\ln f_0}{d\ln q} \,, \\ \dot{\Psi}_1 &= \frac{qk}{3\epsilon} \left(\Psi_0 - 2\Psi_2 \right) - \frac{\epsilon k}{3q} \psi \frac{d\ln f_0}{d\ln q} \,, \\ \dot{\Psi}_l &= \frac{qk}{(2l+1)\epsilon} \left[l\Psi_{l-1} - (l+1)\Psi_{l+1} \right] \,, \quad l \geq 2 \,. \end{split}$$

Linear Boltzmann equation for perturbed part

$$\frac{\partial \Psi}{\partial \tau} + i \frac{q}{\epsilon} \left(\vec{k} \cdot \hat{n} \right) \Psi + \frac{d \ln f_0}{d \ln q} \left[\dot{\phi} - i \frac{\epsilon}{q} (\vec{k} \cdot \hat{n}) \psi \right] = \mathbf{0}$$

Density, pressure, velocity & anistropic stress from Legendre moments

$$\begin{split} \delta\rho_h &= 4\pi a^{-4} \int q^2 dq \,\epsilon f_0(q) \Psi_0 \,, \\ \delta P_h &= \frac{4\pi}{3} a^{-4} \int q^2 dq \, \frac{q^2}{\epsilon} f_0(q) \Psi_0 \,, \\ (\bar{\rho}_h + \bar{P}_h) \theta_h &= 4\pi k a^{-4} \int q^2 dq \, q f_0(q) \Psi_1 \,, \\ (\bar{\rho}_h + \bar{P}_h) \sigma_h &= \frac{8\pi}{3} a^{-4} \int q^2 dq \, \frac{q^2}{\epsilon} f_0(q) \Psi_2 \,. \end{split}$$

e.g., Ma & Bertschinger 1995

These are all coded up in public Boltzmann codes **CAMB** and **CLASS**.

Fun things with cosmological neutrinos...

I'm **not** going to talk about technical details here. Rather, I want to give you a physical picture of what's happening.

- **Non-relativistic neutrinos** in the low-redshift ($z \leq 1000$) universe in structure formation
 - Neutrino mass constraints
- Free-streaming relativistic neutrinos around CMB times (z~1000)
 - As a probe of non-standard neutrino interactions
 - Neutrino decay