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Ensemble of quantum states
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Ensemble of quantum states
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Ensemble of quantum states
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Ensemble of quantum states : Higher moments

e The higher moments of an ensemble of pure quantum states contain
information that is not accessible from density matrix.

e.g. (0% =Tr(pO%%) =} p(vi){ilOls)?
e The conventional study on fate of isolated closed quantum system has
focused on the quantities at the level of density matrix.

e Do the higher moments ( and the ensemble ) approach to any universal

ensemble? ————— Not well-posed in the context of thermalization of a pure
quantum state. (no unique ensemble corresponding to
the density matrix)

Can we associate an ensemble to the reduced density
matrix? -> Projected ensemble



Generate a quantum state ensemble : Projected ensemble
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Generate a quantum state ensemble : Projected ensemble
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Generate a quantum state ensemble : Projected ensemble

e Projected ensemble -> A protocol to generate a qunatum state esnemble
given a pure state.

e ETH describes the local expectation values of the observable -> predicts the
reduced density matrix of a subsystem. -> Gibbs ensemble

e Projected ensemble is a natural protocol to associate an ensemble of
quantum states with the density matrix.

e Does Projected ensemble has any universal feature ?



Chaotic system with effective infinite temperature

Haar ensemble : Unitary invariant measure on Hilbert space.

e Produces identity matrix as the first

moment ( density matrix) always.

e Represents an effective infinite
temperature state.

e Maximum entropy ensemble in
Hilbert space.



Ensemble of quantum states :Scrooge ensemble
What happens when the density matrix is known and not identity ?
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ensembles p(l) p(l) p(l) p(l)

Hilbert space El E2 E3 En

“Entropy”

The ensemble with minimum accessible information (maximal entropy) consistent with
the density matrix.
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YEEHaar

Jozsa, R., Robb, D., & Wootters, W. K. (1994). Lower bound for accessible information in quantum mechanics. Physical Review A, 49(2), 668.
Goldstein, S., Lebowitz, J. L., Tumulka, R., & Zanghi, N. (2006). On the distribution of the wave function for systems in thermal equilibrium. Journal of statistical physics,
125, 1193-1221.



Ensemble of quantum states :Scrooge vs Haar ensemble

What happens when the density matrix is known and not identity ?
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Effect of measurement basis on asymptotic ensemble
Hamiltonian with Global U(1) symmetry

Charge revealing measurement Charge non-revealing measurement

e Theglobalcharge Q = Q4+ QB e Measurement reveals no
is conserved under dynamics. information regarding charges.

e Measurement outcome by, ,reveals Qp e Conditional states in A are

e The possible conditional states in A unconstrained (apart from
are constrained. | global symmetry)

e Approaches to a convex mixture of e Approaches to a single
multiple Scrooge ensembiles. Scrooge ensemble

Hamiltonian with 1-local charge : Measurement never reveals any information
about states in A.

Mark, D., Surace, F., Elben, A., Shaw, A., Choi, J., Refael, G., Endres, M., & Choi, S. (2024). Maximum Entropy Principle in Deep Thermalization and in
Hilbert-Space Ergodicity. Phys. Rev. X, 14, 041051.



¢ -bit model

Hypit = Z Jio? + Z Jijoiok + Z Jijko; 050 Strongly disordered interacting

i<j i<j<k Spin chain
where -
y Initial state
e Timqe—G=D/E g o= (RE=1)/€ L | .
J. —Ug4, ng =U45€ ; Jz]k—uzjke Ggy= ® (cos% 1), + et sin%i |~L>i)

=1
The model has strictly 1-local conserved charges

{ofll <i<I)

0;, . ,0;
PAcc = ®p§’° with p$° = diag[cos® 2 sin? 5]

Not a classical Hamiltonian. Measurement basis

Entanglement grows under dynamics. 0) = COS% 1) + Sin% 1)
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Time- evolution of moments of PE with f-bit Hamiltonian

Asymptotic value is time-independent
at large L limit.

Consider time-averaged quantities

Construct temporal ensemble as,

ot
gtemp — { e_ZHt |¢0>}

To—T1

te[r1,72]

Time average implemented through
averaging over the temporal
ensemble.
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Distribution of probabilities of bitstrings in temporal ensemble

2
p(b) = [{1]b)]
b=11000111001000010) b=10100011001100110)
e Follows PT distribution for all bitstring
at measurement angles away from O

with different bitstrings having different
. 10° T mean for PT dist.
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Porter, C. E., & Thomas, R. G. (1956). Fluctuations of nuclear reaction widths. Physical Review, 104(2), 483.
Boixo, S., Isakov, S. V., Smelyanskiy, V. N., Babbush, R., Ding, N., Jiang, Z., ... & Neven, H. (2018). Characterizing quantum supremacy in near-term devices. Nature

Physics, 14(6), 595-600.



Distribution of probabilities of bitstrings in a single late-time

state
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At measurement angle o = /2

All the bitstrings follow PT with same
mean -> A single PT distribution with
mean 1/2r

At any other measurement angle :

All the bitstrings follow PT with different
mean -> sum of PT distributions in single
state

Porter, C. E., & Thomas, R. G. (1956). Fluctuations of nuclear reaction widths. Physical Review, 104(2), 483.

Boixo, S., Isakov, S. V., Smelyanskiy, V. N., Babbush, R., Ding, N., Jiang, Z., ... & Neven, H. (2018). Characterizing quantum supremacy in near-term devices. Nature
Physics, 14(6), 595-600.



Numerical evidence

50x107" I o =0.1257

e Decay of distance between
instantaneous PE from Scrooge
ensemble with time.
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Numerical evidence

Decay of distance with bath size
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Conclusion

e For |-bit model, the late-time PE is described by an universal ensemble -
Scrooge ensemble for any measurement angle except O (distinct from the
case with global charges).

e Can be associated with emergence of PT distribution in temporal ensemble.

e The PT distribution emerges in temporal ensemble under |-bit Hamiltonian
even though the dynamics is far from chaotic.

e Additional results regarding the angle and system size dependence of the
approach to Scrooge ensemble, semi-analytical proof , convergence to
random phase ensemble and studies in a Floquet MBL model are described
in the preprint.

arxiv : 2501.01823



Elements of Projected ensemble

k 7
B _ 3 [T, pY)pe(0]2Y))

0 .
e [ acza p(2a)pe(bza)
1. Replace py(b|z})) with PT dist

having approprlate mean
2. pt(b|ZA ) & p(b]2§’) are uncorrelated.

‘ k 7 7
o) Z / ( ) y [T pE)pe(bly)
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ZAcZA p(ZA) t(b|ZA)]

The expression evaluates to the corresponding
expression for Scrooge ensemble.



Elements of Projected ensemble
O » measurement ?

k 7
B _ 3 [T, pY)pe(0]2Y))

0 .
e [ acza p(2a)pe(bza)
1. Replace py(b|z})) with PT dist

having approprlate mean
2. pt(b|ZA ) & p(b]2) are uncorrelated. y¢

Both the assumptions maximally violated



Distribution of probabilities of bitstrings in temporal ensemble
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