Noise-induced transition in the Lorenz system

M. Coti Zelati, M. Hairer

Imperial College London

ICTS (virtual) 8 Dec 2020

Motivation

Consider 2D NS driven by regular Gaussian noise.

Motivation

Torus

Consider 2D NS driven by regular Gaussian noise. Known:

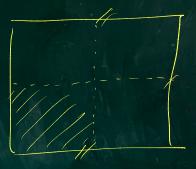
- Exponentially ergodic for non-degenerate noise.
- Exponentially ergodic for small enough Reynolds number.

Motivation

Consider 2D NS driven by regular Gaussian noise. Known:

- Exponentially ergodic for non-degenerate noise.
- Exponentially ergodic for small enough Reynolds number.

What about degenerate noise at high Reynolds number?



Edward Lorenz (1963):

$$\dot{X} = \sigma \cdot (Y - X)$$
 , $\dot{Y} = X \cdot (\varrho - Z) - Y$, $\dot{Z} = X \cdot Y - \beta \cdot Z$.

Origin globally stable when $\varrho < 1$. Strange attractor for large range of ϱ 's.

Edward Lorenz (1963):

$$\dot{X} = \sigma \cdot (Y - X)$$
 , $\dot{Y} = X \cdot (\varrho - Z) - Y$, $\dot{Z} = X \cdot Y - \beta \cdot Z$.

Origin globally stable when $\varrho < 1$. Strange attractor for large range of ϱ 's. Vertical axis (X = Y = 0) always invariant.

Edward Lorenz (1963):

$$\dot{X} = \sigma \cdot (Y - X)$$
 , $\dot{Y} = X \cdot (\varrho - Z) - Y$, $\dot{Z} = X \cdot Y - \beta \cdot Z + \alpha \cdot \dot{\xi}$.

Origin globally stable when $\varrho < 1$. Strange attractor for large range of ϱ 's. Vertical axis (X = Y = 0) always invariant.

Add noise only to Z component.

Edward Lorenz (1963):

$$\dot{X} = \sigma \cdot (Y - X)$$
 , $\dot{Y} = X \cdot (\varrho - Z) - Y$, $\dot{Z} = X \cdot Y - \beta \cdot Z + \alpha \cdot \xi$.

Origin globally stable when $\varrho < 1$. Strange attractor for large range of ϱ 's. Vertical axis (X = Y = 0) always invariant.

Add noise only to Z component. Question: what about invariant measures?

Edward Lorenz (1963):

$$\dot{X} = \sigma \cdot (Y - X)$$
 , $\dot{Y} = X \cdot (\varrho - Z) - Y$, $\dot{Z} = X \cdot Y - \beta \cdot Z + \alpha \cdot \xi$.

Origin globally stable when $\varrho < 1$. Strange attractor for large range of ϱ 's. Vertical axis (X = Y = 0) always invariant.

Add noise only to Z component. Question: what about invariant measures?

Theorem (Coti Zelati, H. '20): When $\varrho < 1$: unique invariant measure for $\alpha \ll 1$, exactly two ergodic I.M.'s for $\alpha \gg 1$.

Change of variables

Equivalent to

$$\dot{x}=y$$
 , $\dot{y}=-2y-(2-z)x$, $\dot{z}=-\gamma(z-z_{\star})+lpha z-x(x+\eta y)$,

with $z_{\star}=2$ iff $\varrho=1$ and new α proportional to old one. Consider $\gamma>0$ and $\eta\in\mathbf{R}$ fixed.

Change of variables

Equivalent to

$$\dot{x}=y$$
 , $\dot{y}=-2y-(2-z)x$, $\dot{z}=-\gamma(z-z_{\star})+lpha z-x(x+\eta y)$,

with $z_{\star}=2$ iff $\varrho=1$ and new α proportional to old one. Consider $\gamma>0$ and $\eta\in\mathbf{R}$ fixed.

- ightharpoonup Overdamped harmonic oscillator for $z \in (1,2)$.
- ▶ Underdamped harmonic oscillator for z < 1.
- ▶ Unstable for z > 2.

Separation of timescales heuristic

For z fixed, eigenvalues of (x, y) system given by

$$\lambda_{\pm} = -1 \pm \sqrt{z - 1} \; .$$

Separation of timescales heuristic

For z fixed, eigenvalues of (x, y) system given by

$$\lambda_{\pm} = -1 \pm \sqrt{z - 1} \; .$$

Guess: vertical axis becomes unstable when

$$\text{Re} \int \lambda_{\pm}(z) \, \mathcal{N}(z_{\star}, \alpha^2/2\gamma)(dz) > 0$$
.

Not quite true but almost, especially for large α since heuristic good for large z...

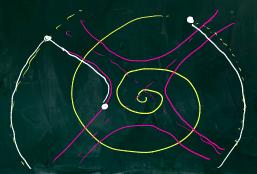
Uniqueness of I.M.

Lemma: There can be at most one invariant measure supported on $(x,y) \neq (0,0)$.

Uniqueness of I.M.

Lemma: There can be at most one invariant measure supported on $(x,y) \neq (0,0)$. Woise propagates to all directions

Standard criterion: hypoellipticity + controllability. Both quite easy to check.



Another change of variables

Setting $x=e^r\sin\theta$ and $y=e^r(\cos\theta-\sin\theta)$, one has

$$\dot{ heta}=1-z\,\sin^2 heta$$
 , $\dot{r}=-1+rac{z}{2}\sin2 heta$, $\dot{z}=-\gamma(z-z_\star)+lpha\xi+(\ldots)$.

Write μ_{α} for (unique) invariant measure for (θ, z) component with (\ldots) neglected and set $v_{\alpha} = \int z \sin 2\theta \, \mu_{\alpha}(d\theta, dz)$.

Another change of variables

Setting $x = e^r \sin \theta$ and $y = e^r (\cos \theta - \sin \theta)$, one has

$$\dot{ heta}=1-z\,\sin^2 heta$$
 , $\dot{r}=-1+rac{z}{2}\sin2 heta$, $\dot{z}=-\gamma(z-z_\star)+lpha\xi+(\ldots)$.

Write μ_{α} for (unique) invariant measure for (θ, z) component with (\ldots) neglected and set $v_{\alpha} = \int z \sin 2\theta \, \mu_{\alpha}(d\theta, dz)$.

Proposition: If $v_{\alpha} < 2$, vertical axis stable, if $v_{\alpha} > 2$, unstable.

Another change of variables

Setting $x = e^r \sin \theta$ and $y = e^r (\cos \theta - \sin \theta)$, one has

$$\dot{ heta}=1-z\,\sin^2 heta$$
 , $\dot{r}=-1+rac{z}{2}\sin2 heta$, $\dot{z}=-\gamma(z-z_\star)+lpha\xi+(\ldots)$.

Write μ_{α} for (unique) invariant measure for (θ, z) component with (\ldots) neglected and set $v_{\alpha} = \int z \sin 2\theta \, \mu_{\alpha}(d\theta, dz)$.

Proposition: If $v_{\alpha} < 2$, vertical axis stable, if $v_{\alpha} > 2$, unstable.

Theorem: One has
$$v_{\alpha} = 2\sqrt{z_{\star} - 1}\mathbf{1}_{z_{\star} > 1} + \mathcal{O}(\alpha^{3/4})$$
 for $\alpha \ll 1$ $v_{\alpha} = c\sqrt{\alpha} + \mathcal{O}(\alpha^{1/3})$ (explicit c) for $\alpha \gg 1$.

Lift dynamic to a Marlov chair on Space E of pieces of trajectories, im pa (31 > 21301 (20, 40, 30) 02 |3| < |30| (& 13,1 > 1) FR3-1R => FE-1R T(N) m -> S F(misi) ds Prof SF(n) readn) = SF(0) ratal)

Idea: For $F(u) = 3 \sin 20$ $SF(u) = 3 \cos 20$ S>> Sen 20 dpl ~ 2 S58 1320 dpl

lanson