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I. Fields



Fields
Roughly speaking, to a physicist, everything is a field.

However, more precisely, there is a stack

S - M

over the spacetime manifold and fields are its sections:

F := Γ(M,S )

These comprise the so-called kinematics of a theory.

The ‘dynamics’ are usually formulated in terms of an action

L : F - C

The solutions of the Euler-Lagrange equation

S(F ) := {φ ∈ F | dL(φ) = 0}

make up the classical state space.



Fields

Example:
S = T ∗M - M

F = Ω1(M)

L(A) = Max(A) :=

∫
M
‖dA‖2dvolM

In this case, the E-L equation amounts to the equation

∗dA = 0.

Together with d(dA) = 0, we get Maxwell’s equations (for the six
components of dA).

Can generalise this to F = Conn(L ), the space of connections on
a line bundle L .



Fields

Also of interest is

S = (TM)⊗n ⊗ (T ∗M)⊗m

or natural subquotients.

For example, when S = Met(M) ⊂ (T ∗M)⊗2,

EH(g) =

∫
M
R(g)dvolg ,

where R(g) is the scalar curvature of g , is the Einstein-Hilbert
action.

The E-L equation
dEH(g) = 0

is the vacuum Einstein equation.



Fields

Another important example is

F = M × Σ,

where Σ is another manifold.

This kind of theory is called a sigma model. In that case, fields are
identified with maps

φ : M - Σ.

If Σ is equipped with a metric, then

L(φ) =

∫
M
‖dφ‖2dvolM

defines an action, whose critical points are called the harmonic
maps from M to Σ. It’s often the case that Σ is equipped with
other fields that are used to define the action.



Fields

The action is typically a global integral of local functions of the
fields: ∫

M
〈Dφ,Dφ〉+ h.o.t.

But there are other important functions in field theory that are
supported on subspaces N ⊂ M.

For example, if A (P) is the space of connections on a principal
G -bundle P , then a map K : S1 - M together with a
representation V of G determines a function

Wil(K ,V ) : A - C,

Wil(K ,V )(∇) = Tr(HolK (f ∗(∇))|V )

called the Wilson loop function.



Fields

In quantum field theory, we are interested in integrals like∫
F
e−

i
~L(φ)dφ

called the partition function.

Also, various correlation functions like∫
F
f1(φ)f2(φ) · · · fk(φ)e−

i
~L(φ)dφ.

These are typically ill-defined (modern Zeno’s paradox), but
tremendously useful guides for plausible computations and
formulation of conjectures, e.g., the definition of a conformal field
theory or a topological quantum field theory.



II. Arithmetic Topology



Arithmetic Topology

Let OF be the ring of algebraic integers in a number field F and let

X := Spec(OF ).

It has many properties of a compact closed three-manifold.

If v is a maximal ideal in OF , then kv = OF/v is a finite field and
the inclusion

Spec(kv ) ⊂ - X

is analogous to the inclusion of a knot.

The completion Spec(OF ,v ) is like the tubular neighbourhood of
the knot.



Arithmetic Topology

The completion Fv of F is the fraction field of OF ,v , so that

Spec(Fv ) = Spec(OF ,v ) \ v

is like the tubular neighbourhood with the knot deleted, which
should be homotopic to a torus.

If B is a finite set of primes and OF ,B is the set of B-integers, then

XB := Spec(OF ,B) = Spec(OF ) \ B

is like a three-manifold with boundary, the boundary having one
torus component Spec(Fv ) for each prime in B .

∂XB =
∐
v∈B

Spec(Fv ) - XB
⊂ - X .



Arithmetic topology: Dual Interpretation

Instead of the spaces themselves, can focus on moduli spaces

M (XB ,R) := {ρ : π1(XB) - R}//R

for a p-adic Lie group R .

Then a pair (x ,V ), where x ∈ XB and V is a finite-dimensional
representation of R , defines a function

ρ 7→ Tr(ρ(Frx)|V )

on M (XB ,R), an arithmetic Wilson loop.

Other functions, e.g., actions?

Path integrals?

Other moduli spaces?



Arithmetic Topology and TQFT?

A 3d arithmetic TQFT will naturally assign a number

H(X )

to X : the value of the partition function.

A vector space
H(Fv )

to Fv : functions on the space of boundary conditions.

and a vector
H(XB) ∈ H(B) = ⊗v∈BH(Fv )

to XB : function that assigns to a boundary condition the integral
over fields that satisfy that condition.



III. Modular Curves



Modular curves

Can consider any scheme or stack as the target of a field theory:

Z - S

gives rise to

F = Z (T )

=
{

Z

T -

-

S
?

}

So what are functions on Z (T )?



Modular curves
S = Spec(Z)
T = Spec(OF ) where F is an algebraic number field.
X(1) compactified moduli stack of elliptic curves.
F = generalised elliptic curves over T .

Example of action might be the Faltings height:

12hF (E ) := 12 degωE /T

Lemma
The sum ∑

E∈X(1)(Z)

e−12hF (E )

converges.
Follows immediately from a theorem of Ruthi:

|{E | 12hF (E ) < B}| ∼ Ce5B/6



Modular curves

What about local functions?

For a prime `, can consider

E 7→ a`(E )

leading one to∫
X(1)(Z)

a`1(E )a`2(E ) · · · a`k (E )e−12h(E )dE

Lemma
This sum is absolutely convergent.



Modular curves

Functions on X1(p):

For a prime ` ≡ 1 mod p fix

µp(F`) ' µp(C).

Get a function of x ∈ E [p](F`) via

t`(x) := 〈δ(x)(Fr`), x〉 ∈ µp(C)

Here, δ(x) ∈ H1(F`,E [p]), so that δ(x)(Fr`) ∈ E [p](F̄`). Depends
on choice of cocyle representative, but the Weil pairing
〈δ(x)(Fr`), x〉 does not.



Modular curves

Thus, get a local function on X1(p) and can try to compute∫
X(p)1(Z)

t`1(E )t`2(E ) · · · t`k (E )e−12h(E )dE



Modular curves

Also interesting to consider the moduli stack of curves of genus 1,

M1,

admitting maps

X(1) - M1 - X(1).

Consider
F := (M1 ×X(1) M1,2)(Z).

Given φ = (C ,E , x), where C is an E -torsor and x ∈ E (Z), for any
` of good reduction, we then have a local Tate pairing

u`(φ) := 〈C , x〉 ∈ Q/Z.



Modular curves

Compute∫
F
e2πiu`1 (φ)e2πiu`2 (φ) · · · e2πiu`k (φ)e−12h(φ)dφ ?



IV. Some more examples of arithmetic actions



Arithmetic Actions

For technical reasons, we will assume throughout that F is totally
complex.

Would like to define

S : M (XB ,R) = H1(π1(XB),R) - K

as well as path integrals∫
ρ∈M (XB ,R)

exp (−S(ρ))dρ

possibly also on more general fields and/or related moduli spaces.



Arithmetic Duality

Let µn be the n-th roots of 1. Then

H3(X , µn) = H3(Spec(OF ), µn) ' 1
n
Z/Z.

This follows from

1 - µn - Gm
(·)n- Gm

- 1,

leading to
H3(X , µn) ' H3(X ,Gm)[n].

Meanwhile
H3(X ,Gm) ' Q/Z.



Arithmetic Duality

Local class field theory:

H2(Fv ,Gm) ' Q/Z

Global class field theory:

0 - H2(F ,Gm)
loc- ⊕v H

2(Fv ,Gm)
∑
- Q/Z - 0.

0 - H2(XB ,Gm)
locB- ⊕v∈B H2(Fv ,Gm)

∑
- Q/Z - 0.

But
⊕v∈BH

2(Fv ,Gm) = H2(∂XB ,Gm),

so that
coker(locB) ' H3

c (XB ,Gm) ' H3(X ,Gm).



Finite Arithmetic Chern-Simons Functionals

Assume µn ⊂ F . Then

H3(X ,Z/n) ' H3(X , µn) ' 1
n
Z/Z,

so we get a map

inv : H3(π1(X ),Z/n) - H3(X , µn) ' 1
n
Z/Z.

Let R have trivial π1(X )-action. On the moduli space

M (X ,R) = Hom(π1(X ),R)//R,

of continuous representations of π1(X ), a Chern-Simons functional
is defined as follows.



Finite Arithmetic Chern-Simons Functionals

The functional will depend on the choice of a cohomology class (a
level)

c ∈ H3(R,Z/n).

Then
CSc : M (X ,R) - 1

n
Z/Z

is defined by

ρ 7→ ρ∗(c) ∈ H3(π1(X ),Z/n) 7→ inv(ρ∗(c)).



Finite Arithmetic Chern-Simons Functionals
Example:

Let R = Z/n. Then

MX = Hom(π1(X ),Z/n) = H1
et(X ,Z/n).

Take c ∈ H3(R,Z/n) to be given as

a ∪ δa,

where a ∈ H1(R,Z/n) = Hom(Z/n,Z/n) is the class coming from
the identity map, while

δ : H1(R,Z/n) - H2(R,Z/n)

is the Bockstein map coming from the extension

0 - Z/n - Z/n2 - Z/n - 0.

Then
CSa∪δa(ρ) = inv(ρ∗(a) ∪ ρ∗(δa)).



BF-theory

Have a function

H1(X ,V )× H1(X ,D(V ))
BF- 1

n
Z/Z

defined by
(a, b) 7→ inv(da ∪ b)

For this, V is a finite n-torsion group scheme that admits a suitable
Bockstein map

d : H1(X ,V ) - H2(X ,V )

and D(V ) is the Cartier dual.

Variant:

H1(XB ,V )× H1
c (XB ,D(V ))

BF- 1
n
Z/Z



Remark on arithmetic differentials
The Bockstein map

d : H1(X ,Z/n) - H2(X ,Z/n)

is very much like a differential. In crystalline cohomology of
varieties over perfect fields of positive characteristic, Bockstein
maps on crystalline cohomology sheaves are used to construct the
De Rham-Witt complex.

In general, whenever you have an extension

0 - V - E - V - 0,

there is a differential

H1(X ,V ) - H2(X ,V )

that can be used to construct arithmetic functionals.

More general differentials arise from deformation theory.



V. Arithmetic Path Integrals



Arithmetic Chern-Simons

[Joint work with H. Chung, D. Kim, G. Pappas, J. Park, H. Yoo]

Let n = p, a prime and assume the Bockstein map

d : H1(X ,Z/p) - H2(X ,Z/p)

is an isomorphism.

Then ∑
ρ∈H1(X ,Z/p)

exp[2πiCS(ρ)]

=
√
|ClX [p]|

(
det(d)

p

)
i [

(p−1)2dim(ClX [p])
4 ].



Arithmetic BF -theory: [Joint work with Magnus Carlson]

BF : H1(X , µn)× H1(X ,Z/n) - 1
n
Z/Z,

(a, b) 7→ inv(da ∪ b).

Proposition
For n >> 0, ∑

(a,b)∈H1(X ,µn)×H1(X ,Z/n)

exp(2πiBF (a, b))

= |ClX [n]||O×X /(O×X )n|.

Compare with

L(r)(Triv , 0)

r !
= −|ClX |‖ det(O×F )‖



Arithmetic BF -theory

Similarly, if E is an elliptic curve with Neron model E , then we have

0 - E [n] - E [n2] - E [n] - 0

for n coprime to the conductor and the orders of component groups
of E .

This gives us a map

BF : H1(X ,E [n])× H1(X ,E [n]) - 1
n
Z/Z,

as
(a, b) - inv(da ∪ b).



Arithmetic BF -theory

Proposition
Assume Sha(E ) is finite. For n >> 0 as above,∑

(a,b)∈H1(X ,E [n])×H1(X ,E [n])

exp(2πiBF (a, b))

= |X(A)[n]||E (F )/n|2·

Compare

L(r)(TpE , 0)

r !
= (
∏
v

cv )|XE ||‖ det(E (F ))‖2



Chern-Simons Theory for Elliptic Curves

For a ∈ H1(X ,E [p]), define

CS(a) := BF (a, a).

This is a mod p version of the p-adic height.

Local operators: Let ` ≡ 1 mod p a prime of good reduction and
y ∈ E (F`), define

O`,y : H1(X ,E [p]) - µp

as
O`,y (a) := 〈a mod `, y〉

= (a(Fr`), y),

where the last bracket is the Weil pairing.



Chern-Simons Theory for Elliptic Curves

∑
a∈H1(X ,E [p])

O`1,y1(a)O`2,y2(a) · · ·O`k ,yk (a) exp(2πiCS(a)) =?



VI. Chern-Simons with Boundaries



Finite Arithmetic Chern-Simons Functionals with Boundaries

XB = Spec(OF [1/B]) for a finite set B of primes;

∂XB =
∐

v∈B Spec(Fv ).

π1(XB) := Gal(F un
B /F ), πv := Gal(F̄v/Fv ),

and fix a tuple of homomorphisms

iS = (iv : πv - π1(XB))v∈B

corresponding to embeddings F̄ ⊂ - F̄v .

Assume B contains all places dividing n.



Finite Arithmetic Chern-Simons Functionals with Boundaries

In addition to the global moduli space

M (XB ,R) = Hom(π1(XB),R)//R

we have the local moduli space

M (∂XB ,R) := {φB = (φv )v∈B | φv : πv - R}//R

Thus, we get a localisation map

locB = i∗B : M (XB ,R) - M (∂XB ,R)



Finite Arithmetic Chern-Simons Functionals with Boundaries

Key cohomological facts:

H2(πv ,Z/n) ' 1
n
Z/Z.

H i (πv ,Z/n) = 0 for i > 2.

There is a symplectic non-degenerate pairing

H1(πv ,Z/n)× H1(πv ,Z/n) - H2(πv ,Z/n) ' 1
n
Z/Z.

There is an exact sequence

0 - H1(XB ,Z/n) -
∏
v∈B

H1(πv ,Z/n)
∑
- 1

n
Z/Z - 0.



Finite Arithmetic Chern-Simons Functionals with Boundaries

Now c ∈ Z 3(R,Z/n) will denote a 3-cocycle.

For any φB = (φv ), each φ∗v (c) ∈ Z 3(πv ,Z/n) is trivial. Thus,

Tv := d−1(φ∗v (c)) ∈ C 2(πv ,Z/n)/B2(πv ,Z/n)

is a torsor for H2(πv ,Z/n) ' 1
nZ/Z.

Hence, ∏
v∈B

Tv

is a torsor for ∏
v∈B

H2(πv ,Z/n) '
∏
v∈B

1
n
Z/Z.

.



Finite Arithmetic Chern-Simons Functionals with Boundaries

We push this out using the sum map

Σ :
∏
v∈B

1
n
Z/Z - 1

n
Z/Z

to get a 1
nZ/Z-torsor

T (φB) := Σ∗(
∏
v

d−1(φv )).

As φB varies, we get a 1
nZ/Z-torsor

T - M (∂XB ,R)

over the local moduli space.



Finite Arithmetic Chern-Simons Functionals with Boundaries

Can use the map

exp 2πi :
1
n
Z/Z - S1.

to push T out to a unitary line bundle U over M (∂XB ,R) and
define

HCS(B) := Γ(M (∂XB),R),U )

This is the Hilbert space associated by finite arithmetic CS theory
to B .
Should define

HCS(XB) ∈ HCS(B).



Finite Arithmetic Chern-Simons Functionals with Boundaries

If ρ ∈M (XB ,R), because H3(π1(XB),Z/n) = 0, we can solve

dβ = ρ∗(c) ∈ Z 3(π1(XB),Z/n),

and put
CS(ρ) = Σ∗(locB(β)) ∈ TlocB(ρ).

Lemma
CS(ρ) is independent of the choice of β.

This follows immediately from the reciprocity sequence

0 - H2(π1(XB),Z/n) -
∏
v∈B

H2(πv ,Z/n)
∑
- 1

n
Z/Z - 0,



Finite Arithmetic Chern-Simons Functionals with Boundaries

Exponentiating, we get

exp(2πiCS(ρ)) ∈ UlocB(ρ)

and ∫
{ρ | locB(ρ)=ρB}

exp(2πiCS(ρ)) ∈ UρB .

As ρB varies get an element

HCS(XB) ∈ HCS(B).


