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Problems for Complex numbers and Polynomials

Problem sheet 2 (20.06.2024)

1. Complex numbers and Polynomials

1.1. Basic Definitions. Let R denote the set of real numbers, and set i :=
√
−1. Let

C :=
{
x+ iy

∣∣x, y ∈ R
}

denote the set of complex numbers.

For any z = x + iy ∈ C, x is called the real-part of z, and y is called the imaginary part of z.
Let Re(z) and Im(z) denote the real and imaginary parts of z.

We can identify the set of complex numbers with the set of 2-tuples

R2 :=
{

(x, y)
∣∣x, y ∈ R

}
,

via the following bijective map

f : C −→ R2, x+ iy 7→ (x, y).(1)

From the above bijection, we identify C with the 2-dimensional real plane, where the traditional
X-axis represents the real part of a complex number, and the traditional Y -axis represents the
imaginary part of complex number.

For example the point z = 2 + i3 ∈ C represents the coordinate (2, 3) on the real plane R2.

Binary Operations. For z1 = x1 + iy1, z2 = x2 + iy2, we define

Addition : z1 + z2 := x1 + x2 + i(y1 + y2), i.e.,

Re(z1 + z2) := x1 + iy1, and Im(z1 + z2) := y1 + y2;(2)

Multiplication : z1 · z2 := (x1 + iy1)× (x2 + iy2) = x1x2 − y1y2 + i(x1y2 + x2y1),

i.e., Re(z1 · z2) := x1x2 − y1y2, and Im(z1 · z2) := x1y2 + x2y1.(3)

Absolute value and distance function. For z = x+ iy ∈ C, the absolute value of z is defined
as

|z| :=
√
x2 + y2.

From the identification of C with the real-plane R2 (as in (1)), |z| represents is nothing but the
distance of the point (x, y) from the origin (0, 0).

From the above formula, the Euclidean distance between the points z1 = x1+iy1, z2 = x2+iy2 ∈
C is given by the following formula

|z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2.(4)

Problems

(1) Find all the complex numbers z such that the coordinates represented by the complex
numbers z, z1 := 2 + i, z2 := 2− i represent the vertices of an equilateral triangle on the
real plane R2.
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(2) Prove the triangular inequalities

|z1 + z2| ≤ |z1|+ |z2|;∣∣|z1| − |z2|∣∣ ≤ |z1 − z2|.
(3) Find all the complex numbers, which satisfy the equations:

|z − 1 + 2i| = |z + 1− i|;∣∣|z − 1| − |z + 1|
∣∣ = 1.

1.2. Euler’s formula. As discussed in the previous section, any z = x+ iy ∈ C can be repre-
sented by a point (x, y) in the real plane R2. We now describe a famous formula from one of
the great masters, Leonhard Euler, which will make the identification of C with the real-plane
R2 (as in (1)), geometrically and intuitively concrete.

For any given z ∈ C, define

ez :=
∞∑
n=0

zn

n!
.

The above series is called a power series, and it is possible to show that the above series converges
for all z ∈ C and is never zero.

For any x ∈ R, Euler’s formula is

eix = cos(x) + i sin(x).(5)

We now describe a proof for equation (5). Consider the function

f(x) :=
cos(x) + i sin(x)

eix
.

It is easy to see that

df(x)

dx
=
eix
(
− sin(x) + i cos(x)

)
− ieix

(
cos(x) + i sin(x)

)
e2ix

=

−ieix
(

cos(x) + i sin(x)
)

+ ieix
(

cos(x) + i sin(x)
)

e2ix
= 0 =⇒ f is a constant function on R.

Furthermore

f(0) = 1 =⇒ cos(x) + i sin(x)

eix
= 1 =⇒ eix = cos(x) + i sin(x).

Hence, any z = x+ iy ∈ C can be expressed as

z = reiθ, where r = |z| =
√
x2 + y2, and θ := tan−1(Im(z)/Re(z)) = tan−1(y/x).

Problems

(1) For any r > 0, is the following inequality true?∣∣ri∣∣ < 1.

(2) Compute the limit

lim
n→∞

iin.
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(3) For any z = x+ iy ∈ C, define

cosh(z) :=
ez + e−z

2
, sinh(z) :=

ez − e−z

2
.

Compute cosh(i).

(4) For any z = x+ iy ∈ C, define

cos(z) :=
eiz + e−iz

2
, sin(z) :=

eiz − e−iz

2i
, tan(z) :=

sin(z)

cos(z)
.

Find all the solutions of the equation

tan(z) = z.

1.3. Polynomials. Let

R[X] :=
{
f(X) = a0 + a1X + · · ·+ anX

n
∣∣ a0, . . . , an ∈ R

}
denote the set of polynomials with coefficients in R. For example consider the polynomials

f1(X) := X2 − 1; f2(X) := X4 − 1 = 0; f3(X) := X3 −X2 −X + 1.

An α ∈ R is called a real root of f(X) ∈ R[X], if f(α) = 0. If α ∈ R is a root of f(X) if and
only if

(x− α)|f(X) =⇒ f(X)

X − α
∈ R[X].

We now state the Fundamental Theorem of Algebra, and we will not be able to give an elementary
proof of it, at this point of time.

Fundamental Theorem of Algebra. Any non-constant f ∈ C[X] admits a root in C, where

C[X] :=
{
f(X) = a0 + a1X + · · ·+ anX

n
∣∣ a0, . . . , an ∈ C

}
denotes the set of polynomials with coefficients in C. Let

f(X) := a0 + a1X + · · ·+ anX
n ∈ R[X],

where an 6= 0. Then f is said to be a polynomial of degree n.

Since R ⊂ C, we have R[X] ⊂ C[X]. Hence, any f ∈ R[X] has a root in complex numbers. For
example, the polynomial

f(X) := X2 + 1 has no real roots.

The only roots of f are ±i, and it is easy to see that

(X + i)(X − i) = X2 − i2 = X2 + 1.

For any z = x+ iy ∈ C, the complex conjugate of z is given by the following formula

z := x− iy.

If for any α ∈ C is a root of f ∈ R[X], then observe that

f(α) =
n∑
j=0

ajα
j = 0 =⇒ f(α) = 0 =⇒

n∑
j=0

ajαj =
n∑
j=0

ajαj =
n∑
j=0

ajα
j = 0 =⇒ f(α) = 0.

Hence, we can conclude that complex roots occur in pairs.
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For any n ≥ 1, consider the polynomial

f(X) := Xn − 1 ∈ R[X] =⇒ Xn = 1 = e2mπi, for, any m ∈ Z

=⇒ X = e2πmi/n, 0 ≤ m ≤ n− 1.

Hence, {
1, e2πi/n, · · · , e2πi(n−1)/n

}
are all the roots of f(X).

Problems

(1) Let f ∈ R[X] be a polynomial of degree n. Then, show that f has exactly n-roots (not
necessarily unique/distinct).

(2) Let f ∈ R[X] be a polynomial of degree 2n+ 1. Then, show that f has atleast one real
root.

(3) Find all the solutions of the polynomial

f(X) := X7 − 2.

(4) Show that

cos(2π/7) cos(4π/7) cos(6π/7) =
1

8
.
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