Lectures notes on "Classical and quadratic Chabauty"

Samuel Le Fourn
ICTS 2023

September 11, 2023

A short introduction to the principles of the methods

In these lectures, I will talk about Chabauty methods to determine rational points on an algebraic projective curve of genus at least 2 .

I will use throughout the following notation:

Notation

$-C$ is a smooth algebraic projective curve over \mathbb{Q}, with genus $g \geq 2$. By the famous Faltings' theorem, $C(\mathbb{Q})$ is then finite, but this theorem does not give a way to determine this finite set (in fact, the methods employed, apart from a quite large bound on the size of $C(\mathbb{Q})$, cannot say much more).

- J is the jacobian of C, thus a principally polarised abelian variety over \mathbb{Q} of dimension g.
- We fix a base point $b \in C(\mathbb{Q})$, thanks to which we define the embedding from C to J

$$
\iota: \left\lvert\, \begin{array}{lll}
C & \longrightarrow & J \\
P & \longmapsto & \mathrm{cl}([P]-[b])
\end{array}\right.
$$

- For any scheme \mathcal{X} over some $\operatorname{Spec} A$ with A a ring and any A-algebra B, we denote by \mathcal{X}_{B} the fiber product $\mathcal{X} \times_{\text {Spec } A} \operatorname{Spec} B$ (in other words extension of scalars from A to B).
- p is a prime number at which C has good reduction (i.e. there exists a smooth algebraic projective curve \mathscr{C} over $\mathbb{Z}_{(p)}$ such that $\mathscr{C}_{\mathbb{Q}}$ is isomorphic to C). This model is unique (up to $\mathbb{Z}_{(p) \text {-isomorphism) }}$, so we fix it and by abuse of notation, we will write $C_{\mathbb{F}_{p}}:=\mathscr{C}_{\mathbb{F}_{p}}$ and $C\left(\mathbb{F}_{p}\right):=\mathscr{C}\left(\mathbb{F}_{p}\right)$.
- As \mathscr{C} is proper, every point P in $C\left(\mathbb{Q}_{p}\right)$ extends to a unique morphism $\operatorname{Spec} \mathbb{Z}_{p} \rightarrow \mathscr{C}$ and thus defines the reduction modulo p of P, i.e. a point of $C\left(\mathbb{F}_{p}\right)$, denoted by $\bar{P}{ }^{(f)}$.
- For any point $x \in C\left(\mathbb{F}_{p}\right)$, we denote $D_{x} \subset C\left(\mathbb{Q}_{p}\right)$ the (p-adic) residue disk of x, i.e. the set of points of $C\left(\mathbb{Q}_{p}\right)$ whose reduction modulo p is exactly x (this terminology will be justified later).
Remark 0.1. Everything works out in a very similar way for finite extensions of \mathbb{Q} (resp. $\left.\mathbb{Q}_{p}\right)$, but I preferred to keep it simple.

Main idea of classical Chabauty

The idea of Chabauty's method can be summed up in the following diagram.

This allows us to "see" $C(\mathbb{Q})$ as included in $C\left(\mathbb{Q}_{p}\right) \cap J(\mathbb{Q})$ inside $J\left(\mathbb{Q}_{p}\right)$. More precisely,

$$
\iota(C(\mathbb{Q})) \subset \iota\left(C\left(\mathbb{Q}_{p}\right)\right) \cap J(\mathbb{Q}) .
$$

Now, by p-adic Lie theory $J\left(\mathbb{Q}_{p}\right) \cong \mathbb{Z}_{p}^{g} \oplus H$, with H some finite abelian group, imagine $J\left(\mathbb{Q}_{p}\right) \cong \mathbb{Z}_{p}^{g}$ for simplicity. We are thus looking up to torsion at an intersection inside \mathbb{Z}_{p}^{g}, to fix the ideas. Furthermore, by Mordell-Weil theorem, we can write

$$
J(\mathbb{Q}) \cong \mathbb{Z}^{r} \oplus T, \quad r:=\operatorname{rank} J(\mathbb{Q})<+\infty
$$

with T the finite torsion subgroup of $J(\mathbb{Q})$, and r called the Mordell-Weil rank of $J(\mathbb{Q})$. Here is where Chabauty's idea comes into play:

If $r<g, J(\mathbb{Q})$ is contained in an hyperplane of $J\left(\mathbb{Q}_{p}\right)$, i.e. is contained in the set of zeroes of a nontrivial linear equation $\ell: J\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}$.
Remark 0.2. This is not true in archimedean topology and the initial reason why we use p adic numbers here. More explicitly, if P_{1}, \cdots, P_{r} generate $J(\mathbb{Q})$ up to torsion, one can define $\mathbb{Z}_{p} P_{1}+\cdots \mathbb{Z}_{p} P_{r}$ a p-adic closed analytic subgroup of $J\left(\mathbb{Q}_{p}\right)$ containing $J(\mathbb{Q})$, obviously of rank at most r.

Theorem (Chabauty, 1941). If $r<g$ (Chabauty hypothesis), $C(\mathbb{Q})$ is finite.
Proof's idea (based on Coleman's 1985 version). Assuming $r<g$, let ℓ be a nontrivial linear equation on $J\left(\mathbb{Q}_{p}\right)$ whose zero locus contains $J(\mathbb{Q})$, so that $C(\mathbb{Q}) \subset(\ell \circ \iota)^{-1}(0)$ on $C\left(\mathbb{Q}_{p}\right)$. On each residue disk (isomorphic to $\left.p \mathbb{Z}_{p}\right)^{(f)}$, this function can be expressed by p-adic power series ${ }^{(f)}$. Now, we have a logarithm map of p-adic Lie groups to the tangent space at $0{ }^{(o)}$

$$
\log : J\left(\mathbb{Q}_{p}\right) \rightarrow T_{0} J_{\mathbb{Q}_{p}} \cong \mathbb{Q}_{p}^{g}
$$

who has the property that $\log \circ \iota$ is transcendent on each residue disk ${ }^{(f)} \boldsymbol{?} \boldsymbol{?}$? This imposes that for each $x \in C\left(\mathbb{F}_{p}\right), \iota\left(D_{x}\right)$ is not contained in an hyperplane of $J\left(\mathbb{Q}_{p}\right)$, so the p-adic power series defined on D_{x} by $\ell \circ \iota$ is not 0 , and thus has finitely many zeroes (which we can bound) ${ }^{(f)}$.

Gathering bounds on all residue disks, we obtain the finiteness of $C(\mathbb{Q})$.
To be precise, we have proven that we always have

$$
C(\mathbb{Q}) \subset C\left(\mathbb{Q}_{p}\right)_{1}:=\bigcap_{\substack{\ell \\ \ell_{\mid J(\mathbb{Q})}=0}}(\ell \circ \iota)^{-1}(0)
$$

(more on the nature of those ℓ 's later) and that if $r<g, C\left(\mathbb{Q}_{p}\right)_{1}$ (the first obstruction for rational points) is finite and hopefully small enough to be exactly $C(\mathbb{Q})$.

The inspiration for quadratic Chabauty

Let us first complicate a bit the first diagram (even though it starts off the same !)

A bit of explanation here (more later): G_{T} is the Galois group of the maximal extension of \mathbb{Q} unramified everywhere outside $p, G_{\mathbb{Q}_{p}}$ is the absolute Galois group of \mathbb{Q}_{p}, κ and κ_{p} are Kummer
maps (which are injective $\left.{ }^{(f)}\right)^{(o)}, \operatorname{loc}_{p}$ is the localisation map of cohomology (I will not explain the cohomology choice), $V_{p} J=T_{p} J \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$ with $T_{p} J$ the Tate module ${ }^{(o)}$ and the isomorphism is given by p-adic Hodge theory ${ }^{(f)}$.

With this cohomological construction (over $V_{p} J$ the Tate vector space), now we want to "replace" $V_{p} J$ by some nonabelian algebraic group. In fact, we will pick a unipotent group U ${ }^{(\circ)}$ over \mathbb{Q}_{p} endowed with a Galois action (of G_{T}) on its \mathbb{Q}_{p}-points and a surjective morphism $U \rightarrow V_{p} J \cong\left(\mathbb{G}_{a}\right)_{\mathbb{Q}_{p}}^{g}$ as an algebraic group with G_{T}-action.

In an analogous way, we have

where $\operatorname{Sel}(U) \subset H^{1}\left(G_{T}, U\right)$ is defined by localisation conditions.
Here comes the main point: Kim's results ${ }^{(f)}[\operatorname{Kim} 05]$ prove that $\operatorname{Sel}(U)$ and $H^{1}\left(G_{\mathbb{Q}_{p}}, U\right)$ are not only pointed sets, but the sets of \mathbb{Q}_{p} points of affine schemes of finite type over \mathbb{Q}_{p}, with loc ${ }_{p}$ an algebraic map!

Now, we will "only" need to prove two things to obtain finiteness of $C(\mathbb{Q})$: first, that the localisation map loc_{p} is not dominant and second that κ_{p} is analytic and transcendental (for the p-adic analytic topology). The second always holds, for the first one, we can "simply" find conditions for which $\operatorname{dim} \operatorname{Sel}(U)<\operatorname{dim} H^{1}\left(G_{\mathbb{Q}_{p}}, U\right)$, and this is where the quadratic Chabauty condition will appear. To give some spoilers, its simplest form is as follows: instead of $r<g$, we need to have

$$
r<g+\rho-1
$$

where $\rho=\operatorname{rank} \operatorname{NS}(J)$ with $\operatorname{NS}(J)$ the Néron-Severi subgroup ${ }^{(o)}$.
Remark 0.3. Why "quadratic Chabauty"? If you recall, the classical case can also be called linear as it relies on a "linear equation" isolating $J(\mathbb{Q})$ in $J\left(\mathbb{Q}_{p}\right)$.

Here, thinking with maps to \mathbb{Q}_{p}, the equations involved will appear ultimately given by "quadratic equations on $J\left(\mathbb{Q}_{p}\right)$ ". On another hand, they correspond to the "smallest" non abelian unipotent group above $V_{p} J$, and in Kim's terminology to the second obstruction $C\left(\mathbb{Q}_{p}\right)_{2}$.

The interpretation of quadratic Chabauty for these lectures

We will study here quadratic Chabauty method with an alternative description recently devised by Besser, Müller and Srinivasan in [BMS21]. That preprint will thus be our main reference for the second part. Let us give its main ideas here:

- After some choices of auxiliary data, one can define for every line bundle L a "canonical" p-adic height $h_{L}: J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p}$, with $L \rightarrow h_{L}$ linear. Furthermore, for each L, h_{L} as built will be a quadratic function on $J(\mathbb{Q}) / J(\mathbb{Q})_{\text {tors }}$.
- Using this construction, considering the pullback morphism $\iota_{\mathrm{NS}}^{*}: \mathrm{NS}(J) \rightarrow \mathrm{NS}(X) \cong \mathbb{Z}$. Its kernel V^{\prime} is a \mathbb{Z}-module of rank $\rho-1$, and together with the logarithm and the construction of heights, this defines a map

$$
\varphi: J(\mathbb{Q}) \rightarrow T_{0} J_{\mathbb{Q}_{p}} \oplus\left(V^{\prime}\right)^{*} \otimes \mathbb{Q}_{p} \cong \mathbb{Q}_{p}^{g+\rho-1}
$$

by the logarithm map for the first summand and evaluation at D of the global heights for the second, and this extends to a polynomial map on $J(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{Q}_{p} \cong \mathbb{Q}_{p}^{r^{\prime}}\left(r^{\prime} \leq r\right)$ of degree at most 2 by construction. By a dimension argument, assuming $r<g+\rho-1$, there must be a polynomial Q with coefficient in \mathbb{Q}_{p} and $g+\rho-1$ variables such that $Q(\varphi)=0$ on $J(\mathbb{Q})$.

Now, we have to go back to how our heights are defined. As we have taken classes of $L \in$ $\operatorname{Ker} \iota_{\mathrm{NS}}^{*}$, one can consider L 's such that $\iota^{*} L$ is trivial, and then by functoriality this gives for each L a canonical height on $C(\mathbb{Q})$, built as a sum of local heights. The local heights at $q \neq p$ will have
finitely many possible values, and each local height at p will be a special kind of locally analytic function built with p-adic integration, so in total we will have something like

$$
C(\mathbb{Q}) \subset \bigcup_{t \in T}\left\{P \in C(\mathbb{Q}) \mid f_{t}(P)=t\right\}
$$

with $T \subset \mathbb{Q}_{p} s$ finite and f_{t} a Vologosdky function on $C\left(\mathbb{Q}_{p}\right)$ obtained with the heights h_{L} and Q. The definition techniques employed will then allow to prove that none of these functions is locally constant (which means in other words that the p-adic iterated integrals that we build for such a family are algebraically independent on every residue disk $\left.C\left(\mathbb{Q}_{p}\right)\right)$, so on every small open f_{t} has only finitely many zeroes. This allows to conclude that $C(\mathbb{Q})$ is finite.

Geometric quadratic Chabauty version

1 Classical Chabauty method

The valuation v on \mathbb{Q}_{p} is normalised by $v(p)=1$, and we extend it to a valuation on $\overline{\mathbb{Q}_{p}}$ (by convention $v(0)=+\infty)$.

1.1 Reminders on p-adic power series

This paragraph is based on [Kob77, §IV.4].
Definition 1.1 (Newton polygon). Let

$$
f(T):=\sum_{n=0}^{+\infty} a_{n} T^{n} \in \mathbb{Q}_{p}[[T]]
$$

be a nonzero power series.
The Newton polygon of f is the lower convex envelop of the set of points $\left(n, v\left(a_{n}\right)\right)_{n \geq 0}$ in the plane.

It is made up with possibly infinitely many segments (the last one being vertical infinite if f is a polynomial), one of them (the rightmost one) possibly infinite. The sequence of slopes of those segments (from left to right) is thus a strictly increasing sequence of real numbers. The length of a segment of the Newton polygon is its horizontal length (i.e. difference of x-coordinates of its endpoints).

To be more precise, three cases can happen ${ }^{(E)}$:
(a) there are infinitely many segments all of finite length (e.g. $\left.f(T)=\sum^{n=0} p^{n^{2}} T^{n}\right)^{(E)}$.
(b) there are finitely many segments of finite length at first and then an infinitely long segment passing through infinitely many points $\left(n, v\left(a_{n}\right)\right)$ (e.g. $f(T)=p^{2}+\sum_{n \geq 1} p T^{n}(E)$.
(c) Same as (b) but the infinite segment does not pass through infinitely many points, although if its slope was higher it would be above infinitely many points $\left(n, v\left(a_{n}\right)\right.$) (e.g. $f(T)=1+$ $\left.\sum_{n \geq 1} p T^{n}\right)^{(E)}$.

Many things can be said about the Newton polygon, but we will focus on the following.
Theorem 1.1 (Weierstrass preparation theorem). Assume that $f(T) \in \mathbb{Q}_{p}[[T]]$ converges on $D\left(0, p^{\lambda}\right)$ the closed disk of radius p^{λ}. Then:
(a) The Newton polygon of f has only a finite total length of segments with slopes $<\lambda^{(E)}$.
(b) Defining N the total length of segments with slopes $\leq \lambda$ (if the infinite segment has slope λ, define N as the last n such that $\left(n, v\left(a_{n}\right)\right)$ does belong to this segment), we can write

$$
f=g h
$$

with $g \in \mathbb{Q}_{p}[T]$ of degree N and $h \in \mathbb{Q}_{p}[[T]]$ converging and with no zeroes on $D\left(0, p^{\lambda}\right)$ and g, h are uniquely determined by these properties.
(c) Furthermore, the Newton polygons of f and g truncated over $[0, N]$ are the same.
(d) If S is a segment of this truncated Newton polygon of length ℓ and slope α, g (and therefore f) has exactly ℓ roots in $\overline{\mathbb{Q}_{p}}$ of valuation $-\alpha$ with multiplicity.

Proof. All this can be found in [Kob77]: (a) is Lemma IV.4.5, (b) (most generally referred to as the preparation theorem itself) and (c) are Theorem IV.4.14 and (d) is Lemma IV.3.4 (we can assume $f(0)=1$ after dividing by some $u T^{k}$, which only translates the Newton polygon).

Remark 1.2. When we are given a specific (converging) p-adic power series, this theorem is very precise regarding the sizes of roots, and that is exactly what we will be able to use later. We want nevertheless a theoretical result, so let us dive directly into a special case which we have a very good (later) reason to study.

Corollary 1.3. Let $f=\sum_{n \geq 0} \frac{a_{n}}{n+1} T^{n+1} \in \mathbb{Q}_{p}[[T]]$ with $a_{n} \in \mathbb{Z}_{p}$ for all $n \in \mathbb{N}$.
Let us assume that for some $n \in \mathbb{N} v\left(a_{n}\right)=0$ and consider the smallest possible such n.
(a) If $n<p-2$, there are at most $n+1$ roots of f (counting 0) in $D_{\overline{\mathbb{Q}_{p}}}(0,1 / p)$.
(b) If $n=p-2$, there are at most $n+1$ or $n+2$ roots of f (counting 0) in $D_{\overline{\mathbb{Q}_{p}}}(0,1 / p)$ with the extra root (of norm $1 / p$) coming up when $v\left(a_{p-1}\right)=0$.
(c) If $v\left(a_{0}\right)=0$, if $p>2$ the unique root of f in $D_{\overline{\mathbb{Q}_{p}}}(0,1 / p)$ is 0 , if $p=2$ there is another root in that disk if $v\left(a_{1}\right)=0$, of norm $1 / 2$.

Proof. First, notice that f converges on the closed disk $D_{\overline{\mathbb{Q}_{p}}}(0,1 / p)$. and that for every $n \leq p-2$ and every index $i \geq n+1, v(i+1) \leq i-n$. Indeed, this is trivially true for $i=n+1(1 \leq 1)$ and for $i \in[p, 2 p-2]$, and for $i \geq 2 p-1$,

$$
v(i+1) \leq \frac{\log (i+1)}{\log (p)} \leq i+1-(p-1) \leq i+1-(n+1)=i-n
$$

by real analysis for the middle term ${ }^{(E)}$. Notice furthermore that if $n<p-2$, the proven inequality is always strict if again $i \geq n+1$.

Now, denote by P_{k} the point $\left(k+1, v\left(\frac{a_{k}}{k+1}\right)\right)$ for all $k \in \mathbb{N}$.
By hypothesis, the slope of any segment between $P_{k}(k<n)$ and $P_{i}(i>n)$ is

$$
\frac{v\left(a_{i}\right)-v(i+1)-v\left(a_{k}\right)}{i-k} \geq \frac{n-i-v\left(a_{k}\right)}{i-k} .
$$

The same computation between $P_{k}(k<n)$ and P_{n} gives a slope $-v\left(a_{k}\right) /(n-k)$. There are thus two cases: if $v\left(a_{k}\right)>n-k$, the segment $\left[P_{k} P_{n}\right]$ has a lower slope than any segment $\left[P_{k} P_{i}\right]$ with $i>n$, so P_{n} is one of the vertices of the Newton polygon. If $v\left(a_{k}\right) \leq n-k$, the above inequality shows that

$$
\frac{v\left(a_{i}\right)-v(i+1)-v\left(a_{k}\right)}{i-k} \geq \frac{n-i-v\left(a_{k}\right)}{i-k} \geq \frac{n-i-(n-k)}{i-k}=-1 .
$$

In case (a), this even gives a strict inequality, which implies that in both situations the last segment of the Newton polygon which originates in some $P_{k}(k \leq n)$ must have a slope >-1, so all following segments of the Newton polygon also do. Therefore, all segments of the polygon with slopes ≤-1 are contained in the truncated Newton polygon above $[0, n+1]$ and their total length is at most n, from which we can conclude by Theorem 1.1 (b).

Case (b) is similar but we can have such a segment of slope -1 when $k=n$ and the equality case $v(i+1)=i-n$, which happens only when $i=p-1$. In that situation, the segment $\left[P_{p-2} P_{p-1}\right.$] has slope -1 exactly if $v\left(a_{p}\right)=0$, but then the following segments don't, so it is enough to consider the Newton polygon truncated over $[0, n+2]$ and the result follows.

Case (c) is now an immediate conclusion based on those two cases.

1.2 The setup of Chabauty's method

1.2.1 Local rings and parameters

Let us now start with our curve C / \mathbb{Q}, base point $b \in C(\mathbb{Q})$ and jacobian J of C and a choice of prime number p. The main reference for the algebraic geometry arguments here is [Liu02].

Fix a smooth projective model \mathscr{C} of C over $\mathbb{Z}_{(p)}$ such that $\mathscr{C}_{\mathbb{Q}} \cong C$ (and it is then unique up to isomorphism by [Liu02, Proposition 10.1.21]), we fix such a model, identify $\mathscr{C}_{\mathbb{Q}}$ with C and by abuse of notation, write $C_{\mathbb{F}_{p}}:=\mathscr{C} \times \operatorname{Spec} \mathbb{F}_{p}$ the fiber of \mathscr{C} at p and $C\left(\mathbb{F}_{p}\right):=\mathscr{C}\left(\mathbb{F}_{p}\right)$.

This model extends to Spec \mathbb{Z}_{p}, and for $C\left(\mathbb{Q}_{p}\right)=\mathscr{C}\left(\mathbb{Q}_{p}\right)=\mathscr{C}\left(\mathbb{Z}_{p}\right)$ by the valuative criterion of properness [Liu02, Corollary 3.3.26].

Definition 1.4. For any point $P \in C\left(\mathbb{Q}_{p}\right)$, the reduction of P modulo p, denoted by $\bar{P} \in C\left(\mathbb{F}_{p}\right)$ is the image of the extension of P to $\operatorname{Spec} \mathbb{Z}_{p} \rightarrow \mathscr{C}$ at the special fiber.

The residue disk D_{x} of $x \in C\left(\mathbb{F}_{p}\right)$ is

$$
D_{x}:=\left\{P \in C\left(\mathbb{Q}_{p}\right) \mid \bar{P}=x\right\}
$$

Remark 1.5. These reduction maps can actually be defined more generally for any proper scheme over a Dedekind scheme, see [Liu02, Definition 10.1.31].

Definition 1.6 (Systems of local parameters). Let \mathcal{X} be a projective scheme of relative dimension d over \mathbb{Z}_{p}, smooth over \mathbb{Q}_{p}.

- For any smooth point $x \in \mathcal{X}\left(\mathbb{F}_{p}\right)$ seen as a closed point of \mathcal{X}, the maximal ideal $\mathfrak{m}_{X, x}$ of $\mathcal{O}_{\mathcal{X}, x}$ can be generated by p together with d other elements t_{1}, \cdots, t_{d} such their reductions modulo p generate the maximal idea of $\mathcal{O}_{\mathcal{X}_{\mathbb{F}_{p}}, x}$. In this case we call $\left(p, t_{1}, \cdots, t_{d}\right)$ a system of local parameters at x.
- If furthermore $P \in \mathcal{X}\left(\mathbb{Q}_{p}\right)$ is a point whose reduction modulo p is x and $t_{1}(P)=0, \cdots, t_{d}(P)=$ 0 (this is well-defined through the canonical injection $\left.\mathcal{O}_{\mathcal{X}, x} \rightarrow \mathcal{O}_{\mathcal{X}, P}\right)$, then we call $\left(p, t_{1}, \cdots, t_{d}\right)$ a system of good local parameters at P.

Proof. By smooothness of $\mathcal{X}_{\mathbb{F}_{p}}$ at $x, \bar{A}:=\mathcal{O}_{\mathcal{X}_{\mathbb{F}_{p}}, x}$ is a regular local ring with characteristic p and of dimension d. We can thus fix $\overline{t_{1}}, \cdots, \overline{t_{d}}$ in $\mathfrak{m}_{\bar{A}}$ whose classes give a basis of the $k(x)$-vector space $\mathfrak{m}_{\bar{A}} / \mathfrak{m}_{\bar{A}}^{2}$, and by Nakayama's Lemma, $\overline{t_{1}}, \cdots, \overline{t_{d}}$ then generate $\mathfrak{m}_{\bar{A}}$ itself.

Now, $\mathcal{O}_{\mathcal{X}, x}$ is a ring whose tensor product with \mathbb{F}_{p} is \bar{A}, so we can fix elements t_{1}, \cdots, t_{d} of $\mathcal{O}_{\mathcal{X}, x}$ whose images modulo p are $\overline{t_{1}}, \cdots, \overline{t_{d}}$, so that now $\left(p, \overline{t_{1}}, \cdots, \overline{t_{d}}\right)$ generate $\mathfrak{m}_{\mathcal{X}, x}$ by Nakayama's lemma again.

The following fundamental result is based on [Liu02, Proposition 10.1.40].
Proposition 1.7. With those definitions and $\left(p, t_{1}, \cdots, t_{d}\right)$ a system of local parameters at x, we have an isomorphism

$$
\mathbb{Z}_{p}\left[\left[T_{1}, \cdots, T_{d}\right]\right] \stackrel{\varphi}{\cong} \widehat{\mathcal{O}_{\mathcal{X}, x}}
$$

sending each T_{i} on t_{i} and it induces a bijection between D_{x} and $\left(p \mathbb{Z}_{p}\right)^{d}$ via

$$
D_{x} \cong \operatorname{Hom}_{\mathrm{loc}}\left(\widehat{\mathcal{O}_{\mathcal{X}, x}}, \mathbb{Z}_{p}\right) \stackrel{\varphi^{*}}{\cong}\left(p \mathbb{Z}_{p}\right)^{d}
$$

where to each morphism $F: \widehat{\mathcal{O}_{\mathcal{X}, x}} \rightarrow \mathbb{Z}_{p}$ we associate its images on the $\varphi\left(t_{1}\right), \cdots \varphi\left(t_{d}\right)$ and $\operatorname{Hom}_{\text {loc }}$ means morphisms of local rings. This bijection will be called "evaluation of the parameters at points of the residue disk", and the image of $P \in D_{x}$ denoted by $\left(t_{1}(P), \cdots, t_{d}(P)\right)$.

Furthermore, for $P \in X\left(\mathbb{Q}_{p}\right)$ reducing to x and assuming $t_{1}(P), \cdots, t_{d}(P)=0$, we have a commutative diagram

where horizontal arrows are isomorphisms.
Proof. First, notice that each t_{i} belongs to $\mathfrak{m}_{\mathcal{X}, x}$ by construction, so φ is actually a well-defined morphism of complete local rings. For the surjectivity, we have $k(x)=\mathbb{F}_{p}$ and $\mathfrak{m}_{\mathcal{X}, x}$ is generated by $\left(p, t_{1}, \cdots, t_{d}\right)$ so we have

$$
\mathcal{O}_{\mathcal{X}, x}=\mathbb{Z}_{p}+\left(t_{1}, \cdots, t_{d}\right) \subset \mathbb{Z}_{p}\left[t_{1}, \cdots, t_{d}\right]+\left(t_{1}, \cdots, t_{d}\right)^{m}
$$

for all $m \geq 1$ by immediate induction, which leads to the surjectivity of φ. Now, x being a smooth point in the special fiber and \mathcal{X} of relative dimension $d, \widehat{\mathcal{O X}_{\mathcal{X}, x}}$ is a complete (integral) regular local ring of dimension $d+1$ so φ must be an isomorphism.

With similar arguments, as $\left(\overline{t_{1}}, \cdots, \overline{t_{d}}\right)$ is a system of local parameters at $x \in \mathcal{X}_{\mathbb{F}_{p}}$ and $\left(t_{1}, \cdots, t_{d}\right)$ is a system of local parameters at P by construction, we also obtain

$$
\mathbb{Q}_{p}\left[\left[t_{1}, \cdots, t_{d}\right]\right]=\widehat{\mathcal{O}_{X, P}}, \quad \mathbb{F}_{p}\left[\left[\overline{t_{1}}, \cdots, \overline{t_{d}}\right]\right]=\widehat{\mathcal{O}_{\mathcal{X}_{\mathbb{F}_{p}}, x}}
$$

in a compatible way with the canonical morphisms given, which proves that the diagram is welldefined and commutes.

Then, we have the sequence of standard identifications

$$
\begin{aligned}
D_{x} & =\left\{f: \operatorname{Spec} \mathbb{Z}_{p} \rightarrow \mathcal{X} \mid f\left(p \mathbb{Z}_{p}\right)=x\right\} \\
& \cong\left\{f: \operatorname{Spec} \mathbb{Z}_{p} \rightarrow \operatorname{Spec} \mathcal{O}_{\mathcal{X}, x}\right\} \\
& \cong \operatorname{Hom}_{\mathrm{loc}}\left(\mathcal{O}_{\mathcal{X}, x}, \mathbb{Z}_{p}\right) \\
& \cong \operatorname{Hom}_{\mathrm{loc}}\left(\widehat{\mathcal{O X}_{\mathcal{X}}, x}, \mathbb{Z}_{p}\right) \\
& \cong \operatorname{Hom}_{\mathrm{loc}}\left(\mathbb{Z}_{p}\left[\left[T_{1}, \cdots, T_{d}\right]\right], \mathbb{Z}_{p}\right) \\
& \cong\left(p \mathbb{Z}_{p}\right)^{d},
\end{aligned}
$$

the latter bijection simply given by choosing the images of the generators T_{i} (they have to be in $p \mathbb{Z}_{p}$ to obtain a morphism of local rings).

The following Corollary can also be found as [Sik09, Lemma 2.3].
Corollary 1.8 (Case of curves). If $x \in \mathscr{C}\left(\mathbb{F}_{p}\right)$, we can fix $t \in \mathcal{O}_{\mathscr{C}_{\mathbb{Z}_{p}}, x}$ whose reduction modulo p is a uniformizer in $\mathscr{C}_{\mathbb{F}_{p}}$. The residue disk D_{x} is then in bijection with $p \mathbb{Z}_{p}=D_{\mathbb{Q}_{p}}(0,1 / p)$ through "evaluation of t ". Furthermore, consideringt as rational function in $\mathbb{Q}_{p}(C)$, for a point $P \in C\left(\mathbb{Q}_{p}\right)$ reducing to x modulo $p, s_{P}:=t-t(P)$ has the following properties:
(a) s_{P} is a uniformizer at P.
(b) the reduction of s_{P} modulo p (seen as a rational function in $\mathbb{F}_{p}\left(\mathscr{C}_{\mathbb{F}_{p}}\right)$) is a uniformizer at x.
(c) We have

where vertical arrows are the reduction $\bmod p$ (i.e. tensoring by \mathbb{F}_{p}).
(d) The "evaluation of s_{P} at x " is a bijection between the residue disk D_{P} and $p \mathbb{Z}_{p}$, sending P to 0 .

Definition 1.9 (Good uniformizer). For a given $P \in C\left(\mathbb{Q}_{p}\right)$ as above, a function s_{P} thus obtained will be called a good uniformizer at P.

References

[BMS21] Amnon Besser, J. Steffen Müller, and Padmavathi Srinivasan, p-adic adelic metrics and quadratic chabauty $i, 2021$.
[Kim05] Minhyong Kim, The motivic fundamental group of $\mathbb{P}^{1}\{0,1, \infty\}$ and the theorem of Siegel, Invent. Math. 161 (2005), no. 3, 629-656.
[Kob77] Neal Koblitz, P-adic numbers, p-adic analysis, and zeta-functions, Graduate texts in mathematics, Springer-Verlag, 1977.
[Liu02] Qing Liu, Algebraic Geometry and Arithmetic Curves, Oxford University Press, 2002.
[Sik09] Samir Siksek, Chabauty for symmetric powers of curves, Algebra Number Theory 3 (2009), no. 2, 209-236.

