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1 Plan

• INTRO: A novel source of GW from the early universe (fraction of second
after big bang)

Ingredients: cosmic inflation (bit different variety wrt what you’re accus-
tomed to) and good control of dynamics of cosmo fluctuations

Main realization so far: a byproduct of the production of PBH : hence we
start with lightening intro to PBH

• More material:

- Reviews on PBH:

Sasaki et al arxiv.org/abs/1801.05235
Green-Kavanagh arxiv.org/abs/2007.10722 ,
Ozsoy et al arxiv.org/abs/2301.03600

- Lectures on PBH: Byrnes and Cole arxiv.org/abs/2112.05716,

- Reviews on SIGW: arxiv.org/abs/2109.01398 , arxiv.org/abs/2307.06964
(second one is lecture)

2 Motivations for PBH

• Dark matter exists, but so far dit not find a BSM corresponding to it.
What about if its made of PBH? a very economical possibility, only based
on GR (and special initial conditions)

• Some of LVK events might be associated with BH of no astro origin (too
small mass, smaller than Chandrasekhar limit 1.4 solar mass)

• What about SMBH? difficult to produce via astro channels, maybe they’re
produced in primordial epochs?



3 How to form PBH?

• How do PBH form? Collapse of primordial overdensities δρ/ρ̄ in the early
universe. We do not talk about stars, just cosmological fluctuations.

• Suppose that in early universe, during RD, distribution of energy density
is homogeneous with background value ρ̄(t) independent from time, plus
inhomogeneities δρ/ρ̄ of different sizes. Homogeneous and isotropic space-
time described by FLRW metric

ds2 = −dt2 + a2(t)dx⃗2 (3.1)

Size of observable universe controlled by horizon scale 1/H(t). For us, con-
venient to work with comoving horizon 1/(a(t)H(t)) since we can compare
its size with comoving scales.

- During RD, the comoving horizon size increases with time. a(t) ∼ t1/2,
H ∼ t−1, 1/(aH) ∼ t1/2 ∼ a.

- During inflation, instead, the comoving horizon reduces its size.

Suppose at a certain point comoving horizon becomes as large as the typical
comoving wavelength of a primordial inhomogeneity.

Figure 1: Behaviour of comoving horizon during cosmic history. From Byrnes-Cole

• At this stage, the primordial inhomogeneity enters in causal contact with
observed universe: if its size is large enough to contrast RD pressure, it
starts to collapse, and form a PBH.

Roughly, the PBH mass is comparable to the total mass of the energy
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density within the universe horizon at that time:

MPBH = MHor = ρV (3.2)

• What’s the threshold δc for formation? First estimated by Carr around 50
years ago, using Jeans-type instability arguments for fluids in expanding
universe. Result is simple: it depends on the speed square c2s of density
fluctuations in RD, corresponding to velocity of pressure wave travels be-
tween different regions through the RD medium:

δc = c2s (3.3)

In RD, cs = 1/
√
3 hence δc = 1/3. More refined estimates using numerical

simulations give

δc ≃ 0.45 more refined value (3.4)

Importantly, notice that δc ∼ O(0.1) hence quite a large value!
We need an early universe mechanism able to:

i) Produce inhomogeneities with wavelengths larger than comoving hori-
zon, that will then re-enter the horizon during RD (inflation can do
it)

ii) The size of these fluctuations must be large just at the specific scale
(ie specific wavelength) we’re interested to to produce PBH (inflation
can do it, with quite some efforts)

Question: How many PBH we need at formation,
to give sizeable amount of DM today?

• Two important quantities

1. fPBH: fraction of PBH vs DM today

fPBH =
ρPBH
ρDM

∣∣
0

(3.5)

2. β the fraction of PBH versus total energy density at time of formation

• hence if fPBH = 1 then all DM is PBH. Recall that ρRD ∼ 1/a4, while
ρDM ∼ 1/a3, hence PBH relative fraction against total energy density
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ρPBH/ρtot increases from their formation during RD up to matter-radiation
equality.

Hence during RD (
ρPBH

ρtot

)
(t) =

a(t)

aform
β (3.6)

Then such fraction freezes from aeq onwards (ignoring DE).

• We can then relate fPBH with β as

fPBH =
ρPBH
ρDM

∣∣
0
=

ρPBH
ρtot

∣∣
eq

=
aeq
aform

β (3.7)

Hence if aeq/aform is very large, we only need a very small β:
very few PBH at time of formation can lead to totality of DM
today.

• Let’s put some numbers, to recollect formulas so far. We assume to work
within RD where a ∝ t1/2, ρ ∝ a−4, H ∝ ρ1/2. At formation

MPBH = MHor = ρV =
4π ρ

3
H−3 ∝ ρ−1/2 ∝ a2 ∝ tform (3.8)

Hence during RD mass of PBH linearly depends on time tform when it
forms:

MPBH =

(
aform
aeq

)2

Meq =

(
aform
aeq

)2

1016M⊙ (3.9)

PBH formed at equality are very massive (we do not consider them).

• Recall that M⊙ = 2× 1033 g. Converting to time:

MPBH ≃ 1015g

(
tform

10−23 s

)
(3.10)

where the time pivot value is chosen to identify minimal mass to avoid
Hawking evaporation (mass of a small mountain). Smaller mass PBHs,
produced at earlier times, are evaporated by today. For example, if we wish
to produce a solar-mass PBH, we get tform ≃ 10−5 s, and aform/aeq = 10−8.
Hence we only need

β = 10−8

to produce a population of solar-mass PBH that constitutes DM. Full DM
as PBH with these masses is excluded. But they can be a fraction of DM,
and contribute to LVK events.
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Try yourself the computation for MPBH ∼ 1017 g: asteroid-size
PBH.

• We can also estimate the characteristic wavenumber k (= 1/wavelength)
corresponding to PBH of a given mass. Recall MPBH ≃ MHor. During RD,
MHor ∝ a2. Then, the comoving scale k of horizon re-entry in RD

k = aH ∝ t1/2 t−1 ∝ a−1 ⇒ MHor ∼ a2 ∼ k−2 (3.11)

Putting numbers,

MPBH = 1013M⊙

(
Mpc−1

k

)2

(3.12)

for MPBH ≃ M⊙, we get k ≃ 107 Mpc−1. A pretty small scale wrt CMB
kCMB ≃ 10−2 Mpc−1.

• This’s good news because

1. Such small scales are unconstrained by CMB bounds. Theories are
free to speculate about new physics happening at those scales.

2. If detected, PBH tell us about early universe physics that cant be
probed otherwise.

4 Inflation and PBH

• Use inflation to producePBH. Inflation is a short period of quasi-exponential
expansion

a(t) ∼ eHIt with HI nearly constant (4.1)

Start from of QM at microscopic scales, and exponential expansion drives
quantum effects at astronomical scales (larger than the size of universe
horizon).

• Simplest way to get inflation: slow-roll inflation driven by single scalar
field. Its EOM

ϕ̈+ 3Hϕ̇+ V ′ = 0 (4.2)

with dot derivative along time, prime derivative along field.

• Inflation requires slow-roll parameter ϵ to be small

ϵ ≡ − Ḣ

H2
=

ϕ̇2

2M 2
PlH

2
≪ 1 (4.3)
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Figure 2: Pictorial representation of PBH production from inflation. From arxiv.org/abs/2301.03600

Moreover, for lasting sufficiently long, also a second slow-roll parameter η
should be small

η =
ϵ̇

ϵ H
= 2ϵ+

2 ϕ̈

H ϕ̇
≪ 1 (4.4)

but this last condition can be avoided for a short period of time. Precisely
this case is what we’ll be interested to.

• Standard slow-roll requires ϵ and η small everytime during inflation. Since
η small, ϕ̈ small. We can then simplify EOM for scalar:

3Hϕ̇ ≃ −V ′ ⇒ ϕ̇ = − V ′

3H
(4.5)

Since ϕ̇ enters in ϵ, we want this small: the potential is flat, and the scalar
is slowly rolling along the potential profile, with its motion is slowed down
by friction. In this case, |ϕ̇| is nearly constant during all inflation, since
by hypothesis ϕ̈ is small.

4.1 Dynamics of curvature perturbation

• We now have to work with cosmological perturbation theory: a very inter-
esting subject, mathematically challenging but well developed, that allows
us to put together theory with observations in exquisite details. Hence,
although rather technical, its worth learning!

• The density contrast δρ/ρ can be expressed in terms of curvature per-
turbation R(t, x⃗). This variable can be defined during different epochs
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(inflation, RD) in terms of fluctuations of energy density relevant at that
stage.

• Lets start from inflation

R(t, x⃗) =
H δϕ(t, x⃗)

˙̄ϕ(t)
=

δϕ(t, x⃗)√
2ϵMPl

(4.6)

during slow-roll.

• Observations are sensitive to correlators among curvature fluctuations, typ-
ically expressed in Fourier space. The 2-point function for scalar fluctua-
tions evaluated at horizon exit during inflation, introducing the notion of
power spectrum

⟨δϕk⃗(τ)δϕq⃗(τ)⟩ = δ(k⃗ + q⃗) |δϕk⃗(τ)|
2 ⇒ Pδϕ =

k3

2π2
|δϕk⃗(τ)|

2

can be computed using techniques of QFT in curved space-time

Pδϕ =

(
HI

2π

)2

⇒ PR(k) =
1

2M 2
Plϵ

(
HI

2π

)2

(4.7)

where these quantities are evaluated at horizon exit during inflation, k =
aH. Roughly then, PR controls the size of curvature fluctuation.

• After inflation ends, we can relate density contrast in RD δρ/ρ̄ = δ
with R computed during inflation:

|δ| = 4

9

(
k

aH

)2

|R| (4.8)

Hence to increase the size of |δ| at certain small scales, we need to increase
size of PR at those scales. A possible way is to have a short epoch during
which ϵ rapidly reduces its size – so to boost the curvature power spectrum.

4.2 Inflection point and USR

• But, for our PBH-production purposes, we wish to consider the possibility
that |ϕ̇| has a rapid decrease, and |η| becomes large for a short amount
of time. This boosts the parameter ϵ, helping to increase the size of den-
sity contrast/primordial fluctuations at certain scales, so to produce PBH.
Among many, lets discuss one realization of a phenomenon called Ultra
Slow Roll inflation:
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Figure 3: Left: Representation of a potential with inflection point. From Byrnes-Cole. Right: Plot
of the curvature spectrum.

The potential has inflection point region where V ′ = 0. Then scalar
EOM is

ϕ̈+ 3Hϕ̇ = 0 ⇒ d ln ϕ̇

dt
= −d ln a3

dt
⇒ ϕ̇ ≃ a−3 (4.9)

The scalar speed is rapidly decreasing in size, reducing rapidly the
value of ϵ:

ϵ ≃ a−6

The η parameter is

η = 2ϵ+
2

ϕ̇ H

(
−3Hϕ̇

)
≃ −6 (4.10)

5 Constraints on PBH: present and future

Constraints on presence of PBH can be phrased in terms of fPBH (or β) vsMPBH.
Interesting to identify mass ranges where fPBH = 1 and PBH are totality of DM.
But also other mass ranges can be phenomenologically interesting.

• PBH evaporation BH temperature is inversely proportional to its mass:
TBH ∝ 1/MBH. Too small PBH are very hot: even if not yet disappeared,
their radiation might interfere with observations (CMB) etc. This sets
constraints on small-mass PBH.

• Microlensing Accurately monitor a number of distant stars, and check
whether their observed luminosity changes in time passing in front of an
object.
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Figure 4: Left: Microlensing phenomenon. Right: Summary of constraints. From
arxiv.org/abs/2112.05716

E.g. Subaru telescope ruled out fPBH = 1 for the mass ranges 10−12M⊙ ≤
MPBH ≤ 10−6M⊙. Other experiments constrain other mass ranges.

• LVK constraints Current GW detections of astro sources (mostly if not
all) do not favour fPBH = 1 in the mass range 100M⊙ ≤ MPBH ≤ 102M⊙.

• Interestingly, summing up the constraints, there’s an allowed mass range
for asteroid size PBH, 10−16M⊙ ≤ MPBH ≤ 10−12M⊙, or 10

17 g ≤ MPBH ≤
1022 g.

• A further interesting avenue to probe PBH is discussed in the next section:

6 Scalar-induced GW

• This’s a timely topic. Possible observational signatures now or in the
foreseeable future with GW experiments.

• Idea: the starting point is the primordial stochastic background of GW
produced during inflation. They are produced by quantum mechanical
effects during the early universe.

At linearized order, the spin-2 tensor modes from inflation hij (primordial
GW) follow an evolution eq

h′′
ij(τ, k) +

2a′(τ)

a(τ)
h′
ij(τ, k) + k2 hij(τ, k) = 0 (6.1)

Inflation naturally produces a SGWB. In vanilla inflation, its size is how-
ever too small to be directly detected with GW experiments. It might be
detected through CMB B-mode observations.
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• However, since scalar perturbations acquire large amplitudes for a short-
range of scales in PBH-forming models, it makes sense to push perturbation
theory at second order.
Then scalars source tensors at quadratic order in fluctuations:

h′′
ij(τ, k) +

2a′(τ)

a(τ)
h′
ij(τ, k) + k2 hij(τ, k) = Sij(τ, k) (6.2)

• A bit more details. Decompose metric in scalar and tensor fluctuations as

ds2 = a2(τ)
[
−e2Φ dτ 2 + e−2Ψ (δij + hij) dx

idxj
]

(6.3)

In absence of anisotropic stress: Φ = Ψ: this is propto curvature fluctua-
tions:

|Φ| ∼ 4

9
|R| (6.4)

Call H = a′/a. The source reads (in RD)

Sr
s = −2Φ (∂r∂sΦ) + ∂r

(
Φ +

Φ′

H

)
∂s

(
Φ +

Φ′

H

)
(6.5)

If we amplify curvature fluctuations ⇒ amplify primordial spectrum.

• This fact enhances the inflationary tensor spectrum, and the energy density
in GW. We can understand this fact in few steps:

– Pass to Fourier space, hk⃗(τ) being the GW Fourier mode. Rescale
a(τ)hk⃗(τ) = vk⃗(τ). Evolution eq gets rid of term linear on time derivs:

v′′
k⃗
(τ) +

(
k2 − a′′(τ)

a(τ)

)
vk⃗(τ) = a(τ)Sk⃗(τ) (6.6)

– Formal solution expressed in terms of Green function method

hk(τ) =
1

a(τ)

∫ τ

dτ̃ gk(τ, τ̃) a(τ̃)Sk(τ̃) (6.7)

Where Green function:

∂2
τ̃gk(τ, τ̃) +

(
k2 − a′′

a

)
gk(τ, τ̃) = δ(τ − τ̃)

– You can compute tensor power spectrum Ph = (k3/(2π2)) ⟨h2
k⟩.
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– Then the GW energy density for log-scale at subhorizon:

ρGW(τ) =
M 2

Pl

16a2
⟨∂khij∂khij⟩ ⇒ ρGW(τ) =

∫
d ln k ρGW(τ, k)

(6.8)
and the density in GW compared with critical density:

ΩGW =
ρGW

ρcrit
=

1

24

(
k

aH

)2

Ph (6.9)

• The primordial stochastic background produced during inflation gets am-
plified for a small range of scales. Computations using perturbation theory
give, for PBH produced during RD,

ΩGW(k) =

∫ ∞

0
dv

∫ |1+v|

|1−v|
du TRD(u, v)PR(uk)PR(vk) (6.10)

These convolution integrals are typical when considering effects of second-
order fluctuations.

• Case study: for
PR = As δ (ln(k/k⋆)) (6.11)

one gets (k̃ = k/k⋆)

ΩGW(k̃) =
3A2

R
64

(
4− k̃2

4

)2

k̃2
(
3k̃ − 2

)2
×
(
π2
(
3k̃2 − 2

)2
Θ(2

√
3− 3k̃) +

(
4 +

(
3k̃2 − 2

)
ln
∣∣∣1− 4

3k̃2

∣∣∣)2
)
Θ(2− k̃)

(6.12)

The first gentle peak is at f = k⋆/(
√
3 π). Then there is a resonance at

small scales, leading to a rich spectrum profile: easy to distinguish wrt
astrophysical signals!

• In general Hence the production of PBH leads to enhancement of SGWB
from inflation at characteristic scales, related with PBH properties. In
fact, converting to frequencies k = 2πf , and expressing in Hz, one gets

fGW
peak = 1.2× 108Hz

(
MPBH

1 g

)−1/2

(6.13)
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Figure 5: Left: GW spectrum from a monochromatic delta-like scalar source. Right: sensitivity
curves for different experiments. From Domenech.

• Examples

– Solar mass PBH MPBH = 1034 g (≃ 5M⊙)
⇒ fGW

peak = 108 × 10−17 Hz , PTA frequency band.

– Asteroid mass PBH MPBH = 1022 g
⇒ fGW

peak = 108 × 10−11 Hz , LISA frequency band.

7 Open questions

i) Better investigate dependence of induced GW on non-linearities (as
primordial nonG) as well as non-standard cosmological histories.

⇒ Excellent opportunities to probe very early universe at scales that
can not be probed otherwise

⇒ Is there any further cosmo info we can squeeze out from the
spectrum, if detected?

ii) Are there observational ‘smoking gun’ signals of SIGW? Besides
frequency profile, look for anisotropies etc. . .

iii) Are there more convenient computational strategies to obtain
induced spectra? So far convolution nested integrals are numerically
challenging – above for the effects of rapid oscillations in the integrand
functions.

∗ Are there analytical tricks to do them?
∗ Are there fast and reliable methods to extract info on the original
source from the measured spectrum? Inverse problem of recon-
struction. Machine learning?
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