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Motivation

Consider 2D NS driven by regular Gaussian noise.

Known:

I Exponentially ergodic for non-degenerate noise.

I Exponentially ergodic for small enough Reynolds number.

What about degenerate noise at high Reynolds number?
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Toy model

Edward Lorenz (1963):

Ẋ = � · (Y �X) , Ẏ = X · (%� Z)� Y , Ż = X · Y � � · Z .

Origin globally stable when % < 1. Strange attractor for large range of %’s.

Vertical axis (X = Y = 0) always invariant.

Add noise only to Z component. Question: what about invariant measures?

Theorem (Coti Zelati, H. ’20): When % < 1: unique invariant measure for
↵ ⌧ 1, exactly two ergodic I.M.’s for ↵ � 1.
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Change of variables

Equivalent to

ẋ = y , ẏ = �2y � (2� z)x , ż = ��(z � z?) + ↵z � x(x+ ⌘y) ,

with z? = 2 i↵ % = 1 and new ↵ proportional to old one. Consider � > 0 and
⌘ 2 R fixed.

I Overdamped harmonic oscillator for z 2 (1, 2).

I Underdamped harmonic oscillator for z < 1.

I Unstable for z > 2.
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Separation of timescales heuristic

For z fixed, eigenvalues of (x, y) system given by

�± = �1±
p
z � 1 .

Guess: vertical axis becomes unstable when
Z

�±(z)N (z?,↵
2/2�)(dz) > 0 .

Not quite true but almost, especially for large ↵ since heuristic good for large z...
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Uniqueness of I.M.

Lemma: There can be at most one invariant measure supported on
(x, y) 6= (0, 0).

Standard criterion: hypoellipticity + controllability. Both quite easy to check.
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Noise propagates to all directions
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Another change of variables

Setting x = er sin ✓ and y = er(cos ✓ � sin ✓), one has

✓̇ = 1� z sin2 ✓ , ṙ = �1 +
z

2
sin 2✓ , ż = ��(z � z?) + ↵⇠ + (. . .) .

Write µ↵ for (unique) invariant measure for (✓, z) component with (. . .)
neglected and set v↵ =

R
z sin 2✓ µ↵(d✓, dz).

Proposition: If v↵ < 2, vertical axis stable, if v↵ > 2, unstable.

Theorem: One has v↵ = 2
p
z? � 11z?>1 +O(↵3/4) for ↵ ⌧ 1

v↵ = c
p
↵ +O(↵1/3) (explicit c) for ↵ � 1.
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