
Lectures notes on “Classical and quadratic Chabauty”

Samuel Le Fourn
ICTS 2023

September 11, 2023

A short introduction to the principles of the methods
In these lectures, I will talk about Chabauty methods to determine rational points on an algebraic
projective curve of genus at least 2.

I will use throughout the following notation:

Notation
– C is a smooth algebraic projective curve over Q, with genus g ≥ 2. By the famous Faltings’

theorem, C(Q) is then finite, but this theorem does not give a way to determine this finite
set (in fact, the methods employed, apart from a quite large bound on the size of C(Q),
cannot say much more).

– J is the jacobian of C, thus a principally polarised abelian variety over Q of dimension g.

– We fix a base point b ∈ C(Q), thanks to which we define the embedding from C to J

ι : C −→ J
P 7−→ cl([P ]− [b])

.

– For any scheme X over some SpecA with A a ring and any A-algebra B, we denote by XB

the fiber product X ×SpecA SpecB (in other words extension of scalars from A to B).

– p is a prime number at which C has good reduction (i.e. there exists a smooth algebraic
projective curve C over Z(p) such that CQ is isomorphic to C). This model is unique (up
to Z(p)-isomorphism), so we fix it and by abuse of notation, we will write CFp := CFp and
C(Fp) := C (Fp).

– As C is proper, every point P in C(Qp) extends to a unique morphism SpecZp → C and
thus defines the reduction modulo p of P , i.e. a point of C(Fp), denoted by P (f).

– For any point x ∈ C(Fp), we denote Dx ⊂ C(Qp) the (p-adic) residue disk of x, i.e. the set
of points of C(Qp) whose reduction modulo p is exactly x (this terminology will be justified
later).
Remark 0.1. Everything works out in a very similar way for finite extensions of Q (resp.
Qp), but I preferred to keep it simple.

Main idea of classical Chabauty
The idea of Chabauty’s method can be summed up in the following diagram.

C(Q)
ι //

⊂
��

J(Q)

⊂
��

C(Qp)
ι // J(Qp)
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This allows us to “see” C(Q) as included in C(Qp) ∩ J(Q) inside J(Qp). More precisely,

ι(C(Q)) ⊂ ι(C(Qp)) ∩ J(Q).

Now, by p-adic Lie theory J(Qp) ∼= Zg
p ⊕ H, with H some finite abelian group, imagine

J(Qp) ∼= Zg
p for simplicity. We are thus looking up to torsion at an intersection inside Zg

p, to fix
the ideas. Furthermore, by Mordell-Weil theorem, we can write

J(Q) ∼= Zr ⊕ T, r := rankJ(Q) < +∞

with T the finite torsion subgroup of J(Q), and r called the Mordell-Weil rank of J(Q). Here is
where Chabauty’s idea comes into play:

If r < g, J(Q) is contained in an hyperplane of J(Qp), i.e. is contained in the set of zeroes of
a nontrivial linear equation ℓ : J(Qp) → Qp.
Remark 0.2. This is not true in archimedean topology and the initial reason why we use p-
adic numbers here. More explicitly, if P1, · · · , Pr generate J(Q) up to torsion, one can define
ZpP1 + · · ·ZpPr a p-adic closed analytic subgroup of J(Qp) containing J(Q), obviously of rank at
most r.

Theorem (Chabauty, 1941). If r < g (Chabauty hypothesis), C(Q) is finite.

Proof’s idea (based on Coleman’s 1985 version). Assuming r < g, let ℓ be a nontrivial linear equa-
tion on J(Qp) whose zero locus contains J(Q), so that C(Q) ⊂ (ℓ ◦ ι)−1(0) on C(Qp). On each
residue disk (isomorphic to pZp) (f), this function can be expressed by p-adic power series (f).
Now, we have a logarithm map of p-adic Lie groups to the tangent space at 0 (o)

log : J(Qp) → T0JQp
∼= Qg

p

who has the property that log ◦ι is transcendent on each residue disk (f)??. This imposes that
for each x ∈ C(Fp), ι(Dx) is not contained in an hyperplane of J(Qp), so the p-adic power series
defined on Dx by ℓ ◦ ι is not 0, and thus has finitely many zeroes (which we can bound) (f).

Gathering bounds on all residue disks, we obtain the finiteness of C(Q).

To be precise, we have proven that we always have

C(Q) ⊂ C(Qp)1 :=
⋂
ℓ

ℓ|J(Q)=0

(ℓ ◦ ι)−1(0).

(more on the nature of those ℓ’s later) and that if r < g, C(Qp)1 (the first obstruction for rational
points) is finite and hopefully small enough to be exactly C(Q).

The inspiration for quadratic Chabauty
Let us first complicate a bit the first diagram (even though it starts off the same !)

C(Q)
ι //

⊂
��

J(Q)⊗Z Qp

⊂
��

κ // H1(GT , VpJ)

&&
locp

��
C(Qp)

ι // J(Qp)⊗Z Qp

κp //

log⊗Qp

77
H1(GQp

, VpJ)
∼= // T0JQp

A bit of explanation here (more later): GT is the Galois group of the maximal extension of Q
unramified everywhere outside p, GQp

is the absolute Galois group of Qp, κ and κp are Kummer
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maps (which are injective (f)) (o), locp is the localisation map of cohomology (I will not explain
the cohomology choice), VpJ = TpJ ⊗Zp Qp with TpJ the Tate module (o)and the isomorphism is
given by p-adic Hodge theory (f).

With this cohomological construction (over VpJ the Tate vector space), now we want to “re-
place” VpJ by some nonabelian algebraic group. In fact, we will pick a unipotent group U
(o)over Qp endowed with a Galois action (of GT ) on its Qp-points and a surjective morphism
U → VpJ ∼= (Ga)

g
Qp

as an algebraic group with GT -action.
In an analogous way, we have

C(Q)
κ //

��

Sel(U)

locp

��
C(Qp)

κp // H1(GQp , U)

where Sel(U) ⊂ H1(GT , U) is defined by localisation conditions.
Here comes the main point: Kim’s results (f)[Kim05] prove that Sel(U) and H1(GQp , U) are

not only pointed sets, but the sets of Qp points of affine schemes of finite type over Qp, with locp
an algebraic map!

Now, we will “only” need to prove two things to obtain finiteness of C(Q): first, that the
localisation map locp is not dominant and second that κp is analytic and transcendental (for
the p-adic analytic topology). The second always holds, for the first one, we can “simply” find
conditions for which dimSel(U) < dimH1(GQp , U), and this is where the quadratic Chabauty
condition will appear. To give some spoilers, its simplest form is as follows: instead of r < g, we
need to have

r < g + ρ− 1

where ρ = rankNS(J) with NS(J) the Néron-Severi subgroup (o).

Remark 0.3. Why “quadratic Chabauty”? If you recall, the classical case can also be called linear
as it relies on a “linear equation” isolating J(Q) in J(Qp).

Here, thinking with maps to Qp, the equations involved will appear ultimately given by
“quadratic equations on J(Qp)”. On another hand, they correspond to the “smallest” non abelian
unipotent group above VpJ , and in Kim’s terminology to the second obstruction C(Qp)2.

The interpretation of quadratic Chabauty for these lectures

We will study here quadratic Chabauty method with an alternative description recently devised
by Besser, Müller and Srinivasan in [BMS21]. That preprint will thus be our main reference for
the second part. Let us give its main ideas here:

• After some choices of auxiliary data, one can define for every line bundle L a “canonical”
p-adic height hL : J(Q) → Qp, with L → hL linear. Furthermore, for each L, hL as built will be
a quadratic function on J(Q)/J(Q)tors.

• Using this construction, considering the pullback morphism ι∗NS : NS(J) → NS(X) ∼= Z. Its
kernel V ′ is a Z-module of rank ρ − 1, and together with the logarithm and the construction of
heights, this defines a map

φ : J(Q) → T0JQp
⊕ (V ′)∗ ⊗Qp

∼= Qg+ρ−1
p

by the logarithm map for the first summand and evaluation at D of the global heights for the
second, and this extends to a polynomial map on J(Q)⊗Z Qp

∼= Qr′

p (r′ ≤ r) of degree at most 2
by construction. By a dimension argument, assuming r < g + ρ− 1, there must be a polynomial
Q with coefficient in Qp and g + ρ− 1 variables such that Q(φ) = 0 on J(Q).

Now, we have to go back to how our heights are defined. As we have taken classes of L ∈
Ker ι∗NS, one can consider L’s such that ι∗L is trivial, and then by functoriality this gives for each
L a canonical height on C(Q), built as a sum of local heights. The local heights at q ̸= p will have
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finitely many possible values, and each local height at p will be a special kind of locally analytic
function built with p-adic integration, so in total we will have something like

C(Q) ⊂
⋃
t∈T

{P ∈ C(Q) | ft(P ) = t}

with T ⊂ Qps finite and ft a Vologosdky function on C(Qp) obtained with the heights hL and Q.
The definition techniques employed will then allow to prove that none of these functions is locally
constant (which means in other words that the p-adic iterated integrals that we build for such a
family are algebraically independent on every residue disk C(Qp)), so on every small open ft has
only finitely many zeroes. This allows to conclude that C(Q) is finite.

Geometric quadratic Chabauty version

1 Classical Chabauty method
The valuation v on Qp is normalised by v(p) = 1, and we extend it to a valuation on Qp (by
convention v(0) = +∞).

1.1 Reminders on p-adic power series
This paragraph is based on [Kob77, §IV.4].

Definition 1.1 (Newton polygon). Let

f(T ) :=

+∞∑
n=0

anT
n ∈ Qp[[T ]]

be a nonzero power series.
The Newton polygon of f is the lower convex envelop of the set of points (n, v(an))n≥0 in the

plane.
It is made up with possibly infinitely many segments (the last one being vertical infinite if f is

a polynomial), one of them (the rightmost one) possibly infinite. The sequence of slopes of those
segments (from left to right) is thus a strictly increasing sequence of real numbers. The length of
a segment of the Newton polygon is its horizontal length (i.e. difference of x-coordinates of its
endpoints).

To be more precise, three cases can happen (E):
(a) there are infinitely many segments all of finite length (e.g. f(T ) =

∑n=0
pn

2

Tn) (E).
(b) there are finitely many segments of finite length at first and then an infinitely long segment

passing through infinitely many points (n, v(an)) (e.g. f(T ) = p2 +
∑

n≥1 pT
n (E).

(c) Same as (b) but the infinite segment does not pass through infinitely many points, although
if its slope was higher it would be above infinitely many points (n, v(an)) (e.g. f(T ) = 1 +∑

n≥1 pT
n) (E).

Many things can be said about the Newton polygon, but we will focus on the following.

Theorem 1.1 (Weierstrass preparation theorem). Assume that f(T ) ∈ Qp[[T ]] converges on
D(0, pλ) the closed disk of radius pλ. Then:

(a) The Newton polygon of f has only a finite total length of segments with slopes < λ(E).
(b) Defining N the total length of segments with slopes ≤ λ (if the infinite segment has slope

λ, define N as the last n such that (n, v(an)) does belong to this segment), we can write

f = gh

with g ∈ Qp[T ] of degree N and h ∈ Qp[[T ]] converging and with no zeroes on D(0, pλ) and g, h
are uniquely determined by these properties.
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(c) Furthermore, the Newton polygons of f and g truncated over [0, N ] are the same.
(d) If S is a segment of this truncated Newton polygon of length ℓ and slope α, g (and therefore

f) has exactly ℓ roots in Qp of valuation −α with multiplicity.

Proof. All this can be found in [Kob77]: (a) is Lemma IV.4.5, (b) (most generally referred to as
the preparation theorem itself) and (c) are Theorem IV.4.14 and (d) is Lemma IV.3.4 (we can
assume f(0) = 1 after dividing by some uT k, which only translates the Newton polygon).

Remark 1.2. When we are given a specific (converging) p-adic power series, this theorem is very
precise regarding the sizes of roots, and that is exactly what we will be able to use later. We want
nevertheless a theoretical result, so let us dive directly into a special case which we have a very
good (later) reason to study.

Corollary 1.3. Let f =
∑

n≥0
an

n+1T
n+1 ∈ Qp[[T ]] with an ∈ Zp for all n ∈ N.

Let us assume that for some n ∈ N v(an) = 0 and consider the smallest possible such n.
(a) If n < p− 2, there are at most n+ 1 roots of f (counting 0) in DQp

(0, 1/p).
(b) If n = p− 2, there are at most n+ 1 or n+ 2 roots of f (counting 0) in DQp

(0, 1/p) with
the extra root (of norm 1/p) coming up when v(ap−1) = 0.

(c) If v(a0) = 0, if p > 2 the unique root of f in DQp
(0, 1/p) is 0, if p = 2 there is another root

in that disk if v(a1) = 0, of norm 1/2.

Proof. First, notice that f converges on the closed disk DQp
(0, 1/p). and that for every n ≤ p− 2

and every index i ≥ n+ 1, v(i+ 1) ≤ i− n. Indeed, this is trivially true for i = n+ 1 (1 ≤ 1) and
for i ∈ [p, 2p− 2], and for i ≥ 2p− 1,

v(i+ 1) ≤ log(i+ 1)

log(p)
≤ i+ 1− (p− 1) ≤ i+ 1− (n+ 1) = i− n

by real analysis for the middle term (E). Notice furthermore that if n < p−2, the proven inequality
is always strict if again i ≥ n+ 1.

Now, denote by Pk the point (k + 1, v( ak

k+1 )) for all k ∈ N.
By hypothesis, the slope of any segment between Pk (k < n) and Pi (i > n) is

v(ai)− v(i+ 1)− v(ak)

i− k
≥ n− i− v(ak)

i− k
.

The same computation between Pk (k < n) and Pn gives a slope −v(ak)/(n− k). There are thus
two cases: if v(ak) > n − k, the segment [PkPn] has a lower slope than any segment [PkPi] with
i > n, so Pn is one of the vertices of the Newton polygon. If v(ak) ≤ n− k, the above inequality
shows that

v(ai)− v(i+ 1)− v(ak)

i− k
≥ n− i− v(ak)

i− k
≥ n− i− (n− k)

i− k
= −1.

In case (a), this even gives a strict inequality, which implies that in both situations the last
segment of the Newton polygon which originates in some Pk (k ≤ n) must have a slope > −1,
so all following segments of the Newton polygon also do. Therefore, all segments of the polygon
with slopes ≤ −1 are contained in the truncated Newton polygon above [0, n+ 1] and their total
length is at most n, from which we can conclude by Theorem 1.1 (b).

Case (b) is similar but we can have such a segment of slope −1 when k = n and the equality
case v(i+1) = i−n, which happens only when i = p−1. In that situation, the segment [Pp−2Pp−1]
has slope −1 exactly if v(ap) = 0, but then the following segments don’t, so it is enough to consider
the Newton polygon truncated over [0, n+ 2] and the result follows.

Case (c) is now an immediate conclusion based on those two cases.
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1.2 The setup of Chabauty’s method
1.2.1 Local rings and parameters

Let us now start with our curve C/Q, base point b ∈ C(Q) and jacobian J of C and a choice of
prime number p. The main reference for the algebraic geometry arguments here is [Liu02].

Fix a smooth projective model C of C over Z(p) such that CQ ∼= C (and it is then unique up
to isomorphism by [Liu02, Proposition 10.1.21]), we fix such a model, identify CQ with C and by
abuse of notation, write CFp := C × SpecFp the fiber of C at p and C(Fp) := C (Fp).

This model extends to SpecZp, and for C(Qp) = C (Qp) = C (Zp) by the valuative criterion of
properness [Liu02, Corollary 3.3.26].

Definition 1.4. For any point P ∈ C(Qp), the reduction of P modulo p, denoted by P ∈ C(Fp)
is the image of the extension of P to SpecZp → C at the special fiber.

The residue disk Dx of x ∈ C(Fp) is

Dx := {P ∈ C(Qp) |P = x}.

Remark 1.5. These reduction maps can actually be defined more generally for any proper scheme
over a Dedekind scheme, see [Liu02, Definition 10.1.31].

Definition 1.6 (Systems of local parameters). Let X be a projective scheme of relative dimension
d over Zp, smooth over Qp.

– For any smooth point x ∈ X (Fp) seen as a closed point of X , the maximal ideal mX,x of
OX ,x can be generated by p together with d other elements t1, · · · , td such their reductions
modulo p generate the maximal idea of OXFp ,x

. In this case we call (p, t1, · · · , td) a system
of local parameters at x.

– If furthermore P ∈ X (Qp) is a point whose reduction modulo p is x and t1(P ) = 0, · · · , td(P ) =
0 (this is well-defined through the canonical injection OX ,x → OX ,P ), then we call (p, t1, · · · , td)
a system of good local parameters at P .

Proof. By smooothness of XFp at x, A := OXFp ,x
is a regular local ring with characteristic p and of

dimension d. We can thus fix t1, · · · , td in mA whose classes give a basis of the k(x)-vector space
mA/m

2
A
, and by Nakayama’s Lemma, t1, · · · , td then generate mA itself.

Now, OX ,x is a ring whose tensor product with Fp is A, so we can fix elements t1, · · · , td of OX ,x

whose images modulo p are t1, · · · , td, so that now (p, t1, · · · , td) generate mX ,x by Nakayama’s
lemma again.

The following fundamental result is based on [Liu02, Proposition 10.1.40].

Proposition 1.7. With those definitions and (p, t1, · · · , td) a system of local parameters at x, we
have an isomorphism

Zp[[T1, · · · , Td]]
φ∼= ÔX ,x

sending each Ti on ti and it induces a bijection between Dx and (pZp)
d via

Dx
∼= Homloc(ÔX ,x,Zp)

φ∗

∼= (pZp)
d.

where to each morphism F : ÔX ,x → Zp we associate its images on the φ(t1), · · ·φ(td) and Homloc

means morphisms of local rings. This bijection will be called “evaluation of the parameters at
points of the residue disk”, and the image of P ∈ Dx denoted by (t1(P ), · · · , td(P )).
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Furthermore, for P ∈ X(Qp) reducing to x and assuming t1(P ), · · · , td(P ) = 0, we have a
commutative diagram

Qp[[T1, · · · , Td]]
φ⊗ZpQp// ÔX,P

Zp[[T1, · · · , Td]]
φ //

Id⊗FpQp

��

Id⊗ZpQp

OO

ÔX ,x

Id⊗ZpFp

��

Id⊗ZpQp

OO

Fp[[T1, · · · , Td]]
φ⊗Fp // ÔXFp ,x

where horizontal arrows are isomorphisms.

Proof. First, notice that each ti belongs to mX ,x by construction, so φ is actually a well-defined
morphism of complete local rings. For the surjectivity, we have k(x) = Fp and mX ,x is generated
by (p, t1, · · · , td) so we have

OX ,x = Zp + (t1, · · · , td) ⊂ Zp[t1, · · · , td] + (t1, · · · , td)m

for all m ≥ 1 by immediate induction, which leads to the surjectivity of φ. Now, x being a smooth
point in the special fiber and X of relative dimension d, ÔX ,x is a complete (integral) regular local
ring of dimension d+ 1 so φ must be an isomorphism.

With similar arguments, as (t1, · · · , td) is a system of local parameters at x ∈ XFp
and

(t1, · · · , td) is a system of local parameters at P by construction, we also obtain

Qp[[t1, · · · , td]] = ÔX,P , Fp[[t1, · · · , td]] = ÔXFp ,x
,

in a compatible way with the canonical morphisms given, which proves that the diagram is well-
defined and commutes.

Then, we have the sequence of standard identifications

Dx = {f : SpecZp → X | f(pZp) = x}
∼= {f : SpecZp → SpecOX ,x}
∼= Homloc(OX ,x,Zp)

∼= Homloc(ÔX ,x,Zp)
∼= Homloc(Zp[[T1, · · · , Td]],Zp)
∼= (pZp)

d,

the latter bijection simply given by choosing the images of the generators Ti (they have to be in
pZp to obtain a morphism of local rings).

The following Corollary can also be found as [Sik09, Lemma 2.3].

Corollary 1.8 (Case of curves). If x ∈ C (Fp), we can fix t ∈ OCZp ,x
whose reduction modulo p

is a uniformizer in CFp . The residue disk Dx is then in bijection with pZp = DQp(0, 1/p) through
“evaluation of t”. Furthermore, considering t as rational function in Qp(C), for a point P ∈ C(Qp)
reducing to x modulo p, sP := t− t(P ) has the following properties:

(a) sP is a uniformizer at P .
(b) the reduction of sP modulo p (seen as a rational function in Fp(CFp

)) is a uniformizer at
x.
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(c) We have

ÔCQp ,P

∼= // Qp[[sP ]]

ÔCZp ,x

∼= //

��

OO

Zp[[sP ]]

��

OO

ÔCFp ,x

∼= // Fp[[sP ]].

where vertical arrows are the reduction mod p (i.e. tensoring by Fp).
(d) The “evaluation of sP at x” is a bijection between the residue disk DP and pZp, sending P

to 0.

Definition 1.9 (Good uniformizer). For a given P ∈ C(Qp) as above, a function sP thus obtained
will be called a good uniformizer at P .
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