Noise-induced transition in the Lorenz system

M. Coti Zelati, M. Hairer
Imperial College London
ICTS (virtual) 8 Dec 2020

Motivation

Consider 2D NS driven by regular Gaussian noise.

Motivation

Consider 2D NS driven by regular Gaussian noise. Known:

- Exponentially ergodic for non-degenerate noise.
- Exponentially ergodic for small enough Reynolds number.

Motivation

Consider 2D NS driven by regular Gaussian noise. Known:

- Exponentially ergodic for non-degenerate noise.
- Exponentially ergodic for small enough Reynolds number.

What about degenerate noise at high Reynolds number?

Toy model

Edward Lorenz (1963):

$$
\dot{X}=\sigma \cdot(Y-X), \quad \dot{Y}=X \cdot(\varrho-Z)-Y, \quad \dot{Z}=X \cdot Y-\beta \cdot Z .
$$

Origin globally stable when $\varrho<1$. Strange attractor for large range of ϱ 's.

Toy model

Edward Lorenz (1963):

$$
\dot{X}=\sigma \cdot(Y-X), \quad \dot{Y}=X \cdot(\varrho-Z)-Y, \quad \dot{Z}=X \cdot Y-\beta \cdot Z .
$$

Origin globally stable when $\varrho<1$. Strange attractor for large range of ϱ 's. Vertical axis $(X=Y=0)$ always invariant.

Toy model

Edward Lorenz (1963):

$$
\dot{X}=\sigma \cdot(Y-X), \quad \dot{Y}=X \cdot(\varrho-Z)-Y, \quad \dot{Z}=X \cdot Y-\beta \cdot Z+\alpha \cdot \xi .
$$

Origin globally stable when $\varrho<1$. Strange attractor for large range of ϱ 's. Vertical axis ($X=Y=0$) always invariant.

Add noise only to Z component.

Toy model

Edward Lorenz (1963):

$$
\dot{X}=\sigma \cdot(Y-X), \quad \dot{Y}=X \cdot(\varrho-Z)-Y, \quad \dot{Z}=X \cdot Y-\beta \cdot Z+\alpha \cdot \xi
$$

Origin globally stable when $\varrho<1$. Strange attractor for large range of ϱ 's. Vertical axis ($X=Y=0$) always invariant.

Add noise only to Z component. Question: what about invariant measures?

Toy model

Edward Lorenz (1963):

$$
\dot{X}=\sigma \cdot(Y-X), \quad \dot{Y}=X \cdot(\varrho-Z)-Y, \quad \dot{Z}=X \cdot Y-\beta \cdot Z+\alpha \cdot \xi
$$

Origin globally stable when $\varrho<1$. Strange attractor for large range of ϱ 's. Vertical axis ($X=Y=0$) always invariant.

Add noise only to Z component. Question: what about invariant measures?

Theorem (Coti Zelati, H. '20): When $\varrho<1$: unique invariant measure for $\alpha \ll 1$, exactly two ergodic I.M.'s for $\alpha \gg 1$.

Change of variables

Equivalent to

$$
\dot{x}=y, \quad \dot{y}=-2 y-(2-z) x, \quad \dot{z}=-\gamma\left(z-z_{\star}\right)+\alpha z-x(x+\eta y)
$$

with $z_{\star}=2$ iff $\varrho=1$ and new α proportional to old one. Consider $\gamma>0$ and $\eta \in \mathbf{R}$ fixed.

Change of variables

Equivalent to

$$
\dot{x}=y, \quad \dot{y}=-2 y-(2-z) x, \quad \dot{z}=-\gamma\left(z-z_{\star}\right)+\alpha z-x(x+\eta y)
$$ with $z_{\star}=2$ iff $\varrho=1$ and new α proportional to old one. Consider $\gamma>0$ and $\eta \in \mathbf{R}$ fixed.

- Overdamped harmonic oscillator for $z \in(1,2)$.
- Underdamped harmonic oscillator for $z<1$.
- Unstable for $z>2$.

Separation of timescales heuristic

For z fixed, eigenvalues of (x, y) system given by

$$
\lambda_{ \pm}=-1 \pm \sqrt{z-1} .
$$

Separation of timescales heuristic

For z fixed, eigenvalues of (x, y) system given by

$$
\lambda_{ \pm}=-1 \pm \sqrt{z-1} .
$$

Guess: vertical axis becomes unstable when

$$
\operatorname{Re} \int \lambda_{ \pm}(z) \mathcal{N}\left(z_{\star}, \alpha^{2} / 2 \gamma\right)(d z)>0 .
$$

Not quite true but almost, especially for large α since heuristic good for large $z \ldots$

Uniqueness of I.M.

Lemma: There can be at most one invariant measure supported on $(x, y) \neq(0,0)$.

Uniqueness of I.M.

Lemma: There can be at most one invariant measure supported on $(x, y) \neq(0,0)$.

$$
\text { Noise propagates } C_{0} \text { all directions }
$$

Standard criterion: hypoellipticity + controllability. Both quite easy to check.

Another change of variables

Setting $x=e^{r} \sin \theta$ and $y=e^{r}(\cos \theta-\sin \theta)$, one has

$$
\dot{\theta}=1-z \sin ^{2} \theta, \quad \dot{r}=-1+\frac{z}{2} \sin 2 \theta, \quad \dot{z}=-\gamma\left(z-z_{\star}\right)+\alpha \xi+(\ldots) .
$$

Write μ_{α} for (unique) invariant measure for (θ, z) component with (...) neglected and set $v_{\alpha}=\int z \sin 2 \theta \mu_{\alpha}(d \theta, d z)$.

Another change of variables

Setting $x=e^{r} \sin \theta$ and $y=e^{r}(\cos \theta-\sin \theta)$, one has

$$
\dot{\theta}=1-z \sin ^{2} \theta, \quad \dot{r}=-1+\frac{z}{2} \sin 2 \theta, \quad \dot{z}=-\gamma\left(z-z_{\star}\right)+\alpha \xi+(\ldots) .
$$

Write μ_{α} for (unique) invariant measure for (θ, z) component with (...) neglected and set $v_{\alpha}=\int z \sin 2 \theta \mu_{\alpha}(d \theta, d z)$.

Proposition: If $v_{\alpha}<2$, vertical axis stable, if $v_{\alpha}>2$, unstable.

Another change of variables

Setting $x=e^{r} \sin \theta$ and $y=e^{r}(\cos \theta-\sin \theta)$, one has

$$
\dot{\theta}=1-z \sin ^{2} \theta, \quad \dot{r}=-1+\frac{z}{2} \sin 2 \theta, \quad \dot{z}=-\gamma\left(z-z_{\star}\right)+\alpha \xi+(\ldots) .
$$

Write μ_{α} for (unique) invariant measure for (θ, z) component with (...) neglected and set $v_{\alpha}=\int z \sin 2 \theta \mu_{\alpha}(d \theta, d z)$.

Proposition: If $v_{\alpha}<2$, vertical axis stable, if $v_{\alpha}>2$, unstable.

Theorem: One has $v_{\alpha}=2 \sqrt{z_{\star}-1} 1_{z_{\star}>1}+\mathcal{O}\left(\alpha^{3 / 4}\right)$ for $\alpha \ll 1$

$$
\left.v_{\alpha}=c \sqrt{\alpha}+\mathcal{O}\left(\alpha^{1 / 3}\right) \text { (explicit } c\right) \text { for } \alpha \gg 1 \text {. }
$$

Lift dynamic to a Markov chan on space E of pieces of trajectories, in. $\hat{\mu}_{\alpha}$

$$
\begin{aligned}
F: \mathbb{R}^{3} \rightarrow \mathbb{R} \Rightarrow \hat{F}: E \rightarrow \mathbb{R}_{\tau(w)} \\
\mu \mapsto \int_{0} F(\mu(s)) d s
\end{aligned}
$$

Prop $\int F(n) \mu_{\alpha}(d u)=\frac{\int \hat{F}(U) \hat{\mu}_{\alpha}(d u)}{\int \tau(v) \mu_{*}(d v)}$

Idea: For $F(u)=z \sin 2 \theta$

$$
\begin{aligned}
& \int_{0}^{\tau(u)} \hat{F}\left(u_{s}\right) d s \simeq 2 \int_{0}^{\tau(u)} \sqrt{z_{s}} \cdot{\underset{z}{3>0}}_{1}^{d s}+O(\ldots) \\
& \Rightarrow \int z \sin 2 \theta d \mu_{\alpha} \simeq 2 \int \sqrt{z} \mathbb{1}_{320} d \mu_{\alpha} \\
& \text { lenoon }
\end{aligned}
$$

