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① Introduction

Quantum Entanglemenｔ (QE)

Two parts (subsystems) A and B in a total system are quantum 
mechanically correlated.

     

Pure States:  Non-zero QE ⇔ 
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Direct Product

A B

Minimal Unit of 
Entanglement

The best (or only) measure of quantum entanglement 

for pure states is known to be entanglement entropy (EE).

EE ＝ # of Bell Pairs between A and B



Divide a quantum system into two subsystems A and B:

Define the reduced density matrix by

The entanglement entropy            is defined by

(von-Neumann entropy)

.   BAtot HHH =

Entanglement entropy (EE) in “HEP”

BA =B AA
Continuum 
Limit ε→0ε

Quantum Many-body Systems Quantum Field Theories (QFTs)

B



Setup

LO (=Local Operations)

Projection measurements and unitary trfs. 

which act either A or B only.

CC (=Classical Communications between A and B)
  

⇒These operations are combined and called LOCC.

A basic example of LOCC:   quantum teleportation 

   BAtot HHH =

A B

A B

Entanglement Entropy (EE) in QI Text Book



A B

Entangled in a very 
complicated way

A B
LOCC 

N Bell pairs
Distillation

( ۧ|Ψ 𝐴𝐵ۦΨ|)
⊗𝑀

⊗𝑀

( ۧ|Ψ 𝐴𝐵ۦΨ|)
⊗𝑀 ⇒ ۧ(|Bell Bell|)⊗𝑁ۦ

𝑆 𝜌𝐴 = lim
𝑀→∞

𝑁

𝑀
Well-known fact in QI:

𝜌𝐴 ≡ Tr𝐵[ ۧ|Ψ 𝐴𝐵ۦΨ|]

[Bennett-Bernstein-Popescu-Schumacher 95,  Nielsen 98]



In this talk, we will introduce a generalization of 
entanglement entropy, called pseudo entropy.

Motivation 1

Generalization of entanglement entropy to post-selection processes 
→ It depends on both the initial and final state.

Motivation 2

Generalization of holographic entanglement entropy to Euclidean 
time-dependent backgrounds → Ver. 3 HEE formula

Motivation 3

Holographic entanglement for dS/CFT ? → Need pseudo entropy

Dual CFTs are non-Hermitian !
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Ver. 1  Holographic EE  for Static Spacetimes
[Ryu-TT 06]

is the minimal area surface 
(codim.=2)  on the time slice 
such that            
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A
For static asymptotically AdS spacetimes:

② Ver.3 of Holographic Entanglement Entropy ?



Ver. 2  Covariant Holographic Entanglement Entropy
[Hubeny-Rangamani-TT 07]

A generic  Lorentzian asymptotic AdS spacetime is dual to 
a time dependent state |Ψ(t)〉 in the dual CFT.

The entanglement entropy gets time-dependent: 

This is computed by the holographic formula: 

𝜌𝐴 𝑡 = Tr𝐵[| ۧΨ(𝑡) Ψۦ 𝑡 |] 𝑆𝐴 𝑡 .

𝑆𝐴 𝑡 = MinΓ𝐴ExtΓ𝐴
𝐴(Γ𝐴)
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Ver 3.  Formula ?

Minimal areas in Euclidean time dependent 
asymptotically AdS spaces 

=  What kind of QI quantity (Entropy ?) in CFT ?

The answer is Pseudo Entropy ! 

[Nakata-Taki-Tamaoka-Wei-TT, 2020]



(3-1) Definition of Pseudo (Renyi) Entropy

Consider two quantum states        and         , and define

the transition matrix:

We decompose the Hilbert space as

and introduce the reduced transition matrix:

ۧ|𝜓 ۧ|𝜑

𝜏
𝜓|𝜑

=
ۧ|𝜓 |𝜑ۦ

|𝜑ۦ ۧ𝜓
.

𝜏𝐴
𝜓|𝜑

= Tr𝐵 𝜏
𝜓|𝜑

.   BAtot HHH =

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

=
1

1 − 𝑛
logTr 𝜏𝐴

𝜓|𝜑 𝑛
.

𝑆 𝜏𝐴
𝜓|𝜑

= −Tr 𝜏𝐴
𝜓|𝜑

log𝜏𝐴
𝜓|𝜑

.Pseudo Entropy

Renyi Pseudo Entropy

③ Pseudo Entropy



(3-2) Basic Properties of Pseudo Entropy (PE)

• In general,            is not Hermitian. Thus PE is complex valued.

• If either        or        has no entanglement (i.e. direct product state) , 
then

• We can show

• We can show

• If                    , then                             = Renyi entropy.

ۧ|𝜓 ۧ|𝜑

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 0.

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 𝑆(𝑛) 𝜏𝐴
𝜑|𝜓 †

.

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 𝑆(𝑛) 𝜏𝐵
𝜓|𝜑

.

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑ۧ|𝜓 = ۧ|𝜑

→“SA=SB”

𝜏𝐴
𝜓|𝜑

When does PE become real ? 
Real valued Euclidean PI= Holographic PE
Pseudo Hermiticity [Guo-He-Zhan 2022]

Entanglement Phase Transition [Kanda-
Kawamoto-Suzuki-Wei-TT 2023]



Comment: In quantum theory, transition matrices arise when we 
consider post-selection.

This quantity is called weak value and is complex valued in general.                     

Thus, pseudo entropy =weak value of “modular operator”:                                         

|𝜑ۦ ۧ𝑂𝐴|𝜓
|𝜑ۦ ۧ𝜓

= T𝑟[𝑂𝐴𝜏𝐴
𝜓|𝜑

]

Initial StateFinal state 
after post-selection

[Aharanov-Albert-Vaidman 1988,…]

𝑆 𝜏𝐴
𝜓|𝜑

=
|𝜑ۦ ۧ𝐻𝐴|𝜓

|𝜑ۦ ۧ𝜓
. 𝐻𝐴=-logτ𝐴

= Area Operator



(3-3)  Pseudo Entropy as Entanglement Distillation

Let us focus on the class E  i.e.           and           are Hermitian and 
semi-positive definite.

Remarkably, in this case we can show a quantum information 
theoretical interpretation of pseudo entropy:

Claim Pseudo Entropy 

= # of Distillable Bell Pairs 

as an intermediate states 

of post-selection

More precisely,  we take asymptotic limit M→∞.

𝜏𝐴
𝜓|𝜑

𝜏𝐵
𝜓|𝜑

ۧ|𝜓 → ۧ|𝜑 .

𝑆 𝜏𝐴
𝜓|𝜑



Distillation from Post-selection

In class E, we can write

ۧ|𝜓 = cos𝜃1 ۧ|00 + sin𝜃1 ۧ|11

ۧ|𝜑 = cos𝜃2 ۧ|00 + sin𝜃2 ۧ|11

𝜏𝐴
𝜓|𝜑

=
cos𝜃1 ۧcos𝜃2|0 |0ۦ + sin𝜃1sin𝜃2 ۧ|1 |1ۦ

cos(𝜃1 − 𝜃2)

𝑆 𝜏𝐴
𝜓|𝜑

=

−
cos𝜃1cos𝜃2
cos(𝜃1−𝜃2)

∙ log
cos𝜃1cos𝜃2
cos(𝜃1−𝜃2)

−
sin𝜃1sin𝜃2
sin(𝜃1−𝜃2)

∙ log
sin𝜃1sin𝜃2
sin(𝜃1−𝜃2)

𝜃1

𝜃2

𝑺 𝝉𝑨
𝝍|𝝋



ۧ(|𝜓 )⊗𝑀 = (cos𝜃1 ۧ|00 + sin𝜃1 ۧ|11 )⊗𝑀

= σ𝑘=0
𝑀 (𝑐1)

𝑀−𝑘 (𝑠1)
𝑘 σ𝑎=1 ۧ|𝑃 𝑘 , 𝑎 ۧ|𝑃 𝑘 , 𝑎

Projection to maximally entangled states 
with                       entropy:  

MCk

ۧ𝑘 = 0: |𝑃 0 , 1 = ۧ|00⋯0
𝑘 = 1: ۧ|𝑃 1 , 1 = ۧ|10⋯0 , ۧ|𝑃 1 , 2 = ۧ|01⋯0 , ⋯

Log[MCk]

Π𝑘 =
𝑎=1

ۧ|𝑃 𝑘 , 𝑎 𝑃ۦ 𝑘 , 𝑎|

MCk

𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲: 𝑝𝑘= |𝜑|Π𝑘ۦ ۧ𝜓 |𝜑ۦ/ ۧ𝜓 =
(𝑐1𝑐2)

𝑀−𝑘 (𝑠1𝑠2)
𝑘 

(𝑐1𝑐2 + 𝑠1𝑠2)
𝑀

∙MCk

MCk=M!/(M-k)!k!

# 𝐨𝐟 𝐃𝐢𝐬𝐭𝐢𝐥𝐥𝐚𝐛𝐥𝐞 𝐁𝐞𝐥𝐥 𝐩𝐚𝐢𝐫𝐬: 𝐍 = σ𝒌=𝟎
𝑴 𝒑𝒌 ・Log[MCk]

≈ 𝑴 ∙ 𝑺 𝝉𝑨
𝝍|𝝋

  !

𝑐1 ≡ cos𝜃1, 𝑠1 ≡ sin𝜃1

A

BA



(3-4) SVD entropy

𝑆𝑆𝑉𝐷 𝜏𝐴
𝜓|𝜑

= −Tr |𝜏𝐴
𝜓|𝜑

∙ log 𝜏𝐴
𝜓|𝜑

| .

here,  |𝜏𝐴
𝜓|𝜑

| ≡ 𝜏𝐴
†𝜓|𝜑

𝜏𝐴
𝜓|𝜑

[Parzygnat-Taki-Wei-TT 2023]

• This is always non-negative and is bounded by log dim HA.  

• From quantum information theoretic viewpoint, this is the 
number of Bell pairs distilled from the intermediate state:

Motivation:  Improve PE so that (i) it become real and non-negative 
and (ii) it has a better LOCC interpretation. 

SVD entropy

𝜏𝐴
𝜓|𝜑

=U・Λ・V, 1
 UV

  UEPREPR  V
==


k k

k kk
p




††

††

kEPRin  Pairs Bell of# k kSVD pS



𝑆 𝜏𝐴
𝜓|𝜑

= MinΓ𝐴
𝐴(Γ𝐴)

4𝐺𝑁
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Holographic Pseudo Entropy (HPE) Formula

Basic Propertie

𝑖 If 𝜌𝐴 𝑖𝑠 𝑝𝑢𝑟𝑒, 𝑆 𝜏𝐴
𝜓|𝜑

=0.

𝑖𝑖 If 𝜓 𝑜𝑟 𝜑 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑,

𝑆 𝜏𝐴
𝜓|𝜑

=0.

→This follows from AdS/BCFT [TT 2011]

𝑖𝑖𝑖 𝑆 𝜏𝐴
𝜓|𝜑

= 𝑆 𝜏𝐵
𝜓|𝜑

. “SA=SB”

④ Holographic Pseudo Entropy

[Nakata-Taki-Tamaoka-Wei-TT, 2020]



• However, the strong subadditivity can be easily violated
if we allow zigzag time slices like                      .
⇒We may need to limit to straight time slices or just ignore SSA ?

• We can derive the holographic pseudo entropy formula 
as in                                             .  
This is because we can calculate the pseudo entropy 
via the standard replica trick.

[Lewkowycz-Maldacena 13]

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

=
1

1 − 𝑛
logTr 𝜏𝐴

𝜓|𝜑 𝑛
.

〈φ|

|Ψ〉



⑤ Pseudo Entropy and Quantum Phase Transitions
[Mollabashi-Shiba-Tamaoka-Wei-TT 20, 21]

(5-1) Basic Properties of Pseudo entropy in QFTs

[1]  Area law

[2]  The difference

is negative if       and       are in a same phase.

∆𝑺 = 𝑺 𝝉𝑨
𝟏|𝟐

+ 𝑺 𝝉𝑨
𝟏|𝟐

− 𝑺 𝝆𝑨
𝟏 − 𝑺 𝝆𝑨

𝟐

 terms),subleading(
A)Area(

~
1

+

−dAS



PE in a 2 dim. free scalar
when we change its mass.

ۧ|𝜓1 ۧ|𝜓2

What happen if they belong to different phases ?
Can ΔS be positive ?



(5-2) Quantum Ising Chain with a transverse magnetic field

Ψ1→ vacuum of H(J1)
Ψ2→ vacuum of H(J2)

(We always set h=1)

J1=1/2 J1=1 J1=2

J<1   Paramagnetic Phase
J>1 Ferromagnetic Phase

We find
when Ψ1 and Ψ2 are in different phases !

∆𝑺 = 𝑺 𝝉𝑨
𝟏|𝟐

+ 𝑺 𝝉𝑨
𝟏|𝟐

− 𝑺 𝝆𝑨
𝟏 − 𝑺 𝝆𝑨

𝟐 > 𝟎
J2 J2 J2

N=16, NA=8



Heuristic Interpretation

Two gapped phases are 
separated by a gapless phase.

CFT !

Ψ1

Ψ2

A

PE is enhanced ! ∆𝑺 > 𝟎
AdS Dual of 
Gapless Interface

ΓA

The gapless interface (edge state) also occurs in topological orders.
➔Topological pseudo entropy 

[Nishioka-Taki-TT 2021, Caputa-Purkayastha-Saha-Sułkowski 2024]



Holographic entanglement entropy suggests that the extra 
dimension in AdS/CFT emerges from quantum entanglement.

However, the Universe, which we live, has been considered as 

de Sitter space  (Λ>0)   rather than  anti de Sitter space (Λ<0).

Q. Does our universe emerges from quantum information ?

Consider holographic entanglement in dS gravity !

Let us first remember what we know about dS holography.

⑥ dS Holography and Pseudo Entropy



A Sketch of dS/CFT [Strominger 2001, Witten 2001, Maldacena 2002,….]

d+1 dim. Lorentzian                         Euclidean d. dim CFT                 

de-Sitter   spacetime on Sd

Dual

Time

Ψ[dS gravity]＝Z [CFT]

t=∞

de Sitter 

Space-like bdy

Lorentzian 
time

Euclidean 
time

𝒅𝒔𝟐 = 𝑳𝒅𝑺
𝟐 (−𝒅𝒕𝟐 +𝐂𝐨𝐬𝐡𝟐𝒕𝒅𝜴𝟐)

𝒅𝒔𝟐 = 𝑳𝒅𝑺
𝟐 (𝒅𝜽𝟐 + 𝐒𝐢𝐧𝟐𝜽𝒅𝜴𝟐)

Semi sphere 

𝜽 = 𝒊𝒕 +
𝝅

𝟐

Time emerges from 
Euclidean CFT !



What we expect for dS/CFT

➔Let us assume dS Einstein gravity and extract general 

expectations. 

d+1 dim. (Lorentzian) de-Sitter 

Sd+1  (Euclidean de-Sitter)

Euclidean AdS (Hd+1)

Central charge:

𝒅𝒔𝟐 = 𝑳𝒅𝑺
𝟐 (𝒅𝜽𝟐 + 𝐒𝐢𝐧𝟐𝜽𝒅𝜴𝟐)

𝑳𝑨𝒅𝑺 = 𝒊𝑳𝒅𝑺, 𝝆 = 𝒊𝜽

𝒅𝒔𝟐 = 𝑳𝒅𝑺
𝟐 (−𝒅𝒕𝟐 + 𝐂𝐨𝐬𝐡𝟐𝒕 𝒅𝜴𝟐)

𝒅𝒔𝟐 = 𝑳𝑨𝒅𝑺
𝟐 (𝒅𝝆𝟐 + 𝐒𝐢𝐧𝐡𝟐𝝆𝒅𝛀𝟐)

𝒄~
𝑳𝑨𝒅𝑺
𝒅−𝟏

𝑮𝑵
= 𝒊𝒅−𝟏 ∙

𝑳𝒅𝑺
𝒅−𝟏

𝑮𝑵

(i) Central charge becomes imaginary for d=even !
(ii) Central charge gets larger in classical gravity limit.

We are interested in 
d=2 case in this talk !



CFT dual of dS in Einstein gravity 
[Hikida-Nishioka-Taki-TT, 2021]

Large c limit of SU(2)k WZW model (a 2dim. CFT)

=  Einstein Gravity on 3 dim. de Sitter (radius 𝑳𝒅𝒔)

𝒄 =
𝟑𝒌

𝒌 + 𝟐
≈ 𝒊

𝟑𝑳𝒅𝑺
𝟐𝑮𝑵

k≈ −𝟐 +
𝟒𝒊𝑮𝑵

𝑳𝒅𝑺
𝚫 ≈ 𝒊𝑳𝒅𝑺 ∙ 𝑬𝒅𝑺

Central 
charge

Conformal dim.

Level

Energy in dS

𝒁 𝑺𝟑, 𝑹𝒋 = 𝑺𝒋
𝟎 𝟐

≈ 𝒆
𝝅𝑳𝒅𝒔
𝟐𝑮𝑵

𝟏−𝟖𝑮𝑵𝑬

CFT partition function De Sitter Entropy

This non-unitary CFT is essentially equivalent to

the two Liouville CFTs at                  . [Hikida-Nishioka-Taki-TT 2022]
NG

i
b

4

2 −

[→Reproduced by Verlinde-Zhang 2024 via the Double Scaled SYK ]

[This k=-2 is equivalent to k=∞ via triality in Gaberdiel-Gopakumar 2012]



Holographic Pseudo Entropy in dS3/CFT2

L(𝚪𝑨) = 𝟐𝒊𝒕∞ + 𝒊𝐥𝐨𝐠(𝐒𝐢𝐧𝟐
𝜽

𝟐
) +𝝅

Space-like bdy

de Sitter 

𝜽

Semi 
sphere 

If we naively apply the HEE in AdS/CFT to dS/CFT, we obtain

𝑺𝑨 =
L(𝚪𝑨)

𝟒𝑮𝑵
= 𝒊

𝑪𝒅𝒔
𝟑

𝐥𝐨𝐠
𝟐

𝝐
𝐒𝐢𝐧

𝜽

𝟐
+
𝑪𝒅𝑺
𝟔

𝝅.

𝚪𝑨

A

Length of time-like geodesics 
➔imaginary value

𝒕

𝒕 = 𝒕∞

𝒕 = 𝟎

Space-like geodesic (Semi circle)

𝒅𝒔𝟐 = 𝑳𝒅𝑺
𝟐 (−𝒅𝒕𝟐 +𝐂𝐨𝐬𝐡𝟐𝒕 (𝒅𝜽𝟐 +𝑺𝒊𝒏𝟐𝜽𝒅𝝋𝟐)

SdS/2

S2

[No space-like extreme surface ending on bdy →complex valued EE:  Narayan, Sato 2015, 
Interpretation as PE: Doi-Harper-Mollabashi-Taki-TT 2022]



This nicely reproduces the familiar 2d CFT result as follows: 

by setting 𝑺𝑨 =
𝑪𝑪𝑭𝑻
𝟔

𝐥𝐨𝐠
𝐒𝐢𝐧𝟐

𝜽
𝟐

𝜺𝟐
,

𝑪𝑪𝑭𝑻 = 𝒊𝑪𝒅𝑺  and 𝜺 = 𝒊𝜺 = 𝒊𝒆−𝒕∞ .
A

𝜽

S2

However, one may wonder why the EE is complex valued.

We argue it is more properly considered as the pseudo entropy.

[Doi-Harper-Mollabashi-Taki-TT 2022] 



This is because the reduced density matrix      is not Hermitian 

in the CFT dual to dS, as it is not unitary. 

➔For the dual 2d CFT on Σ with metric                  , we have

In other words,   

𝝆𝑨

𝒁𝑪𝑭𝑻 𝑺𝟐 ≈ 𝒆−𝑰𝑪𝑭𝑻[𝝓], 𝑰𝑪𝑭𝑻 𝝓 = 𝒊
𝑪𝒅𝒔

𝟐𝟒𝝅
𝒅𝟐𝒙[(𝝏𝒂𝝓)

𝟐 + 𝒆𝟐𝝓].

𝒉𝒂𝒃 = 𝒆𝟐𝝓𝜹𝒂𝒃

Complex valued ! ➔ 𝝆𝑨 ≠ 𝝆𝑨
†

A
S2

𝝆𝑨=

A

A

ۧ|𝝍

|𝝋ۦ
Different 
States !

[See e.g. Boruch-Caputa-Ge-TT 2021]

Thus, the emergent time coordinate = imaginary part of PE. 



⑦ Probing dS from CFT

Consider an observer in 2d CFT.

How does the observer feel that he or she lives in AdS or dS ?

To probe the spacetime, we introduce an local excitation.

x

T

x

T
φ(X1,T2)

φ(X1,T1) φ(X2,T1)
=

0)0(ˆ ),(    spacetime,flat In Flat iPxiHteext −=

“How many directions can the observer move ?”

[Doi-Ogawa-Shinmyo-Suzuki-TT 2024]



𝒅𝒔𝟐 = 𝑹𝑨𝒅𝑺
𝟐 (−𝐂𝐨𝐬𝐡𝟐𝝆𝒅𝒕𝟐 + 𝒅𝝆𝟐 + 𝐒𝐢𝐧𝐡𝟐𝝆𝒅𝝋𝟐)
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Geometric Symmetry of AdS3 
= SO(2,2)=SL(2,R)L×SL(2,R)R
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CFT dual of 
Bulk local excitation

Probing AdS from CFT
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SL(2,R) Crosscap State

SL(2,R)  Ishibashi State

CFT state dual to 
a localized excitation 
in the bulk AdS

( ) =


=

−−

k

k

k LLcI
0

11

)( ~

We can find quantum states in the CFT which describe 
localized excitations in AdS (cf. HKLL):

Note:  {Ln} (|n|>1) are not relevant as they change the CFT vacuum.  

[Miyaji-Numasawa-Shiba-Watanabe-TT 2015]



Two point function We can show:

Information Metric (Bures Metric)
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Probing dS from CFT

𝒅𝒔𝟐 = 𝑹𝒅𝑺
𝟐 (−𝐂𝐨𝒔𝟐𝜽𝒅𝝉𝟐 + 𝒅𝜽𝟐 + 𝐒𝐢𝐧𝟐𝜽𝒅𝝋𝟐)dS metric

𝒅𝒔𝟐 = 𝑹𝑨𝒅𝑺
𝟐 (−𝐂𝐨𝐬𝐡𝟐𝝆𝒅𝒕𝟐 + 𝒅𝝆𝟐 + 𝐒𝐢𝐧𝐡𝟐𝝆𝒅𝝋𝟐)AdS metric
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First we note the “formal” relation between AdS and dS:
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HH −=†
Hamiltonian is anti-Hermitian !
→Non-unitary Euclidean CFT! → Emergent Lorentzian time

[Doi-Ogawa-Shinmyo-Suzuki-TT 2024]

Relevance of 
pseudo entropy
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Primary operator in CFT

To probe the dS geometry from the dual CFT, we would like to find 
quantum states in the CFT which describe localized excitations in dS:

Non-unitary evolution
→emergent time

However,  the above naïve analytically continued result from AdS
leads to the confusing result (due to the unusual conjugation):
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The correct answer is found by requiring the CPT invariance state: 
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Indeed, this reproduces the correct dS Green function at Euclidean vacuum  

( ).sincos
1 22222
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dddds ++−=

After a regularization, we find that the information metric leads to dS metric:

[cf. gauging CPT in QG: Harlow-Numasawa 2023]



⑧ Conclusions

Pseudo entropy (PE) is a generalization of entanglement entropy.

       PE depends on both the initial and final state.

       PE is in general complex valued.

   PE for `non-exotic states’  measures the amount 
of quantum entanglement in the intermediate states.

     ΔS for two states in different phases can be positive, 
while ΔS in the same phase is always non-positive.
          New quantum order parameter

   In AdS/CFT, PE is equal to the minimal surface area
in Euclidean time-dependent asymptotically AdS geometry.

 Emergence of space from real part of PE

   In dS/CFT, PE becomes complex valued. 
                         Emergence of time from imaginary part of PE

(Non-Hermitian nature of the dual CFT)



Future directions

• Quantum information meaning of the complex values of PE ?

• Applications to cond-mat physics / statistical mechanics ?

• Implications to quantum gravity  ?

• Holographic dual of SVD entropy ?

• Constraints on QFTs using PE ?

:

:



Thank you very much !



An Example of Exotic Transition Matrix

ۧ|𝜓 =
1

2
( ۧ|00 + 𝑒𝑖𝜃 ۧ|11 )

ۧ|𝜑 =
1

2
( ۧ|00 + ۧ|11 )

𝜏𝐴
𝜓|𝜑

=
1

1+𝑒𝑖𝜃
ۧ|0 |0ۦ + 𝑒𝑖𝜃 ۧ|1 |1ۦ .

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

=
1

1 − 𝑛
log

cos
𝑛𝜃
2

2𝑛−1cos𝑛
𝜃
2

→ Complex conjugate 
pair of Eigenvalues

→Only special values of θ can give positive values pseudo entropy. 

Appendix A: More Results in Qubit systems



Monotonicity in 2 Qubit systems

We can prove the following monotonicity under unitary 
transformation:

Claim Consider  two states related by local unitary trf.

If          has non-negative eigenvalues (i.e. class B=C), then

Note: However, this claim is limited to 2 qubit systems.

𝜏𝐴
𝜓|𝜑

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

≥ 𝑆 𝑛 Tr𝐵 ۧ|𝜓 |𝜓ۦ = 𝑆(𝑛) Tr𝐵 ۧ|𝜑 |𝜑ۦ .

ۧ|𝜓 = (𝑈𝐴 ⊗𝑉𝐵) ۧ|𝜑 .



Decreasing Pseudo Entropy Examples

Ex1

Ex2 Thermofield States in CFTs

ۧ|𝜓 =
1

2
( ۧ|0000 + ۧ|0110 )

ۧ|𝜑 =
1

2
( ۧ|0000 + ۧ|1001 )

Entanglement 
Swapping

𝑆(𝑛) 𝜏𝐴
𝜓|𝜑

= 0

𝑆(𝑛) Tr𝐵 ۧ|𝜓 |𝜓ۦ = 𝑆(𝑛) Tr𝐵 ۧ|𝜑 |𝜑ۦ = log2.

ۧ|𝜓𝑖 =
1

𝑍(𝛽1)


𝑛

𝑒−
𝛽𝑖
2 𝐸𝑛 ۧ|𝑛 ۧ|𝑛 (𝑖 = 1,2)

⇒ 𝑆 𝜏𝐴
𝜓1|𝜓2 ≤

1

2
[𝑆 Tr𝐵 ۧ|𝜓1 |𝜓1ۦ +𝑆 Tr𝐵 ۧ|𝜓2 |𝜓2ۦ ].

S𝑡ℎ
𝛽1 + 𝛽2

2
≤
1

2
[𝑆𝑡ℎ 𝛽1 + 𝑆𝑡ℎ 𝛽2 ]

A B



∆𝑺 = 𝑺 𝝉𝑨
𝟏|𝟐

+ 𝑺 𝝉𝑨
𝟏|𝟐

− 𝑺 𝝆𝑨
𝟏 − 𝑺 𝝆𝑨

𝟐 𝐢𝐧 𝐓𝐰𝐨 𝐐𝐮𝐛𝐢𝐭 𝐒𝐲𝐬𝐭𝐞𝐦

Even when the two states 
are closed to each other, 
the difference is not 
always negative !

Maximally entangled

q(θ)

θ



• This entropy also shows an enhancement similar to PE 
for two difference states in different quantum orders.

• This SVD entropy also shows 
the Page curve like behavior.

• However, we have SA ≠ SB, as opposed to pseudo entropy !
(This suggest the gravity dual will be very complicated….)

Appendix B: Behavior of SVD Entropy



Appendix C: Free Scalar Computations

Our Free Scalar Model

Lifshitz scalar in 2dim.

:

z= dynamical exponent

When m=0, we have a Lifshitz
scaling sym. (x,t)→(λx,λzt).

m= mass

We set
|Ψ1> = the vacuum of  H(m1,z1) and |Ψ2> = the vacuum of  H(m2,z2). 



Calculating Pseudo Entropy 

We can calculate PE from correlation functions of φ, π  
since the model is Gaussian. A B

𝑆(𝜏𝐴
1|2
) =

𝑖=1

𝑁𝐴
𝑓( 𝜈𝑖)

𝑓 𝑥 ≡

𝑥 +
1

2
log 𝑥 +

1

2

− 𝑥 −
1

2
log 𝑥 −

1

2

NA sites



Numerical Results

Relativistic Case: z1=z2=1

⇒ We have Area Law as in EE.

Generic Case [Note: larger z → larger EE]

𝑆 𝜏𝐴
1|2

=
1

3
log

𝐿

𝜋𝜀
Sin

𝜋𝑙𝐴
𝐿

+g(𝑚1, 𝑚2 , 𝑙𝐴,, 𝐿).

𝑚1 = 10−3, 𝑚2 = 10−5 𝑚1 =𝑚2 = 10−5, 𝑧1 = 3

If



Saturation Behavior 𝑚1 = 10−5, 𝑧1= 1

𝑆 𝜏𝐴
1|2

≲ Min 𝑆 𝜌𝐴
1 , 𝑆 𝜌𝐴

2

Negativity of the Difference

𝑚1 = 10−5, 𝑧1= 𝑧2 = 𝑧 𝑚1 = 𝑚2 = 10−5

2𝑆 𝜏𝐴
1|2

− 𝑆 𝜌𝐴
1 + 𝑆 𝜌𝐴

2 ≤ 0

Saturation behavior

Is this inequality 
always true ?
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