

Infosys-ICTS Chandrasekhar Lectures, 2024 Aug. ICTS Program "Quantum Information, Quantum Field Theory and Gravity"

wantum information, guantum rield rheory and Gravity

Pseudo entropy and de Sitter Holography (Lecture 3)

Tadashi Takayanagi Yukawa Institute for Theoretical Physics Kyoto University

Center for Gravitational Physics and Quantum Information Yukawa Institute for Theoretical Physics. Kyoto University

Quantum Entanglement (QE)

Two parts (subsystems) A and B in a total system are quantum mechanically correlated.

e.g. Bell state:
$$|\Psi_{Bell}\rangle = \frac{1}{\sqrt{2}} \left[|\uparrow\rangle_A \otimes |\downarrow\rangle_B + |\downarrow\rangle_A \otimes |\uparrow\rangle_B \right] \Rightarrow \begin{array}{l} \text{Minimal Unit of}\\ \text{Entanglement} \end{array}$$

Pure States: Non-zero QE $\Leftrightarrow |\Psi\rangle_{AB} \neq |\Psi_1\rangle_A \otimes |\Psi_2\rangle_B$.
Direct Product

The best (or only) measure of quantum entanglement for pure states is known to be **entanglement entropy (EE)**.

EE = # of Bell Pairs between A and B

Entanglement entropy (EE) in "HEP"

Divide a quantum system into two subsystems A and B:

$$H_{tot} = H_A \otimes H_B$$

Define the reduced density matrix by $\rho_A = \text{Tr}_B |\Psi\rangle\langle\Psi|$.

The entanglement entropy $S_{\scriptscriptstyle A}$ is defined by

$$S_A = -\mathrm{Tr}_A \ \rho_A \log \rho_A \,.$$

(von-Neumann entropy)

Quantum Many-body SystemsQuantum Field Theories (QFTs) ε $\widetilde{\Box}$ $\widetilde{\Box}$ ε <t

Entanglement Entropy (EE) in QI Text Book Setup $\xrightarrow{A} \xrightarrow{B} \Rightarrow H_{tot} = H_A \otimes H_B$ A B LO (=Local Operations) Projection measurements and unitary trfs. which act either A or B only.

<u>**CC**</u>(=Classical Communications between A and B)

 \Rightarrow These operations are combined and called LOCC.

A basic example of LOCC: quantum teleportation

$$(|\Psi\rangle_{AB}\langle\Psi|)^{\otimes M} \Rightarrow (|\text{Bell}\rangle\langle\text{Bell}|)^{\otimes N}$$

Well-known fact in QI:

$$S(\rho_A) = \lim_{M \to \infty} \frac{N}{M}$$

$$\rho_A \equiv \mathrm{Tr}_B[|\Psi\rangle_{AB} \langle \Psi|]$$

[Bennett-Bernstein-Popescu-Schumacher 95, Nielsen 98]

In this talk, we will introduce a generalization of entanglement entropy, called pseudo entropy.

Motivation 1

Generalization of entanglement entropy to post-selection processes \rightarrow It depends on both the initial and final state.

Motivation 2

Generalization of holographic entanglement entropy to Euclidean time-dependent backgrounds \rightarrow Ver. 3 HEE formula

Motivation 3

Holographic entanglement for dS/CFT ? \rightarrow Need pseudo entropy

Dual CFTs are non-Hermitian !

Main References

[1] arXiv:2005.13801 [Phys.Rev.D 103 (2021) 026005]
 with Yoshifumi Nakata (YITP, Kyoto), Yusuke Taki (YITP, Kyoto)
 Kotaro Tamaoka (Nihon U.), Zixia Wei (Harvard U.).
 ▶Original paper of pseudo entropy

 [2] arXiv:2210.09457 [PRL130(2023)031601] arXiv:2302.11695 [JHEP 05 (2023) 052] with Kazuki Doi (YITP), Jonathan Harper (YITP), Ali Mollabashi (IPM), Yusuke Taki (YITP).
 ▶pseudo entropy in dS/CFT

[3] arXiv: 2405.14237

with Kazuki Doi (YITP), Naoki Ogawa (YITP), Kotaro Shinmyo (YITP), Yu-ki Suzuki (YITP). ►Dual CFT states in dS/CFT

<u>Contents</u>

- 1 Introduction
- 2 Ver.3 Holographic Entanglement Entropy ?
- ③ Pseudo Entropy
- (4) Holographic Pseudo Entropy
- **5** Pseudo Entropy and Quantum Phase Transition
- 6 De Sitter Holography and Pseudo Entropy
- 7 Probing De Sitter Space from CFT
- 8 Conclusions

② Ver.3 of Holographic Entanglement Entropy ?

Ver. 1 Holographic EE for Static Spacetimes

[Rvu-TT 06]

For static asymptotically AdS spacetimes:

$$S_{A} = \underset{\substack{\partial \Gamma_{A} = \partial A\\ \Gamma_{A} \approx A}}{\operatorname{Min}} \left[\frac{\operatorname{Area}(\Gamma_{A})}{4G_{N}} \right]$$

 $\Gamma_{\rm A}$ is the minimal area surface (codim.=2) on the time slice such that

$$\partial A = \partial \gamma_A$$
 and $A \sim \gamma_A$.
homologous

[Hubeny-Rangamani-TT 07]

A generic Lorentzian asymptotic AdS spacetime is dual to a time dependent state $|\Psi(t)\rangle$ in the dual CFT.

The entanglement entropy gets time-dependent:

$$o_A(t) = \operatorname{Tr}_B[|\Psi(t)\rangle\langle\Psi(t)|] \implies S_A(t).$$

This is computed by the holographic formula:

$$S_A(t) = \operatorname{Min}_{\Gamma_A} \operatorname{Ext}_{\Gamma_A} \left[\frac{A(\Gamma_A)}{4G_N} \right]$$

$$\partial A = \partial \gamma_A$$
 and $A \sim \gamma_A$.

Ver 3. Formula ?

Minimal areas in *Euclidean time dependent* asymptotically AdS spaces

= What kind of QI quantity (Entropy ?) in CFT ?

The answer is Pseudo Entropy !

[Nakata-Taki-Tamaoka-Wei-TT, 2020]

③ Pseudo Entropy

(3-1) Definition of Pseudo (Renyi) Entropy

Consider two quantum states $|\psi\rangle$ and $|\varphi\rangle$, and define the *transition matrix*: $\tau^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}$.

We decompose the Hilbert space as $H_{tot} = H_A \otimes H_B$. and introduce the reduced transition matrix:

$$\tau_A^{\psi|\varphi} = \mathrm{Tr}_B\left[\tau^{\psi|\varphi}\right]$$

$$S\left(\tau_{A}^{\psi|\varphi}\right) = -\mathrm{Tr}\left[\tau_{A}^{\psi|\varphi}\mathrm{log}\tau_{A}^{\psi|\varphi}\right].$$

Renyi Pseudo Entropy $S^{(n)}\left(\tau_{A}^{\psi|\varphi}\right) = \frac{1}{1-n}\log \operatorname{Tr}\left[\left(\tau_{A}^{\psi|\varphi}\right)^{n}\right]$

(3-2) Basic Properties of Pseudo Entropy (PE)

• In general, $\tau_{A}^{\psi|\varphi}$ is not Hermitian. Thus PE is complex valued.

Entanglement Phase Transition [Kanda-Kawamoto-Suzuki-Wei-TT 2023]

- If either $|\psi\rangle$ or $|\varphi\rangle$ has no entanglement (i.e. direct product state), then $S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = 0.$
- We can show $S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = \left[S^{(n)}\left(\tau_A^{\varphi|\psi}\right)\right]^{\dagger}$.
- We can show $S^{(n)}\left(\tau_A^{\psi|\varphi}\right) = S^{(n)}\left(\tau_B^{\psi|\varphi}\right). \rightarrow "SA=SB"$

• If
$$|\psi\rangle = |\varphi\rangle$$
, then $S^{(n)}\left(\tau_A^{\psi|\varphi}\right) =$ Renyi entropy.

<u>Comment</u>: In quantum theory, transition matrices arise when we consider *post-selection*.

$$\begin{array}{c} \langle \varphi | O_A | \psi \rangle \\ \langle \varphi | \psi \rangle \end{array} = \mathrm{Tr}[O_A \tau_A^{\psi | \varphi}] \\ \hline \\ \text{Final state} \\ \text{after post-selection} \end{array}$$

This quantity is called **weak value** and is complex valued in general. [Aharanov-Albert-Vaidman 1988,...]

Thus, pseudo entropy =weak value of "modular operator": = Area Operator

$$S\left(\tau_{A}^{\psi|\varphi}\right) = \frac{\langle \varphi|H_{A}|\psi\rangle}{\langle \varphi|\psi\rangle}.$$

$$H_A$$
=-log τ_A

(3-3) Pseudo Entropy as Entanglement Distillation

Let us focus on the class E i.e. $\tau_A^{\psi|\varphi}$ and $\tau_B^{\psi|\varphi}$ are Hermitian and semi-positive definite.

Remarkably, in this case we can show a quantum information theoretical interpretation of pseudo entropy:

<u>Claim</u>	Pseudo Entropy $S\left(au_{A}^{\psi arphi} ight)$
	= # of Distillable Bell Pairs
	as an intermediate states
	of post-selection $ \psi\rangle \rightarrow \varphi\rangle$.

More precisely, we take asymptotic limit $M \rightarrow \infty$.

Distillation from Post-selection

In class E, we can write

 $|\psi\rangle = \cos\theta_1 |00\rangle + \sin\theta_1 |11\rangle$

 $|\varphi\rangle = \cos\theta_2 |00\rangle + \sin\theta_2 |11\rangle$

$$\tau_A^{\psi|\varphi} = \frac{\cos\theta_1 \cos\theta_2 |0\rangle \langle 0| + \sin\theta_1 \sin\theta_2 |1\rangle \langle 1|}{\cos(\theta_1 - \theta_2)}$$

$$S\left(\tau_{A}^{\psi|\varphi}\right) = -\frac{\cos\theta_{1}\cos\theta_{2}}{\cos(\theta_{1}-\theta_{2})} \cdot \log\frac{\cos\theta_{1}\cos\theta_{2}}{\cos(\theta_{1}-\theta_{2})} - \frac{\sin\theta_{1}\sin\theta_{2}}{\sin(\theta_{1}-\theta_{2})} \cdot \log\frac{\sin\theta_{1}\sin\theta_{2}}{\sin(\theta_{1}-\theta_{2})}$$

$$(|\psi\rangle)^{\otimes M} = (\cos\theta_{1}|00\rangle + \sin\theta_{1}|11\rangle)^{\otimes M}$$

$$= \sum_{k=0}^{M} (c_{1})^{M-k} (s_{1})^{k} \sum_{a=1}^{\mathsf{MC}_{k}} |P(k), a\rangle_{\mathsf{B}} |P(k), a\rangle_{\mathsf{B}}$$

$$c_{1} \equiv \cos\theta_{1}, s_{1} \equiv \sin\theta_{1}$$

$$k = 0: \quad |P(0), 1\rangle = |00 \cdots 0\rangle$$

$$k = 1: \quad |P(1), 1\rangle = |10 \cdots 0\rangle, |P(1), 2\rangle = |01 \cdots 0\rangle, \cdots$$

Projection to maximally entangled states
with Log[MCk] entropy:
$$\mathsf{MC}_{k}=\mathsf{M}!/(\mathsf{M-k})!k!$$

$$\Pi_{k} = \sum_{a=1}^{\mathsf{MC}_{k}} |P(k), a\rangle\langle P(k), a|$$

probability:
$$p_{k} = \langle \varphi | \Pi_{k} | \psi \rangle / \langle \varphi | \psi \rangle = \frac{(c_{1}c_{2})^{M-k} (s_{1}s_{2})^{k}}{(c_{1}c_{2} + s_{1}s_{2})^{M}} \cdot \mathsf{MC}_{k}$$

of Distillable Bell pairs: $N = \sum_{k=0}^{M} p_k Log[MCk]$ $\approx M \cdot S(\tau_A^{\psi|\varphi})!$

(3-4) SVD entropy [Parzygnat-Taki-Wei-TT 2023]

Motivation: Improve PE so that (i) it become <u>real and non-negative</u> and (ii) it has <u>a better LOCC interpretation</u>.

SVD entropy

$$S_{SVD}\left(\tau_{A}^{\psi|\varphi}\right) = -\mathrm{Tr}\left[|\tau_{A}^{\psi|\varphi}| \cdot \log|\tau_{A}^{\psi|\varphi}|\right].$$
here, $|\tau_{A}^{\psi|\varphi}| \equiv \sqrt{\tau_{A}^{\dagger\psi|\varphi}\tau_{A}^{\psi|\varphi}}$

- This is always non-negative and is bounded by log dim HA.
- From quantum information theoretic viewpoint, this is the number of Bell pairs distilled from the intermediate state:

$$\tau_{A}^{\psi|\varphi} = \mathsf{U} \cdot \Lambda \cdot \mathsf{V}, \qquad \frac{\langle \varphi | \mathsf{V}^{\dagger} \sum_{k} |\mathsf{EPR}_{k} \rangle \langle \mathsf{EPR}_{k} | \mathsf{U}^{\dagger} | \psi \rangle}{\langle \varphi | \mathsf{V}^{\dagger} \mathsf{U}^{\dagger} | \psi \rangle} = \sum_{k} p_{k} = 1$$

 $S_{SVD} \approx \sum_{k} p_{k} \cdot \# \text{ of Bell Pairs in } | EPR_{k} \rangle$

(4) Holographic Pseudo Entropy

Holographic Pseudo Entropy (HPE) Formula

[Nakata-Taki-Tamaoka-Wei-TT, 2020]

$$S\left(\tau_{A}^{\psi|\varphi}\right) = \operatorname{Min}_{\Gamma_{A}}\left[\frac{A(\Gamma_{A})}{4G_{N}}\right]$$

Basic Propertie

(i) If
$$\rho_A$$
 is pure, $S\left(\tau_A^{\psi|\varphi}\right) = 0$.
(ii) If ψ or φ is not entangled,
 $S\left(\tau_A^{\psi|\varphi}\right) = 0$.

 \rightarrow This follows from AdS/BCFT [TT 2011]

(*iii*)
$$S\left(\tau_{A}^{\psi|\varphi}\right) = S\left(\tau_{B}^{\psi|\varphi}\right)$$
. "SA=SB"

- However, the strong subadditivity can be easily violated if we allow zigzag time slices like ______.
 ⇒We may need to limit to straight time slices or just ignore SSA ?
- We can derive the holographic pseudo entropy formula as in [Lewkowycz-Maldacena 13]. This is because we can calculate the pseudo entropy via the standard replica trick.

$$\begin{pmatrix} \boldsymbol{\varphi} & \left\{ \begin{array}{c} \mathbf{\Phi} \\ \mathbf{\Phi}$$

5 Pseudo Entropy and Quantum Phase Transitions

[Mollabashi-Shiba-Tamaoka-Wei-TT 20, 21]

(5-1) Basic Properties of Pseudo entropy in QFTs

Area law
$$S_A \sim \frac{\operatorname{Area}(\partial A)}{\varepsilon^{d-1}} + (\text{subleading terms}),$$

[2] The difference

$$\Delta S = S\left(\tau_A^{1|2}\right) + S\left(\tau_A^{1|2}\right) - S(\rho_A^1) - S(\rho_A^2)$$

is negative if $|\psi_1\rangle$ and $|\psi_2\rangle$ are in a same phase. PE in a 2 dim. free scalar when we change its mass.

[1]

What happen if they belong to different phases ? Can Δ S be positive ?

(5-2) Quantum Ising Chain with a transverse magnetic field

Heuristic Interpretation

The gapless interface (edge state) also occurs in topological orders.
 →Topological pseudo entropy
 [Nishioka-Taki-TT 2021, Caputa-Purkayastha-Saha-Sułkowski 2024]

6 dS Holography and Pseudo Entropy

Holographic entanglement entropy suggests that the extra dimension in AdS/CFT emerges from quantum entanglement.

However, the Universe, which we live, has been considered as de Sitter space ($\Lambda > 0$) rather than anti de Sitter space ($\Lambda < 0$).

Q. Does our universe emerges from quantum information ? Consider holographic entanglement in dS gravity !

Let us first remember what we know about dS holography.

A Sketch of dS/CFT [Strominger 2001, Witten 2001, Maldacena 2002,....]

What we expect for dS/CFT

→Let us assume dS Einstein gravity and extract general expectations.

d+1 dim. (Lorentzian) de-Sitter $ds^2 = L_{dS}^2(-dt^2 + \cosh^2 t \, d\Omega^2)$ S^{d+1} (Euclidean de-Sitter) $ds^2 = L_{dS}^2 (d\theta^2 + \sin^2\theta d\Omega^2)$ $L_{AdS} = iL_{dS}, \ \rho = i\theta$ Euclidean AdS (H^{d+1}) $ds^2 = L_{AdS}^2 (d\rho^2 + \mathrm{Sinh}^2 \rho d\Omega^2)$ Central charge: $c \sim \frac{L_{AdS}^{d-1}}{G_N} = i^{d-1} \cdot \frac{L_{dS}^{d-1}}{G_N}$ We are interested in d=2 case in this talk !

(i) Central charge becomes <u>imaginary</u> for d=even !
 (ii) Central charge gets larger in classical gravity limit.

This non-unitary CFT is essentially equivalent to the two Liouville CFTs at $b^{-2} \approx \pm \frac{i}{4G_N}$. [Hikida-Nishioka-Taki-TT 2022] [\rightarrow Reproduced by Verlinde-Zhang 2024 via the Double Scaled SYK]

Holographic Pseudo Entropy in dS3/CFT2

[No space-like extreme surface ending on bdy →complex valued EE: Narayan, Sato 2015, Interpretation as PE: Doi-Harper-Mollabashi-Taki-TT 2022]

If we naively apply the HEE in AdS/CFT to dS/CFT, we obtain

$$S_{A} = \frac{L(\Gamma_{A})}{4G_{N}} = i\frac{C_{ds}}{3}\log\left(\frac{2}{\epsilon}\sin\frac{\theta}{2}\right) + \frac{C_{ds}}{6}\pi.$$

$$ds^{2} = L_{ds}^{2}(-dt^{2} + \cosh^{2}t(d\theta^{2} + \sin^{2}\theta d\varphi^{2})^{SdS/2}$$
Space-like bdy
$$\int_{t=t_{\infty}}^{t=t_{\infty}}\int_{t=t_{\infty}}^{t}L(\Gamma_{A}) = 2it_{\infty} + i\log(\sin^{2}\frac{\theta}{2}) + \pi$$

$$t = 0$$
Length of time-like geodesics
$$\rightarrow$$
 imaginary value
$$t = 0$$
Space-like geodesic (Semi circle)

This nicely reproduces the familiar 2d CFT result as follows:

$$S_A = rac{C_{CFT}}{6} \log \left[rac{\sin^2 rac{ heta}{2}}{ ilde{\epsilon}^2}
ight]$$
, by setting
 $C_{CFT} = iC_{dS}$ and $\tilde{\epsilon} = i\epsilon = ie^{-t_{\infty}}$

However, one may wonder why the EE is complex valued. We argue it is more properly considered as the pseudo entropy.

[Doi-Harper-Mollabashi-Taki-TT 2022]

This is because the reduced density matrix ρ_A is not Hermitian in the CFT dual to dS, as it is not unitary.

→For the dual 2d CFT on Σ with metric $h_{ab} = e^{2\phi}\delta_{ab}$, we have [See e.g. Boruch-Caputa-Ge-TT 2021]

$$Z_{CFT}(S^2) \approx e^{-I_{CFT}[\phi]}, \quad I_{CFT}[\phi] = \frac{i}{24\pi} \int d^2 x [(\partial_a \phi)^2 + e^{2\phi}].$$

Complex valued $! \rightarrow \rho_A \neq \rho_A^{\dagger}$

Probing dS from CFT [Doi-Ogawa-Shinmyo-Suzuki-TT 2024]

Consider an observer in 2d CFT.

→How does the observer feel that he or she lives in AdS or dS ?

To probe the spacetime, we introduce an local excitation.

Probing AdS from CFT

AdS metric $ds^2 = R_{AdS}^2 (-\cosh^2 \rho dt^2 + d\rho^2 + \sinh^2 \rho d\varphi^2)$

Primary operator in CFT

 $\Delta_{\pm} = 1 \pm \sqrt{1 + M^2 R_{AdS}^2}$

CFT dual of Bulk local excitation

We can find quantum states in the CFT which describe localized excitations in AdS (cf. HKLL):

[Miyaji-Numasawa-Shiba-Watanabe-TT 2015]

$$\left| \Psi_{AdS}^{(\Delta)}(\rho,t,\varphi) \right\rangle = e^{-i(L_{0}+\tilde{L}_{0})t} e^{i\varphi(L_{0}-\tilde{L}_{0})} e^{-\frac{\rho}{2}\left(L_{-1}+\tilde{L}_{-1}-L_{1}-\tilde{L}_{1}\right)} e^{\frac{\pi i}{2}\left(L_{0}+\tilde{L}_{0}\right)} \left| I^{(\alpha)} \right\rangle.$$
SL(2,R) Crosscap State
SL(2,R) Ishibashi State
CFT state dual to
a localized excitation
in the bulk AdS
$$\left| (L_{n}-\tilde{L}_{-n}) \right| I^{(\alpha)} \right\rangle = 0, \quad n = 0, \pm 1$$

 $\left|\left|I^{(\alpha)}\right\rangle = \sum_{k=0} c_k \left(L_{-1} L_{-1}\right) \left|\Delta\right\rangle\right|$

Note: $\{Ln\}(|n|>1)$ are not relevant as they change the CFT vacuum.

First we note the "formal" relation between AdS and dS:

To probe the dS geometry from the dual CFT, we would like to find quantum states in the CFT which describe localized excitations in dS:

$$\left| \widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi) \right\rangle = e^{(L_{0}+\widetilde{L}_{0})t} e^{i\varphi(L_{0}-\widetilde{L}_{0})} e^{i\frac{\theta}{2}\left(L_{1}+\widetilde{L}_{1}-L_{-1}-\widetilde{L}_{-1}\right)} e^{\frac{\pi i}{2}(L_{0}+\widetilde{L}_{0})} \left| I^{(\alpha)} \right\rangle.$$
Non-unitary evolution
 \rightarrow emergent time
SL(2,R) Crosscap State

Primary operator in CFT

$$O^{(\Delta_+)}(t, arphi)$$

SL(2,R) Ishibashi State

$$\left| (L_n - \widetilde{L}_{-n}) \right| I^{(\alpha)} \rangle = 0$$

$$\Delta_{\pm} = 1 \pm i \sqrt{M^2 R_{dS}^2 - 1}$$

However, the above naïve analytically continued result from AdS leads to the confusing result (due to the *unusual conjugation*):

$$\left\langle \widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi) \middle| \widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau',\theta',\varphi') \right\rangle = 0.$$

The correct answer is found by requiring the CPT invariance state:

$$\begin{split} \left| \Psi_{E}^{(\Delta_{+})}(\tau,\theta,\varphi) \right\rangle &= \frac{1}{\sqrt{i}} \left| \widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi) \right\rangle + CPT \cdot \left(\frac{1}{\sqrt{i}} \left| \widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi) \right\rangle \right) \\ &= \frac{1}{\sqrt{i}} \left| \widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi) \right\rangle + \sqrt{i} \left| \widetilde{\Psi}_{dS}^{(\Delta_{-})}(\tau,\pi-\theta,\varphi+\pi) \right\rangle. \end{split}$$

[cf. gauging CPT in QG: Harlow-Numasawa 2023]

Antipodal map

Indeed, this reproduces the correct dS Green function at Euclidean vacuum

$$\left\langle \Psi_{E}^{(\Delta_{+})}(x) \middle| \Psi_{E}^{(\Delta_{+})}(x') \right\rangle = G_{dS}^{E}(x,x') = \frac{\sinh \mu(\pi - D_{dS}(x,x'))}{4\pi \sinh \pi \mu \cdot \sin D_{dS}(x,x')}$$

After a regularization, we find that the information metric leads to dS metric:

$$ds_{\inf}^{2} = \frac{1}{\delta^{2}} \left(-\cos^{2}\theta d\tau^{2} + d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right).$$

8 Conclusions

Pseudo entropy (PE) is a generalization of entanglement entropy.

- PE depends on both the initial and final state.
- PE is in general complex valued.
- PE for `non-exotic states' measures the amount of quantum entanglement in the intermediate states.
- ΔS for two states in different phases can be positive, while ΔS in the same phase is always non-positive.

New quantum order parameter

- In AdS/CFT, PE is equal to the minimal surface area in Euclidean time-dependent asymptotically AdS geometry.
 Emergence of space from real part of PE
- ♦ In dS/CFT, PE becomes complex valued.
 - Emergence of time from imaginary part of PE (Non-Hermitian nature of the dual CFT)

Future directions

- Quantum information meaning of the complex values of PE ?
- Applications to cond-mat physics / statistical mechanics ?
- Implications to quantum gravity ?
- Holographic dual of SVD entropy ?
- Constraints on QFTs using PE ?

Thank you very much !

Appendix A: More Results in Qubit systems

An Example of Exotic Transition Matrix

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{2}} (|00\rangle + e^{i\theta} |11\rangle) \\ |\varphi\rangle &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \\ \tau_A^{\psi|\varphi} &= \frac{1}{1+e^{i\theta}} (|0\rangle\langle 0| + e^{i\theta} |1\rangle\langle 1|). \quad \stackrel{\rightarrow}{\rightarrow} \text{Complex conjugate} \\ pair of Eigenvalues \\ S^{(n)} \left(\tau_A^{\psi|\varphi}\right) &= \frac{1}{1-n} \log \left[\frac{\cos \frac{n\theta}{2}}{2^{n-1} \cos^n \frac{\theta}{2}} \right] \end{split}$$

 \rightarrow Only special values of θ can give positive values pseudo entropy.

Monotonicity in 2 Qubit systems

We can prove the following monotonicity under unitary transformation:

<u>Claim</u> Consider two states related by local unitary trf. $|\psi\rangle = (U_A \otimes V_B)|\varphi\rangle.$ If $\tau_A^{\psi|\varphi}$ has non-negative eigenvalues (i.e. class B=C), then $S^{(n)}\left(\tau_A^{\psi|\varphi}\right) \ge S^{(n)}(\mathrm{Tr}_B[|\psi\rangle\langle\psi|]) = S^{(n)}(\mathrm{Tr}_B[|\varphi\rangle\langle\varphi|]).$

Note: However, this claim is limited to 2 qubit systems.

Decreasing Pseudo Entropy Examples

Ex2 Thermofield States in CFTs

$$\begin{split} |\psi_i\rangle &= \frac{1}{\sqrt{Z(\beta_1)}} \sum_n e^{-\frac{\beta_i}{2}E_n} |n\rangle |n\rangle \quad (i = 1, 2) \\ S_{th}\left(\frac{\beta_1 + \beta_2}{2}\right) &\leq \frac{1}{2} [S_{th}(\beta_1) + S_{th}(\beta_2)] \\ \Rightarrow S\left(\tau_A^{\psi_1 | \psi_2}\right) &\leq \frac{1}{2} [S(\mathrm{Tr}_B[|\psi_1\rangle\langle\psi_1|]) + S(\mathrm{Tr}_B[|\psi_2\rangle\langle\psi_2|])]. \end{split}$$

$$\Delta S = S\left(\tau_A^{1|2}\right) + S\left(\tau_A^{1|2}\right) - S(\rho_A^1) - S(\rho_A^2)$$
 in Two Qubit System

 $|\psi_1
angle_{AB} = \cos heta_1|00
angle_{AB} + \sin heta_1|11
angle_{AB}, \quad |\psi_2
angle_{AB} = \cos heta_2|00
angle_{AB} + \sin heta_2|11
angle_{AB},$

where we assume $0 \le \theta_1, \theta_2 \le \frac{\pi}{2}$. The pseudo entropy is computed as [16]

$$S(\tau_A^{1|2}) = -\left(\frac{\cos\theta_1\cos\theta_2}{\cos(\theta_1 - \theta_2)}\right) \cdot \log\left(\frac{\cos\theta_1\cos\theta_2}{\cos(\theta_1 - \theta_2)}\right) - \left(\frac{\sin\theta_1\sin\theta_2}{\cos(\theta_1 - \theta_2)}\right) \cdot \log\left(\frac{\sin\theta_1\sin\theta_2}{\cos(\theta_1 - \theta_2)}\right).$$

We are interested in a small perturbation $\theta_2 - \theta_1 = \delta \ll 1$. Then the interesting difference looks like

$$2S(\tau_A^{1|2}) - S(\rho_A^1) - S(\rho_A^2) \simeq q(\theta_1)\delta^2 + O(\delta^3),$$

where we find

Even when the two states are closed to each other, the difference is not always negative !

Appendix B: Behavior of SVD Entropy

• This entropy also shows an enhancement similar to PE for two difference states in different quantum orders.

Figure 23: Plots of $S(\rho_A^{1|2}) - (S(\rho_A^1) + S(\rho_A^2))/2$ in different cases. $S(\rho_A^{1|2}) - (S(\rho_A^1) + S(\rho_A^2))/2 \le 0$ when the two states are in the same quantum phase, and can be violated when the two states are in different quantum phases.

• This SVD entropy also shows the Page curve like behavior.

 However, we have SA ≠ SB, as opposed to pseudo entropy ! (This suggest the gravity dual will be very complicated….)

Appendix C: Free Scalar Computations

Our Free Scalar Model

When m=0, we have a Lifshitz scaling sym. $(x,t) \rightarrow (\lambda x, \lambda^z t)$.

Lifshitz scalar in 2dim.

z= dynamical exponent

$$H = \frac{1}{2} \int dx \left[\pi^2 + (\partial_x^z \phi)^2 + m^{2z} \phi^2 \right],$$

m= mass

where ϕ and π are the scalar field and its momentum. In order to do concrete calculations, we consider its lattice regularization:

$$H = \sum_{i=1}^{N} \left[\frac{\pi_i^2}{2} + \frac{m^{2z}}{2} \phi_n^2 + \frac{1}{2} \left(\sum_{k=0}^{z} (-1)^{z+k} \binom{z}{k} \phi_{i-1+k} \right)^2 \right].$$
 We set

 $|\Psi 1\rangle$ = the vacuum of H(m1,z1) and $|\Psi 2\rangle$ = the vacuum of H(m2,z2).

Calculating Pseudo Entropy

We can calculate PE from correlation functions of ϕ , π since the model is Gaussian. A B

$$\begin{split} &\Gamma = \begin{pmatrix} X & R \\ R^T & P \end{pmatrix}, \\ &X_{ij} = \mathrm{Tr}[\phi_i \phi_j \tau_A^{1|2}], \quad P_{ij} = \mathrm{Tr}[\pi_i \pi_j \tau_A^{1|2}], \\ &R_{ij} = \frac{1}{2} \mathrm{Tr}[(\phi_i \pi_j + \pi_i \phi_j) \tau_A^{1|2}]. \end{split}$$

R takes complex values, though X and P are real symmetric matrices. Therefore, we consider a complexified symplectic transformation $Sp(2N_A, \mathbb{C})$ to diagonalize Γ into the form (see appendix A for more details)

$$\Gamma \to \begin{pmatrix} \nu & 0 \\ 0 & \nu \end{pmatrix}, \tag{6}$$

NA sites $S(\tau_A^{1|2}) = \sum_{i=1}^{N_A} f(v_i)$ $f(x) \equiv$ $\left(x+\frac{1}{2}\right)\log\left(x+\frac{1}{2}\right)$ $-\left(x-\frac{1}{2}\right)\log\left(x-\frac{1}{2}\right)$

Numerical Results

$$f(m_1, m_2, L, l)$$

 $\simeq rac{1}{2} \log \left[-rac{m_1^2 \log[m_1 l] - m_2^2 \log[m_2 l]}{m_1^2 - m_2^2}
ight] + f_0(m_1, m_2, L),$

<u>Generic Case</u> [Note: larger $z \rightarrow$ larger EE]

Saturation Behavior

$$m_1 = 10^{-5}, z_1 = 1$$

Negativity of the Difference

