Around completions
(I) R comm. noeth. ring
$D(R)$ Derived Category
$V \subseteq \operatorname{spec} R$ specialization closed
$: p s \varepsilon \& \beta \in V \Rightarrow \varepsilon \in V$
$\equiv p \in V \Rightarrow \overline{\{p\}} \subseteq V$
${ }^{\text {「 Closure in tariski }}$
Copology
$M \in M \sigma d R$

$$
\Gamma_{V}^{M}:=\operatorname{Kor}\left(M \longrightarrow \prod_{P} \prod_{p}\right)
$$

IV- Fortion tabmodule of M

$$
\begin{aligned}
& M \in D(R) \\
& R \Gamma M:=T_{V}(i M) \leq i M \simeq M \\
&>
\end{aligned}
$$

Loar cohomulogy ijectiwe resh of sopported on V

$$
\Gamma_{V} D(R):=\left\{M \in D(R) / R T_{V} M \simeq M\right\}
$$

W-Forkion part of $D(R)$

$$
\text { - A localising subcategory of } D(R) \text {. }
$$

Because $M \in T_{V} D(R) \Leftrightarrow$

$$
U_{x}(M)_{\beta}=0 \quad \forall \mu \notin V
$$

Compact objects: Write

$$
V=\bigcup_{i} V\left(p_{i}^{-}\right)
$$

For example, take p_{i} minimal in V
$K\left(p_{i}\right):=k o t u l$ (x. on tome tin te generating of for p_{i}
Then $K\left(P_{i}\right) \in \Gamma_{V} D(R)$
(1)

$$
\begin{aligned}
\prod_{V} D(R)^{c} & =D(R)^{c} \cap \Gamma_{V} D(R) \\
& =\mathbb{T}_{i} c k\left(k\left(P_{i}\right) / i\right)
\end{aligned}
$$

Morearer
(2) $\quad \Gamma_{V} D(R)=\operatorname{Lor}\left(K\left(P_{i}\right) l_{i}\right)$

This has many consequenles:
Complete $P T_{T} M \rightarrow M$ to a $\Delta^{\text {le: }}$

$$
R R_{V} M \rightarrow M \rightarrow L_{V} M \rightarrow
$$

"Ioralsing" away from V "nullifiration"

- Can also inferpret M—L.M as homolugy barcization.

Example: Fix $p \in \operatorname{Spec} R$

$$
\begin{aligned}
z(p):= & \text { Spec } \cdot R \backslash \text { Spec } R p \\
& \text { Ipelialization cloped }
\end{aligned}
$$

$$
\text { Then } \underset{z(p)}{P P_{1}} M \rightarrow M \rightarrow M_{\|} \rightarrow
$$

$$
L_{z<\mu,}^{M}
$$

Exerase: Her'ty this.
(3) From (2) we get:

$$
\begin{aligned}
& R \Gamma_{V} M \simeq \operatorname{RT}_{V} R \not \underset{R}{\Theta} M \\
& L_{V} M \simeq L_{L} R{\underset{R}{X} M}_{l}^{M}
\end{aligned}
$$

Another consequente:
(4) $\oplus R_{V}\left(M_{i}\right) \longrightarrow \mathbb{R}_{V}\left(\oplus M_{i}\right)$
for any collection $\left\{\pi_{i}\right\}$
Consider adjoint pair:

$$
\nabla_{L} D(R) \underset{\rho}{\stackrel{R r_{L}}{\longrightarrow}} D(R)
$$

(4) implies $R R_{L}$ has a right adjoint:

$$
\angle \Lambda^{V} M:=\rho R \Gamma_{V} M
$$

Completion along V

$$
M \rightarrow \angle \Lambda \angle M
$$

Example: $V=V(I) I \leq \begin{array}{r}i \text { ide } \\ i M\end{array}$ $14 \in 1 \mathrm{Mod} R$

$$
\Lambda^{T} M:=\lim \left(M / I^{1} M\right)
$$

For $M \in D(R)$ tet

$$
\angle \Lambda^{7} M:=M^{I}(p M)
$$

Derived Completion Sveentess-May
One has $M \rightarrow L \Lambda^{V} M$

- Can also be interpretted as a homology localisation.
For $14 \in D^{b}(\bmod R)$

$$
\begin{aligned}
\angle \Lambda^{2} M & \simeq \Lambda_{2}^{l} R \otimes_{R}^{l} M \\
& \simeq \Lambda^{R} R \otimes M
\end{aligned}
$$

- This is false in general

Example: (R, m, k) local ring
$\angle \Lambda^{m} E_{p}(k) \cong$ a dualizing (x. for \hat{R}, the r-adic completion of R.
Exercise: check e this.
Some tools to help understand completer:
(5) Sreenlees-May duality:

$$
\operatorname{RHom}\left(R \Gamma_{R} M, N\right) \simeq \underset{R}{\operatorname{RHom}\left(M, \angle \Lambda_{N}^{V} N\right)}
$$

Example: Say R domain complete w.v.t forme ideal $\frac{T}{H_{0}} \subseteq R$

Then $R \operatorname{lom}(Q, R)=0$
fraction field of R.

Thas $E_{R}^{\prime t}(Q, R)=0$ for $\left.R: k[\underline{x}]\right)$. $\operatorname{Recall} \quad E \times \underset{G}{t}(\mathbb{Q}, \boxtimes) \neq 0$
(6) Say $V=\operatorname{tipp}_{x} P P$ pertect $(x$.

Set $F=\operatorname{End}_{R}(P)$

- Cxample $\quad V=V(J)$ and $P=k(J)$

$$
\begin{aligned}
& P^{\#}: \underset{R}{R} \operatorname{Hom}(P, R)
\end{aligned}
$$

These veatrict to equivclences:

$$
P_{V} D(R) \equiv D\left(C^{G}\right) \equiv \Lambda^{v} D(R)
$$

In particular

$$
\begin{aligned}
& \Gamma_{V} D(R) \underset{R_{V}(-)}{\stackrel{L \Lambda^{v}(-)}{\rightleftarrows}} \Lambda^{v} D(R) \\
& R \Gamma_{V} M \rightarrow M+M \rightarrow \angle \Lambda^{r} M
\end{aligned}
$$

induce $\angle \Lambda^{V} R C_{V} M \cong M=R R_{V} M \simeq R R_{V} \angle \Lambda_{M}$

$$
-x-
$$

(II) Support t Gosport $M \in D(R)$

$$
\begin{aligned}
& \operatorname{Supp}_{R} M:=\left\{p \in \int_{\text {pec }} R \mid \underset{R}{M} \underset{R}{l} k(p) \neq 0\right\} \\
& H_{*}^{\left.(M \otimes)_{k}^{e} k(p)\right) \neq 0} \\
& h(p):=(R / p)_{p}=R / \rho / \rho R \\
& =\text { Residue field of } R P \text {. }
\end{aligned}
$$

$$
\operatorname{Cosipp}_{R} M:=\left\{p \in S_{p e c} R \mid \operatorname{RHom}(R(p), M) \neq 0\right\}
$$

Exerlise: $\operatorname{Sopp} p_{R} k(p)=\{p\}=\operatorname{Cosp} p_{R} M$ Gopport is better understood:
For $M \in D^{b}(\bmod R)$

$$
\begin{aligned}
\operatorname{Cuppp}_{R} M & =\operatorname{lopp}_{R} H_{x}(M) \\
& =\left\{p \in S_{p e c} R / H_{x}(M)_{p} \neq 0\right\} \\
& =V\left(\operatorname{ann}_{R} H_{A}(M)\right)
\end{aligned}
$$

- a cloped rubset of sper r

Not to with corpport: It need not be cloved.
For $M \in D^{b}(\bmod R)$
$\operatorname{coupp}_{p_{1}} M=1$ cepr M when
$R=k[\underline{x}] I$, i.e. athine algebuas.

- T. Nalíamura e P. Thompton

Exerise: Say R is I adically complete then

$$
\begin{aligned}
& \text { Cosopp } M \leq V(I) \\
& * M \in D^{6}(\bmod R)
\end{aligned}
$$

Exerase: $(R, m, k) \operatorname{loral}$
Cosesp $p_{R} E_{R}(k): s_{p e c} R$

$$
\rho_{\text {oppp }} E_{p}(k):\{n\}
$$

Example: $R=k([\in][x]$
$\operatorname{cospp}_{R} R$ is not closed.

- It is specialization closed.

Alory 10?

$$
\begin{aligned}
\operatorname{Max}\left(\operatorname{Coupp}_{R} M\right) & =\operatorname{Ma}\left(\text { Ippp }_{R} M\right) \\
& \forall M \in D(R) .
\end{aligned}
$$

In partaclan, \quad Goipp $M=\varnothing \Leftrightarrow$

$$
\operatorname{copp}_{R} M=\phi \Leftrightarrow
$$

$$
M=0 .
$$

"Everything" to far holds in gueat general.ty. Now to things spetial \therefore to $D(R)$
(iI) $\forall M, N \in D(R)$ one has

$$
\begin{aligned}
& \operatorname{lup}_{R}(M \otimes N)=\operatorname{lipp}_{R} M \cap \operatorname{Iop} p_{R} N \\
& \operatorname{Coxpp} p_{R} R H \operatorname{Han}(M, N)=\operatorname{lipp}_{R} \Pi \cap \operatorname{Conpp} p_{R} N
\end{aligned}
$$

Proof: \quad Fix $\mu \in$ Spec R

$$
\begin{aligned}
& R \operatorname{Hom}(k(p), \operatorname{RHom}(M, N)) \\
& R \quad R \\
& \simeq \underset{R}{\operatorname{RHom}(p)} \underset{R}{\ell} M, N)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{R}{\operatorname{RHom}}(k), N) \neq 0 .
\end{aligned}
$$

Thus $p \in \operatorname{Coupp}_{R} \operatorname{RHom}(M, N)$

$$
\Leftrightarrow \quad p \in \operatorname{lop}_{R} M \cap G \operatorname{lon} p_{R} N \text {. }
$$

The argument for $\operatorname{kopp}_{R}(M \otimes N)$ is eqarlly Pimple

These lead io a clansification of the londizing r colralizing kubcategovies of $D(R)$.

