A Maxwell's demon that can work at macroscopic scales

Massimiliano Esposito

with Nahuel Freitas & Massimo Bilancioni

Bengalore, Sep 19, 2024

Fonds National de la Recherche Luxembourg

Introduction

Electronic circuits

top gate source set island lset battier gate barrier gate 2

Freitas, Delvenne & Esposito PRX 11, 031064 (2021)

Chemical reaction networks

Rao & Esposito JCP 149, 245101 (2018)

Maxwell's demon

Thermal Equilibrium + Measurement and feedback control

Maxwell's demon exploits fluctuations

Thermal gradient \leftrightarrow Work extraction

Experimental implementations

A molecular information ratchet

Nature, 445, 523 (2007) Viviana Serreli¹, Chin-Fa Lee¹, Euan R. Kay¹ & David A. Leigh¹ Single-photon cooling at the limit of trap dynamics: Maxwell's demon near maximum efficiency

S Travis Bannerman¹, Gabriel N Price¹, Kirsten Viering¹ and Mark G Raizen

NJP 11, 063044 (2009)

Experimental Observation of the Role of Mutual Information in the Nonequilibrium Dynamics of a Maxwell Demon

J. V. Koski, V. F. Maisi, T. Sagawa, and J. P. Pekola Phys. Rev. Lett. **113**, 030601 – Published 14 July 2014

Observing a quantum Maxwell demon at

work

PNAS 114, 7561 (2017)

Nathanaël Cottet, Sébastien Jezouin, Landry Bretheau, Philippe Campagne-Ibarcq, Quentin Ficheux, Janet Anders, Alexia Auffèves, Rémi Azouit, Pierre Rouchon, and Beniamin Huard 😕 🖾 👍 Authors Info & Affiliations **Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality** Nat. Phys. 6, 988 (2010)

Shoichi Toyabe, Takahiro Sagawa, Masahito Ueda, Eiro Muneyuki 🖾 & Masaki Sano 🖾

All work in microscopic regimes

(single molecules, single atoms, single electrons, single photons ...)

Can we build a macroscopic Maxwell's demon?

A priori no because fluctuations disappear in the macroscopic limit

Can we prevent that?

We will explore these questions in a CMOS based electronic Maxwell's demon

Esposito, Freitas, PRL 129,120602 (2022) & PRE 107, 014136 (2023)

The CMOS inverter

 $V_1 > V_2$

If the demon can achieve rectification of the current through the system ($I_S < 0$):

Entropy production rates:

$$\begin{array}{ll} & > 0 \\ \text{System side:} \quad \dot{\Sigma}_{S} = I_{S}(V_{1} - V_{2}) = I_{S}\Delta V_{S} < 0 \\ \text{Total:} \quad \dot{\Sigma} = \dot{\Sigma}_{S} + \dot{\Sigma}_{D} \ge 0 \\ \text{Demon side:} \quad \dot{\Sigma}_{D} = I_{D}(V_{3} - V_{4}) = I_{D}\Delta V_{D} > 0 \end{array}$$

$$\begin{array}{ll} \text{Thermodynamic efficiency} \\ \eta = -\frac{\dot{\Sigma}_{S}}{\dot{\Sigma}_{D}} < 1 \\ \eta = -\frac{\dot{\Sigma}_{S}}{\dot{\Sigma}_{D}} < 1 \end{array}$$

Deterministic description

$$C d_t v = I_p(v, v_{in}; \Delta V_S) - I_n(v, v_{in}; \Delta V_S)$$
$$C d_t v_{in} = I_p(v_{in}, v; \Delta V_D) - I_n(v_{in}, v; \Delta V_D)$$
$$I_p(v, v_{in}; \Delta V) = I_0 e^{(\Delta V/2 - v_{in} - V_{th})/n} \left(1 - e^{-(\Delta V/2 - v)}\right)$$
$$= I_n(-v, -v_{in}; \Delta V)$$

At steady state:

$$V_2 < v < V_1 \qquad \qquad I_S > 0$$

$$V_4 < v_{\rm in} < V_3 \qquad \qquad I_D > 0$$

Rectification is impossible at the deterministic level

Also, the system becomes bistable for $\alpha^2 = \alpha_S \alpha_D > 1$ with $\alpha_{S/D} = e^{\Delta V_{S/D}/2} - 1$

Stochastic description

 $v_{\rm in}$

Rectification can survive the macroscopic limit if one scales power with size !!!

For fixed
$$\alpha^2 = (e^{\Delta V_S/2} - 1)(e^{\Delta V_D/2} - 1)$$
 with $\Delta V_S = cv_e \longrightarrow \Delta V_D = 2\log(1 + 2\alpha^2/cv_e)$

$$v_e \to 0 \qquad \langle I_S \rangle \simeq \frac{q_e}{2\tau_0} \left[\Delta V_S - v_e \frac{\alpha^2}{\left(e^{\Delta V_S/2} - 1\right)} \right] + \mathcal{O}(\Delta V_S^2) \qquad T\Sigma_S = \Delta V_S \langle I_S \rangle \sim -\alpha^2/c$$
$$T\dot{\Sigma}_D = \Delta V_D \langle I_D \rangle \sim \log(v_e^{-1})/v_e^2$$

Esposito, Freitas, PRL 129,120602 (2022) & PRE 107, 014136 (2023)

Chemical Maxwell Demon

Perspectives

Strategies to transfer phenomena that are typical of the micro scale to the macro scale (breaking the macro limit by other mechanisms than equilibrium phase transitions)

Electrons in circuits \checkmark Molecules in chemical reactions networks

Interplays between nonequilibrium fluctuations and nonlinear dynamics —— very rich phenomenology