Problems for Complex numbers and Polynomials
 Problem Sheet 4 (19.07.2024)

1. Arnold's approach to the Abel-Ruffini Theorem

1.1. Summary of cubics. With notation as in Problem Sheet 3, we now summarize our observations for cubic polynomials. Let

$$
\mathcal{F}_{3}:=\left\{f(X)=a_{0}+a_{1} X+a_{2} X^{2}+X^{3} \mid a_{0}, a_{1}, a_{2} \in \mathbb{C}, \text { and roots of } f \text { are all distinct }\right\}
$$

denote the set of polynomials with coefficients in \mathbb{C} with distinct roots. We identify \mathcal{F}_{3} with \mathbb{C}^{3}, i.e., any $f=a_{0}+a_{1} X+a_{2} X^{2}+X^{3}$ identified with the point $\left(a_{0}, a_{1}, a_{2}\right) \in \mathbb{C}^{3}$.

Fix a polynomial $f \in \mathcal{F}_{3}$, and let $\left\{s_{1}, s_{2}, s_{3}\right\}$ denote the set of roots of f. Let

$$
S_{3}:=\left\{f:\left\{s_{1}, s_{2}, s_{3}\right\} \longrightarrow\left\{s_{1}, s_{2}, s_{3}\right\} \mid f \text { is a bijection }\right\}
$$

denote the set of bijections from the set $\left\{s_{1}, s_{2}, s_{3}\right\}$ to itself. The set S_{3} can be identified with the set

$$
\begin{equation*}
\{f:\{1,2,3\} \longrightarrow\{1,2,3\} \mid f \text { is a bijection }\} \tag{1}
\end{equation*}
$$

and here after we refer to S_{3} as the set defined in (1).
Any $\gamma \in S_{3}$ can be represented by a cycle of the form (i, j, k), which represents the bijection

$$
\gamma(i)=j, \gamma(j)=k, \gamma(k)=i
$$

where $\{i, j, k\}=\{1,2,3\}$.
Similarly the cycle (i, j) represents the function

$$
\gamma(i)=j, \gamma(j)=i, \gamma(k)=k
$$

(i) Let γ_{1} denote a continuous path from the root s_{1} to s_{2}, and let γ_{2} denote a continuous path from the root s_{2} to s_{3}. Corresponding to γ_{1} and γ_{2}, there exists loops, Γ_{1} and Γ_{2} in \mathbb{C}^{3} centered at the polynomial f, respectively.
(ii) We can identify the paths γ_{1} with the function (12), and γ_{2} with the cycle $(2,3)$. Then, the composition of loops $\Gamma=\Gamma_{1} \circ \Gamma_{2} \circ \Gamma_{1}^{-1} \circ \Gamma_{2}^{-1}$ in \mathbb{C}^{3} corresponds to the function

$$
\gamma:=(1,2) \circ(2,3) \circ(1,2)^{-1} \circ(2,3)^{-1}
$$

Since $(1,2)^{-1}=(1,2)$ and $(2,3)^{-1}=(2,3)$, unravelling definitions, we find that

$$
\gamma=(1,2,3)
$$

(ii) From Problem 2.6 from Problem Sheet-3, it is clear that the functions

$$
R_{0}\left(a_{0}(\Gamma(t)), a_{1}(\Gamma(t)), a_{2}(\Gamma(t))\right) \text { and } R_{1}\left(a_{0}(\Gamma(t)), a_{1}(\Gamma(t)), a_{2}(\Gamma(t))\right)
$$

also follow a loop, when the function goes through the loop Γ. However the roots undergo a permutation $s_{1} \mapsto s_{2}, s_{2} \mapsto s_{3}$, and $s_{3} \mapsto s_{1}$. Thus, we can conclude that there is no formula for roots coming from a single radical.
(iv) As seen in Problem Sheet-3, the formula for the root of a cubic polynomial with three distinct roots involves a nested sequence of radicals upto second order.

Problem 1

As above, let
$\mathcal{F}_{n}:=\left\{f(X)=a_{0}+a_{1} X+\cdots a_{n-1} X^{n-1}+X^{n} \mid a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{C}\right.$, and roots of f are all distinct $\}$ denote the set of polynomials of degree n, with coefficients in \mathbb{C} and with distinct roots. Let γ_{1} and γ_{2} are two loops based at a fixed polynomial $f \in \mathcal{F}_{n}$, i.e., $\gamma_{i}[0,1] \longrightarrow \mathbb{C}$ is a continuous map, for $i=1,2$, and its acts on the polynomial f in the following sense:

$$
f\left(\gamma_{i}(t)\right):=a_{0}\left(\gamma_{i}(t)\right)+a_{1}\left(\gamma_{i}(t)\right) X+\cdots+a_{n-1}\left(\gamma_{i}(t)\right) X^{n-1}+X^{n} ; \quad f\left(\gamma_{i}(0)\right)=f\left(\gamma_{i}(1)\right)=f
$$

thus defining a loop at f in \mathbb{C}^{n} (here f is identified with the point $\left.\left(a_{0}, \ldots, a_{n-1}\right)^{t} \in \mathbb{C}^{n}\right)$.
(i) Let $\varphi: \mathcal{F}_{3} \longrightarrow \mathbb{C}$ be a continuous function. Observe that f traverses the loop $\gamma:=$ $\left[\gamma_{1}, \gamma_{2}\right]$, where $\left[\gamma_{1}, \gamma_{2}\right]:=\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1}$. Prove that $\varphi(f)^{1 / 3}$ also traverses a loop (although cube-root not is well-defined, choose any of the three branches).
(ii) Let $\varphi: \mathcal{F}^{n} \longrightarrow \mathbb{C}$ be a a continuous function, and let $\alpha \in \mathbb{Q}$. Show that as a fixed $f \in \mathcal{F}_{n}$ traverses the loop $\left[\gamma_{1}, \gamma_{2}\right], \varphi(f)^{\alpha}$ also traverses a loop (as in (i), choose an image which is a continuous path).
(iii) Consider the following subset
$A_{3}:=\left\{\gamma, \gamma^{2}, \gamma^{3}\right\} \subset S_{3}, \quad$ where $\gamma=(1,2,3)$, (i.e., $\gamma(1)=2, \gamma(2)=3, \gamma(3)=1$); $\gamma^{2}=\gamma \circ \gamma=(132)$, (i.e., $\left.\gamma^{2}(1)=3, \gamma^{2}(2)=1, \gamma^{2}(3)=2\right) ; \gamma^{3}=\gamma \circ \gamma \circ \gamma=\mathrm{Id}$,
where Id denotes the identity function on the set $\{1,2,3\}$. Let

$$
\mathcal{C}\left(A_{3}\right):=\left\{\left[\gamma_{1}, \gamma_{2}\right] \mid \gamma_{1}, \gamma_{2} \in A_{3}\right\}
$$

denote the commutator of A_{3}. Show that $\mathcal{C}\left(A_{3}\right)=\{\operatorname{Id}\}$.

Observations

(i) The loop Γ on \mathcal{F}_{3}, which is obtained from the commutator $[\cdot, \cdot]$ corresponds to a permutation on the roots. This corresponds to the fact that the formula for roots cannot be obtained from the elementary operations and taking radicals alone. So each commutator corresponds to a radical.
(ii) However, if we take any element of A_{3} via the commutator $[\gamma, \cdot]$, we end up with the identity element, and hence a loop. So we have a formula for the cube-root coming from the application of the commutator operator twice. Hence, the formula corresponds to a nested sequence of radicals of degree 2 .
1.2. Quartics. We first describe a method to solve a quartic.
(i) Let

$$
f(X):=a_{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3}+X^{4}=0
$$

be a generic quartic. Make the substitution $X=Y-a_{3} / 4$, we find that the quartic now changes to

$$
\begin{array}{r}
f(X)=Y^{4}+b_{2} Y^{2}+b_{1} Y+b_{0}=0, \text { where } b_{2}=-\frac{3 a_{3}^{2}}{8}+a_{2} \\
b_{1}=\frac{a_{3}^{3}}{8}-\frac{a_{3} a_{2}}{2}+a_{1} ; \quad b_{0}=-\frac{3 a_{3}^{4}}{256}+\frac{a_{3}^{2} a_{2}}{16}-\frac{a_{3} a_{1}}{4}+a_{0} \tag{2}
\end{array}
$$

(ii) Assuming $b_{1} \neq 0$ (when $b_{1}=0$, it reduces to solving a quadratic), we now proceed to solve the cubic

$$
\begin{equation*}
2 Z^{3}-b_{2} Z^{2}-2 b_{0} Z+\left(b_{0} b_{2}-\frac{b_{1}^{2}}{4}\right)=\left(2 Z-b_{2}\right)\left(Z^{2}-b_{0}\right)-\frac{b_{1}^{2}}{4}=0 \tag{3}
\end{equation*}
$$

Since $b_{1} \neq 0$, it implies that $2 Z-b_{2} \neq 0$, which implies that

$$
\begin{equation*}
Z^{2}-b_{0}=\frac{b_{1}^{2}}{4\left(2 Z_{2}-b_{2}\right)} . \tag{4}
\end{equation*}
$$

(iii) Then, combining equations (2)-(4), we observe that
(5)

$$
\begin{array}{r}
\left(Y^{2}+Z\right)^{2}=Y^{4}+2 Y^{2} Z+Z^{2}=\left(2 Z-b_{2}\right) Y^{2}-b_{1} Y+\frac{b_{1}^{2}}{4\left(2 Z-b_{2}\right)}= \\
\left(\sqrt{2 Z-b_{2}} Y-\frac{b_{1}}{2 \sqrt{2 Z-b_{2}}}\right)^{2} .
\end{array}
$$

(iv) From equation (5), we arrive at the equation

$$
\begin{aligned}
& \left(Y^{2}+Z\right)^{2}-\left(\sqrt{2 Z-b_{2}} Y-\frac{b_{1}}{2 \sqrt{2 Z-b_{2}}}\right)^{2}=0 \\
(6) & \Longrightarrow\left(Y^{2}+Z+\sqrt{2 Z-b_{2}} Y-\frac{b_{1}}{2 \sqrt{2 Z-b_{2}}}\right)\left(Y^{2}+Z-\sqrt{2 Z-b_{2}} Y+\frac{b_{1}}{2 \sqrt{2 Z-b_{2}}}\right)=0 .
\end{aligned}
$$

Finally, solving the quadratics in equation (6), we derive that the solutions of equation (2) are

$$
Y_{1}=\frac{1}{2}\left(\sqrt{2 z-b_{2}}+\sqrt{-2 z-b_{2}-\frac{2 b_{1}}{\sqrt{2 z-b_{2}}}}\right) \quad Y_{2}=\frac{1}{2}\left(\sqrt{2 z-b_{2}}-\sqrt{-2 z-b_{2}-\frac{2 b_{1}}{\sqrt{2 z-b_{2}}}}\right) ;
$$

$$
\begin{equation*}
Y_{3}=\frac{1}{2}\left(\sqrt{2 z-b_{2}}+\sqrt{-2 z-b_{2}+\frac{2 b_{1}}{\sqrt{2 z-b_{2}}}}\right) \quad Y_{4}=\frac{1}{2}\left(\sqrt{2 z-b_{2}}-\sqrt{-2 z b_{2}+\frac{2 b_{1}}{\sqrt{2 z-b_{2}}}}\right), \tag{7}
\end{equation*}
$$

where z is any solution of cubic equation (3).

Problem 2

(i) Show that the solutions of the quartic $f(X)=0$ (equation (2)), which are as described in equation (7), are independent of the choice of z (solutions of equation (3)).
(ii) Solve the equation

$$
f(X)=X^{4}+6 X^{2}-60 X+36=0 .
$$

Problem 3

Let S_{4} denote the set

$$
\begin{equation*}
\{f:\{1,2,3,4\} \longrightarrow\{1,2,3,4\} \mid f \text { is a bijection }\} . \tag{8}
\end{equation*}
$$

Any bijection $f \in S_{4}$ can be represented by a cycle, as in the case of S_{3}. For example the cycle $(1,2)(3,4)$ corresponds to the function

$$
\gamma(1)=2, \gamma(2)=1, \gamma(3)=4, \gamma(4)=3 .
$$

Similarly the cycle (123) corresponds to the function

$$
\gamma(1)=2, \gamma(2)=3, \gamma(3)=3, \gamma(4)=4 .
$$

(i) Let

$$
A_{4}:=\left\{\left[\gamma_{1}, \gamma_{2}\right] \mid \gamma_{1}, \gamma_{2} \in S_{4}\right\} \subset S_{4} .
$$

Using a computer or otherwise, show that

$$
\begin{array}{r}
A_{4}=\{\operatorname{Id},(1,2,3),(1,3,2),(1,2,4),(1,4,2),(1,3,4),(1,4,3), \\
\\
(2,3,4),(2,4,3),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} .
\end{array}
$$

(ii) Let

$$
V_{4}:=\left\{\left[\gamma_{1}, \gamma_{2}\right] \mid \gamma_{1}, \gamma_{2} \in A_{4}\right\} \subset A_{4} \subset S_{4} .
$$

Using a computer or otherwise, show that

$$
V_{4}=\{\operatorname{Id},(12)(34),(14)(23),(13)(24)\} .
$$

(iii) Show that the set

$$
\mathcal{S}:=\left\{\left[\gamma_{1}, \gamma_{2}\right] \mid \gamma_{1}, \gamma_{2} \in V_{4}\right\}=\{\operatorname{Id}\} .
$$

(iv) Let $f=a_{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3}+X^{4} \in \mathcal{F}_{4}$ be a fixed polynomial of degree 4 with complex coefficients, and distinct roots. Let Γ_{1}, Γ_{2}, be the paths in \mathbb{C}^{4} corresponding to the permutations $(1,2,3),(2,3,4)$, respectively. Consider $\gamma:=\left[\gamma_{1}, \gamma_{2}\right]=\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1}$, the path corresponding to the permutation $(1,4)(2,3)$, acting on the polynomial f (by identifying f with the point $\left.\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in \mathbb{C}^{4}\right)$. Show that the functions

$$
\begin{aligned}
R_{0}\left(a_{0}(\gamma(t)), a_{1}(\gamma(t)), a_{2}(\gamma(t)) a_{3}(\gamma(t))\right), & R_{1}\left(a_{0}(\gamma(t)), a_{1}(\gamma(t)), a_{2}(\gamma(t)) a_{3}(\gamma(t))\right), \\
& R_{2}\left(a_{0}(\gamma(t)), a_{1}(\gamma(t)), a_{2}(\gamma(t)) a_{3}(\gamma(t))\right)
\end{aligned}
$$

follow a loop. Thus, eliminating a formula for the roots of f with two nested sequence of roots.

Observation Continuing with the hypothesis as above, we observe that γ_{1} and γ_{2} both belong to A_{4}, (commutator of S_{4}). Now $\gamma=\left[\gamma_{1}, \gamma_{2}\right] \in V_{4}$ (commutator of A_{4}). The process terminates with commutator of V_{4} being the identity Id. Hence, we have the possibility of three nested sequence of radicals in the formula for the roots of a quartic, as demonstrated in equation (7).
1.3. Quintics. We now give a heuristic proof for the proof of Abel-Ruffini's theorem by Arnold.

Problem 4

(i) Let

$$
A_{5}:=\left\{\left[\gamma_{1}, \gamma_{2}\right] \mid \gamma_{1}, \gamma_{2} \in S_{5}\right\} \subset S_{5}
$$

Show that the permutation $(1,2,3,4,5) \in A_{5}$.
(ii) Using a computer or otherwise, show that

$$
\left\{\left[\gamma_{1}, \gamma_{2}\right] \mid \gamma_{1}, \gamma_{2} \in A_{5}\right\}=A_{5}
$$

Observations

(i) Let $f \in \mathcal{F}_{5}$ be a fixed polynomial of degree 5 , complex coefficients, and distinct roots. Since $\gamma_{0}=(1,2,3,4,5)$ is a path which permutes the roots of the polynomial, there exists a loop in \mathbb{C}^{5} at f, corresponding to γ_{0}.
(ii) Now for any path $\gamma_{1} \in A_{5}$, since $\left[\gamma_{0}, \gamma_{1}\right] \in A_{5}$, we keep landing back in A_{5} for every such operation with γ_{0}. Each such operation corresponds to nesting of radicals, one for each such path. Hence, we may never arrive at a formula for the roots of f, as the paths may lead to infinite nesting.

