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Problems for Complex numbers and Polynomials

Problem Sheet 4 (19.07.2024)

1. Arnold’s approach to the Abel-Ruffini Theorem

1.1. Summary of cubics. With notation as in Problem Sheet 3, we now summarize our ob-
servations for cubic polynomials. Let

F3 :=
{
f(X) = a0 + a1X + a2X

2 +X3
∣∣ a0, a1, a2 ∈ C, and roots of f are all distinct

}
denote the set of polynomials with coefficients in C with distinct roots. We identify F3 with C3,
i.e., any f = a0 + a1X + a2X

2 +X3 identified with the point (a0, a1, a2) ∈ C3.

Fix a polynomial f ∈ F3, and let {s1, s2, s3} denote the set of roots of f . Let

S3 :=
{
f : {s1, s2, s3} −→ {s1, s2, s3}

∣∣ f is a bijection
}
.

denote the set of bijections from the set {s1, s2, s3} to itself. The set S3 can be identified with
the set {

f : {1, 2, 3} −→ {1, 2, 3}
∣∣ f is a bijection

}
,(1)

and here after we refer to S3 as the set defined in (1).

Any γ ∈ S3 can be represented by a cycle of the form (i, j, k), which represents the bijection

γ(i) = j, γ(j) = k, γ(k) = i,

where {i, j, k} = {1, 2, 3}.

Similarly the cycle (i, j) represents the function

γ(i) = j, γ(j) = i, γ(k) = k.

(i) Let γ1 denote a continuous path from the root s1 to s2, and let γ2 denote a continuous
path from the root s2 to s3. Corresponding to γ1 and γ2, there exists loops, Γ1 and Γ2

in C3 centered at the polynomial f , respectively.

(ii) We can identify the paths γ1 with the function (12), and γ2 with the cycle (2, 3). Then,
the composition of loops Γ = Γ1 ◦ Γ2 ◦ Γ−1

1 ◦ Γ−1
2 in C3 corresponds to the function

γ := (1, 2) ◦ (2, 3) ◦ (1, 2)−1 ◦ (2, 3)−1.

Since (1, 2)−1 = (1, 2) and (2, 3)−1 = (2, 3), unravelling definitions, we find that

γ = (1, 2, 3).

(ii) From Problem 2.6 from Problem Sheet-3, it is clear that the functions

R0(a0(Γ(t)), a1(Γ(t)), a2(Γ(t))) and R1(a0(Γ(t)), a1(Γ(t)), a2(Γ(t)))

also follow a loop, when the function goes through the loop Γ. However the roots undergo
a permutation s1 7→ s2, s2 7→ s3, and s3 7→ s1. Thus, we can conclude that there is no
formula for roots coming from a single radical.

(iv) As seen in Problem Sheet-3, the formula for the root of a cubic polynomial with three
distinct roots involves a nested sequence of radicals upto second order.
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Problem 1

As above, let

Fn :=
{
f(X) = a0+a1X+· · · an−1X

n−1+Xn
∣∣ a0, a1, . . . , an−1 ∈ C, and roots of f are all distinct

}
denote the set of polynomials of degree n, with coefficients in C and with distinct roots. Let
γ1 and γ2 are two loops based at a fixed polynomial f ∈ Fn, i.e., γi[0, 1] −→ C is a continuous
map, for i = 1, 2, and its acts on the polynomial f in the following sense:

f(γi(t)) := a0(γi(t)) + a1(γi(t))X + · · ·+ an−1(γi(t))X
n−1 +Xn; f(γi(0)) = f(γi(1)) = f,

thus defining a loop at f in Cn (here f is identified with the point (a0, . . . , an−1)
t ∈ Cn).

(i) Let ϕ : F3 −→ C be a continuous function. Observe that f traverses the loop γ :=

[γ1, γ2], where [γ1, γ2] := γ1γ2γ
−1
1 γ−1

2 . Prove that ϕ(f)1/3 also traverses a loop (although
cube-root not is well-defined, choose any of the three branches).

(ii) Let ϕ : Fn −→ C be a a continuous function, and let α ∈ Q. Show that as a fixed
f ∈ Fn traverses the loop [γ1, γ2], ϕ(f)α also traverses a loop (as in (i), choose an image
which is a continuous path).

(iii) Consider the following subset

A3 :=
{
γ, γ2, γ3

}
⊂ S3, where γ = (1, 2, 3), (i.e., γ(1) = 2, γ(2) = 3, γ(3) = 1);

γ2 = γ ◦ γ = (132), (i.e., γ2(1) = 3, γ2(2) = 1, γ2(3) = 2); γ3 = γ ◦ γ ◦ γ = Id,

where Id denotes the identity function on the set {1, 2, 3}. Let

C(A3) :=
{

[γ1, γ2]
∣∣ γ1, γ2 ∈ A3

}
denote the commutator of A3. Show that C(A3) = {Id}.

Observations

(i) The loop Γ on F3, which is obtained from the commutator [·, ·] corresponds to a permu-
tation on the roots. This corresponds to the fact that the formula for roots cannot be
obtained from the elementary operations and taking radicals alone. So each commutator
corresponds to a radical.

(ii) However, if we take any element of A3 via the commutator [γ, ·], we end up with the
identity element, and hence a loop. So we have a formula for the cube-root coming from
the application of the commutator operator twice. Hence, the formula corresponds to a
nested sequence of radicals of degree 2.

1.2. Quartics. We first describe a method to solve a quartic.

(i) Let

f(X) := a0 + a1X + a2X
2 + a3X

3 +X4 = 0.

be a generic quartic. Make the substitution X = Y − a3/4, we find that the quartic now
changes to

f(X) = Y 4 + b2Y
2 + b1Y + b0 = 0, where b2 = −3a23

8
+ a2;

b1 =
a33
8
− a3a2

2
+ a1; b0 = −3a43

256
+
a23a2
16
− a3a1

4
+ a0.(2)

(ii) Assuming b1 6= 0 (when b1 = 0, it reduces to solving a quadratic), we now proceed to
solve the cubic

2Z3 − b2Z2 − 2b0Z +
(
b0b2 −

b21
4

)
= (2Z − b2)(Z2 − b0)−

b21
4

= 0.(3)
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Since b1 6= 0, it implies that 2Z − b2 6= 0, which implies that

Z2 − b0 =
b21

4(2Z2 − b2)
.(4)

(iii) Then, combining equations (2)–(4), we observe that

(Y 2 + Z)2 = Y 4 + 2Y 2Z + Z2 = (2Z − b2)Y 2 − b1Y +
b21

4(2Z − b2)
=(√

2Z − b2Y −
b1

2
√

2Z − b2

)2

.(5)

(iv) From equation (5), we arrive at the equation

(Y 2 + Z)2 −
(√

2Z − b2Y −
b1

2
√

2Z − b2

)2

= 0

=⇒
(
Y 2 + Z +

√
2Z − b2Y −

b1

2
√

2Z − b2

)(
Y 2 + Z −

√
2Z − b2Y +

b1

2
√

2Z − b2

)
= 0.(6)

Finally, solving the quadratics in equation (6), we derive that the solutions of equation
(2) are

Y1 =
1

2

(√
2z − b2 +

√
−2z − b2 −

2b1√
2z − b2

)
Y2 =

1

2

(√
2z − b2 −

√
−2z − b2 −

2b1√
2z − b2

)
;

Y3 =
1

2

(√
2z − b2 +

√
−2z − b2 +

2b1√
2z − b2

)
Y4 =

1

2

(√
2z − b2 −

√
−2zb2 +

2b1√
2z − b2

)
,

(7)

where z is any solution of cubic equation (3).

Problem 2

(i) Show that the solutions of the quartic f(X) = 0 (equation (2)), which are as described
in equation (7), are independent of the choice of z (solutions of equation (3)).

(ii) Solve the equation

f(X) = X4 + 6X2 − 60X + 36 = 0.

Problem 3

Let S4 denote the set {
f : {1, 2, 3, 4} −→ {1, 2, 3, 4}

∣∣ f is a bijection
}
.(8)

Any bijection f ∈ S4 can be represented by a cycle, as in the case of S3. For example the cycle
(1, 2)(3, 4) corresponds to the function

γ(1) = 2, γ(2) = 1, γ(3) = 4, γ(4) = 3.

Similarly the cycle (123) corresponds to the function

γ(1) = 2, γ(2) = 3, γ(3) = 3, γ(4) = 4.

(i) Let

A4 :=
{

[γ1, γ2]
∣∣ γ1, γ2 ∈ S4} ⊂ S4.

Using a computer or otherwise, show that

A4 =
{

Id, (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3),

(2, 3, 4), (2, 4, 3), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)
}
.
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(ii) Let
V4 :=

{
[γ1, γ2]

∣∣ γ1, γ2 ∈ A4

}
⊂ A4 ⊂ S4.

Using a computer or otherwise, show that

V4 =
{

Id, (12)(34), (14)(23), (13)(24)
}
.

(iii) Show that the set
S :=

{
[γ1, γ2]

∣∣ γ1, γ2 ∈ V4} = {Id}.

(iv) Let f = a0 + a1X + a2X
2 + a3X

3 + X4 ∈ F4 be a fixed polynomial of degree 4 with
complex coefficients, and distinct roots. Let Γ1,Γ2, be the paths in C4 corresponding
to the permutations (1, 2, 3), (2, 3, 4), respectively. Consider γ := [γ1, γ2] = γ1γ2γ

−1
1 γ−1

2 ,
the path corresponding to the permutation (1, 4)(2, 3), acting on the polynomial f (by
identifying f with the point (a0, a1, a2, a3) ∈ C4). Show that the functions

R0(a0(γ(t)), a1(γ(t)), a2(γ(t))a3(γ(t))), R1(a0(γ(t)), a1(γ(t)), a2(γ(t))a3(γ(t))),

R2(a0(γ(t)), a1(γ(t)), a2(γ(t))a3(γ(t)))

follow a loop. Thus, eliminating a formula for the roots of f with two nested sequence
of roots.

Observation Continuing with the hypothesis as above, we observe that γ1 and γ2 both belong
to A4, (commutator of S4). Now γ = [γ1, γ2] ∈ V4 (commutator of A4). The process terminates
with commutator of V4 being the identity Id. Hence, we have the possibility of three nested
sequence of radicals in the formula for the roots of a quartic, as demonstrated in equation (7).

1.3. Quintics. We now give a heuristic proof for the proof of Abel-Ruffini’s theorem by Arnold.

Problem 4

(i) Let

A5 :=
{

[γ1, γ2]
∣∣ γ1, γ2 ∈ S5} ⊂ S5.

Show that the permutation (1, 2, 3, 4, 5) ∈ A5.

(ii) Using a computer or otherwise, show that{
[γ1, γ2]

∣∣ γ1, γ2 ∈ A5

}
= A5

Observations

(i) Let f ∈ F5 be a fixed polynomial of degree 5, complex coefficients, and distinct roots.
Since γ0 = (1, 2, 3, 4, 5) is a path which permutes the roots of the polynomial, there exists
a loop in C5 at f , corresponding to γ0.

(ii) Now for any path γ1 ∈ A5, since [γ0, γ1] ∈ A5, we keep landing back in A5 for every such
operation with γ0. Each such operation corresponds to nesting of radicals, one for each
such path. Hence, we may never arrive at a formula for the roots of f , as the paths may
lead to infinite nesting.
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