Dualisable objects in lord algebra $26^{\text {th }}$ May
(I) R comm. neth. ring $M \in D(R)$

$$
\begin{aligned}
& \operatorname{Sopp}_{R} M:=\{p \in \operatorname{Spec} R / R(p) \underset{R}{\ell} M \neq 0\} \\
& \operatorname{Cosipp}_{R} M:=\{p \in \operatorname{Spec} R \mid \operatorname{RHom}(k(p), M) \neq 0\}
\end{aligned}
$$

- supp $M \leq \operatorname{spec} R$ (closed $\forall M \in D^{b}(\bmod R)$
- Need always to for Cosiopp, M.

Example: $R=k([\in D[x]$
claim: $\operatorname{Coupp} R \neq V(J)$ for any $J \subseteq R$

- Always $\operatorname{Max}\left(\operatorname{lopp}_{p} M\right)=\operatorname{Max}\left(\operatorname{coserp} p_{R} M\right)$.

Thus Max $\operatorname{spec} R) \subseteq \operatorname{Cosopp} p_{R} R$
So if coup $R=V(J)$, then

$$
J \subseteq \prod_{\eta \in M a(S p e c R)}=(0)
$$

[I fact, $m_{i}=\left(1-x \epsilon^{i}\right), i \geq 1$, are a 1 l maximal and

$$
\left.n_{i=1}^{\infty} \mu_{i}=(0)\right]
$$

To we get Coupp $R=K(0)=$ Spec R.
However $\quad \beta:(x) \not \&$ coopp R :

$$
R \rightarrow \frac{R}{(x)}=k\left(\|(-1) \subset \underset{p}{(x)}(p)=k\left[((-)]\left(\frac{1}{c}\right)\right.\right.
$$

fiele of tractions of $k[(\in)$

Thus R Hom $\langle k(p) R)$
R

$$
R H \operatorname{son}(k[(-\pi, R) \quad \lambda \quad k[(t)]
$$

$$
\text { CCompute usins } \simeq 0
$$

$k(t-1)$ is (t)-adically $k(\in \in)$) complete.
So p d Cooup R.
Infact, the argument Thours cosoppr is not contained in angrclosed tet.
propien.
(II) Stratification (Nyeman)

$$
\begin{aligned}
& \mathcal{L} \longleftrightarrow U_{M \in \mathcal{L}} \operatorname{tap}_{R} M
\end{aligned}
$$

$\left\{M \in D(R) / \operatorname{Sopp}_{\lambda} M \leq\{p\}\right\} \longleftarrow \Gamma \in \operatorname{Spec} R$

So $\Gamma_{p} D(R)$ are the minimal lorahoing subcategories in $D(R)$

- the "atoms" of $D(R)$.

Can we "look" deeper into $\Gamma D(R)$?

What we know:

$$
-\Gamma_{p} D(R) \subseteq D(R)
$$

$D^{\text {later }}$ Subcategory, and closed under $\oplus \quad(i) D(R))$.

- TE is Compactly generated:

$$
\Gamma_{p} D(R)^{c}=D\left(R_{p}\right)^{c} \cap \Gamma_{\nu(P)} D\left(R_{p}\right)
$$

Caveat: $\Gamma_{p} D(R)^{c}$ only compact in $D\left(R_{p}\right)$, not in $D(R)$.
In fact, let $K:=$ Mosul $c x$. on tome finite generating set for

$$
P R_{p} \subseteq R_{r}
$$

Then $\Gamma_{P} D(R)^{c}=$ Thick (k)
And $\Gamma_{p} D(R)=\operatorname{Loc}(K)$

More structure: $\Gamma_{p} D(R)$ inherits a
(*) from $D(R)$:

$$
M, N \in P_{P} D(R) \Rightarrow M_{R}^{e} N \in \Gamma_{P} D(R)
$$

$\left[\operatorname{Re}\left(c / l: \Gamma_{p} M \simeq \int_{p} R \otimes \pi \in M\right]\right.$
Morcara $M \otimes_{R}^{e} \Gamma_{\mu} R \simeq M$. so
$\Gamma_{p} D(R)$ is a $t t$-Category with unit βR.

NB. $\Gamma_{\rho} R$ not compact in $\Gamma_{p} D(R)$ unless $\beta \in \operatorname{Min}(R)$.
$\left[\because\right.$ length $\left.R_{p}<\infty \quad \forall C \in \beta D(R)^{c}\right]$

- This (warns out to be key.
(iii) $(T, \otimes, I) \quad t \in$ - Category

$$
\text { unit of }-\otimes \text {. }
$$

- assume it has internal Homs

$$
\begin{aligned}
& F(-,-) \quad 10 \\
& \operatorname{Hom}(x \otimes y, z) \cong \operatorname{Hom}(x, F(y, z)) \\
& T \quad \forall x, y, z
\end{aligned}
$$

Example: © $(D(R), \otimes, R)$ and

$$
F(-,-)=\underset{R}{\operatorname{Rom}(-,-)}
$$

(2)

$$
\begin{aligned}
& \left(\Gamma_{\mu} D(R),-{\stackrel{\otimes}{P_{p}}}_{-}^{l}, \Gamma R\right) \text { and } \\
& F(-,-)=\Gamma \quad=\operatorname{Hom}_{R}(-,-)
\end{aligned}
$$

$D \in T$ is dualisable if

$$
F(D, 1) \otimes x \underset{\cong}{\cong} F(D, x)
$$

Natural map $\quad t \quad x \in T$

Recall $C \in T$ is Compact means
(1) $\operatorname{Hom}\left(c, x_{i}\right) \underset{T}{ } \underset{T}{ } \operatorname{Hom}\left(c, \oplus x_{i}\right)$

$$
\theta \quad\left\{x_{i}\right\}
$$

- In general, neither property implies the other.
Set $T^{d}:=$ Dualitable objects in T

$$
\mathbb{I} \in T^{\alpha}
$$

- This is a thick rabcal-gory, closed under $\otimes: D, D^{\prime} \in T^{\alpha} \Rightarrow D \otimes D^{\prime} \in T^{\alpha}$ So T^{d} is a $t t$-category is its own right.
$T^{c}:=$ Compact objects in T
- thick subcategory
- May not be \otimes-closed.

However: $D \in T^{d}$ and $C \in T^{c}$, Hen

$$
D \otimes C \in T^{C}
$$

So T^{d} "acts" on T^{c}.

- In particular $\mathbb{1} \in T^{c} \Longleftrightarrow$

$$
T^{d} \leqslant T^{c}
$$

But this doesit always hold.
Example:0T=D(R)

$$
D(R)^{c}=\operatorname{Thi}_{i} k(R)=D(R)^{d}
$$

(Check!)
(2) What about $T=P D(R)$?

$$
\begin{aligned}
& \text { unit } \prod_{p} R \in T^{d} \text {, fo } \\
& \text { Thick }^{\prime \prime}(k) \leq \text { Thick }_{\prime \prime}\left(P_{p} R\right) \leq T^{a} \\
& T^{c}
\end{aligned}
$$

Bemon, -, Krause, Peutsowa (2023):
For $x \in \Gamma_{p} D(R)$ the following conditions are equivalent:
(1) $x \in \rho D(R)^{\alpha}$
(2) $\underset{k a n k}{\operatorname{rank}} H_{x}(\operatorname{ki}(p) \otimes x)<\infty$
(3) $x \in$ Thick ($\boldsymbol{p}_{\boldsymbol{p}} R$).

Appears in: Lord dualisable objects in lorel clgetra; arxiv. 2023.

- (1) \Leftrightarrow (2) \Leftrightarrow (3) true fairly gererally.
(1) \Rightarrow (3) spelial lo $D(R)$ (and aloo holds in S Mod ks, for instance, but not in $\left.H_{0}(s p)\right)$.

Comment on (1) \Leftrightarrow (2):
Say (R, M, k) loal, and $M \in D(R)$ is 1.t. $\quad \underset{R}{\operatorname{rank}}\left(k_{R}^{e} M\right)<\infty$

- When $M \in D^{5}(\operatorname{Mod} R)$, this holdo

$$
\Leftrightarrow M \in \mathbb{T a}_{c}(R) \text { aie } M
$$

patect.

- For general $M \in D(R)$. the thm abwe yields thct $\mathrm{H}_{\mathrm{m}} M \in$ Thick $\left(\Gamma_{m} R\right)$, and convorsely.
A Corollany (uxing Greenlees-May)

$$
\Gamma_{p} D(R)^{d} \equiv \operatorname{Th}_{i c k}\left(\hat{R}_{p}\right) \leq D\left(\hat{R}_{p}\right)
$$

$\widehat{R_{p}}=$ Completon of R_{P} at its mar.mal ideal.

Consequently ipo $\int_{p} D(R)^{d}=\operatorname{Sppc}\left(\hat{R}_{\beta}\right)$.
Picture:
$\operatorname{Sece} \hat{R}_{p}$.

Rok: \quad pec $\left(\hat{R}_{p}\right)$ can be quite diff. from. Spore $\left(R_{p}\right)$.

- Pasage fran 分 $D(R)^{c}$ to $T_{p} D(R)^{d}$ is a "Completion".

