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Decoherence

Loss of coherence due to ’unwanted’ interactions with a bath/environment
⇒ Noise!
System dynamics are modelled by completely positive, trace-preserving
(CPTP) maps.

E(ρS) = trE[USE(ρS ⊗ ΦE)U†
SE) ].

Quantum channel: E is described by a set of noise (Kraus) operators {Ei}
acting on any given state ρ as,

E(ρ) =
∑

i
EiρE†

i ;
∑

i
E†

i Ei ≤ I.

P Mandayam (IIT M) QTr 25 22 Jan 2025 2 / 30



Decoherence

Loss of coherence due to ’unwanted’ interactions with a bath/environment
⇒ Noise!

System dynamics are modelled by completely positive, trace-preserving
(CPTP) maps.

E(ρS) = trE[USE(ρS ⊗ ΦE)U†
SE) ].

Quantum channel: E is described by a set of noise (Kraus) operators {Ei}
acting on any given state ρ as,

E(ρ) =
∑

i
EiρE†

i ;
∑

i
E†

i Ei ≤ I.

P Mandayam (IIT M) QTr 25 22 Jan 2025 2 / 30



Decoherence

Loss of coherence due to ’unwanted’ interactions with a bath/environment
⇒ Noise!
System dynamics are modelled by completely positive, trace-preserving
(CPTP) maps.

E(ρS) = trE[USE(ρS ⊗ ΦE)U†
SE) ].

Quantum channel: E is described by a set of noise (Kraus) operators {Ei}
acting on any given state ρ as,

E(ρ) =
∑

i
EiρE†

i ;
∑

i
E†

i Ei ≤ I.

P Mandayam (IIT M) QTr 25 22 Jan 2025 2 / 30



Decoherence

Loss of coherence due to ’unwanted’ interactions with a bath/environment
⇒ Noise!
System dynamics are modelled by completely positive, trace-preserving
(CPTP) maps.

E(ρS) = trE[USE(ρS ⊗ ΦE)U†
SE) ].

Quantum channel: E is described by a set of noise (Kraus) operators {Ei}
acting on any given state ρ as,

E(ρ) =
∑

i
EiρE†

i ;
∑

i
E†

i Ei ≤ I.

P Mandayam (IIT M) QTr 25 22 Jan 2025 2 / 30



Quantum Channels

Example: Transmon qubits

Decoherence mechanism mimics energy dissipation in a 2-level system via the
Jaynes-Cummings interaction
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Amplitude-damping Channel

Amplitude-damping channel (T1 process), with Kraus operators,

E0 =

(
1 0
0
√

1− γ

)
, E1 =

(
0 √

γ
0 0

)

γ(t) = 1− exp (−t/T1) : Probability of a transition from the excited state to
the ground state
T1 is the coherence time.
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Quantum Non-Markovianity

The master equation formulation of open system dynamics assumes,

(i) Factorizability of initial state: joint system-environment (S-E) state is assumed
to be of the product form

(ii) Born-Markov approximation: a large separation between system and
environment time-scales

(iii) Rotating-wave approximation: fast (or, counter)-rotating terms in the
interaction Hamiltonian are ignored.

Relaxing (i) or (iii) ⇒ system evolution map is no longer a CP map!

If (i) and (iii) hold, but (ii) is relaxed,
⇒ a time-dependent GKSL master equation1

dρ(t)
dt = L(t)[ρ(t)] =

∑
j

Γj(t)
(

Lj(t)ρ(t)L†
j (t)−

1
2{L

†
j (t)Lj(t), ρ(t)}

)

{Lj(t)} are the jump operators, {Γj(t)} are the canonical decay rates.

1Sudarshan et al (1961), Lindblad (1976)
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Non-Markovianity of Quantum Dynamical Maps

When Γj are time-independent, L(t) is time-independent.
⇒ One-parameter dynamical map E(t) = exp (tL) (quantum channel!),
the system state evolves as ρ(t) = E(t)[ρ(0)].

Markovianity ⇒ dynamical semigroup structure: E(t2 + t1) = E(t2)E(t1)

If the decay rates Γj(t) are time-dependent, the dynamical map is of the form,

E(t, t0) = T exp

{∫ t

t0

L(τ)dτ
}
, T : time− ordering operator.

The dynamics may be non-Markovian, when at least one of the decay rates
Γ(t) becomes negative for a certain interval of time2.

2Breuer and Petruccione (2002).
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CP-indivisible Maps4

A quantum channel E(t2, t0) is CP-divisible if: E(t2, t0) = E(t2, t1)E(t1, t0).

This breaks down for a non-Markovian noise: the intermediate map E(t2, t1)
may not be completely positive (CP).

The corresponding Choi-Jamiolkowski matrix
χ(t2, t1) = (E(t2, t1)⊗ I) [|Ψ⟩⟨Ψ|] is not positive3!

For such CP-indivisible maps, the non-CP intermediate map E(t2, t1) is still a
linear, Hermiticity-preserving and trace-preserving (HPTP) map with an
Operator-sum-difference representation:

EHPTP(t, τ)[ρ] =
∑

i
sign(i)Ei(t, τ)ρE†

i (t, τ)

sign(i) = −1 if the map is non-CP, else it is +1.

3Quantifying non-Markovian memory in a sc quantum computer, Morris, Pollock & K. Modi
(2022)

4Quantum non-Markovianity: Overview and recent developments, Shrikant.U and
P.Mandayam, Frontiers of Q. Sci. and Tech. (2023).
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Example: Amplitude-Damping Noise

Jaynes-Cummings model of a two-level system interacting with a dissipative
bosonic reservoir at zero temperature.

Htot =
ω0σz

2 +
∑

j
ωja†

j aj +
∑

j
(gjσ+aj + g∗j σ−a†

j )

Consider the case of a single mode, with a Lorentzian bath spectral density

J(ω) = Γ0b2

2π[(ω0 −∆− ω)2 + b2]
.

ω0 represents the energy gap between ground state |0⟩ and exited state |1⟩,
∆ = ω − ω0 is the detuning parameter.
Γ0 quantifies the strength of the system-environment coupling and b the
spectral bandwidth.
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Non-markovian Amplitude-Damping Noise5

The reduced dynamics of the qubit corresponds to an amplitude-damping
(AD) channel with Kraus operators

E1(t) =
(

1 0
0
√

1− γ(t)

)
; E2(t) =

(
0
√
γ(t)

0 0

)
.

Damping paramter γ(t) = 1− |G(t)|2,

G(t) =

e−bt/2

(
b√

b2 − 2Γ0b
sinh

(
0.5t

√
b2 − 2Γ0b

)
+ cosh

(
0.5t

√
b2 − 2Γ0b

))
.

The system undergoes non-Markovian evolution when b≪ 2Γ0.
When b≫ 2Γ0, the dynamics is time-homogeneous Markovian – it has a
Lindblad form with a constant decay rate (Γ(t) = Γ0).

5Breuer et al, Rev Mod Phys (2016).
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Markovian vs Non-Markovian regimes
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Quantum Error Correction

“With group and eigenstate, we’ve learned to fix,
Your quantum errors with our quantum tricks.”

- QEC Sonnet, Daniel Gottesman

Bit-flip noise:
{√pX,

√
1− pI}

3-qubit code:
α|0⟩+ β|1⟩ →
α|0⟩|0⟩|0⟩+ β|1⟩|1⟩|1⟩.

Logical qubits from physical qubits: |0L⟩ ≡ |0⟩|0⟩|0⟩, |1L⟩ ≡ |1⟩|1⟩|1⟩.
Bit flip on different qubits are distinguishable
⇒ Errors can be detected and corrected.
The 3-qubit code corrects for single-qubit bit-flip noise, provided p < 1

2 .
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QEC Schematic

Span of {|0L⟩, |1L⟩} is the quantum Codespace (C).

A QEC protocol is characterized by a code C (encoding) and the
corresponding recovery map R.

For Pauli errors – X,Y,Z errors – the recovery operation is simply the inverse
of the noise operator.
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Beyond Pauli noise

A continuum of different errors can occur on a single qubit : erasure,
phase-flip (T2-process), amplitude-damping (T1-process), depolarizing noise.

Discretize the errors in terms of a finite, unitary set of errors
Pauli error basis: {X,Y,Z, I}
For example, amplitude-damping in the Pauli basis:
E0 = (1 +

√
1− γ)I/2 + (1−

√
1− γ)Z/2, E1 =

√
γ(X + iY)/2 .

Quantum Hamming Bound: shortest perfect QEC code requires 5 qubits to
protect one.

For amplitude-damping noise, a 4-qubit code was constructed6, that provides
a degree of protection comparable to that of 5-qubit code.
Noise-adapted QEC: Develop efficient QEC protocols for specific noise
models and qubit architectures.

6D.W.Leung et al, Phys.Rev.A 56, 2567 (1997).
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Beyond perfectly correctable codes

A 4-qubit code that corrects for single qubit amplitude damping errors 7:

|0⟩L =
1√
2
(|0000⟩+ |1111⟩)

|1⟩L =
1√
2
(|0011⟩+ |1100⟩)

It is stabilized by the 4-qubit Pauli subgroup ⟨XXXX,ZZII, IIZZ⟩.

Noise operators map C to mutually orthogonal subspaces which are not
unitary transforms of C.
Non-trivial decoding and recovery operations: secondary syndrome
(non-stabilizer) measurements, CPTP recovery map.
For amplitude damping noise,

The 4-qubit code: F2
min = 1 − 1.75γ2 + O(γ3).

Compare with the ’perfect’ 5-qubit code: F2
min = 1 − 2.5γ2 + O(γ3).

⇒ The [4, 1] code is a shorter code of comparable fidelity!

7D.W.Leung, M.A.Nielsen, I.L.Chuang, and Y.Yamamoto, Phys.Rev.A 56, 2567 (1997)
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Perfect vs Approximate QEC

Knill-Lafllame condition:
PE†

i EjP = λijP
At least five qubits are necessary to
correct arbitrary single qubit noise.
There exists a recovery
R ∼ {U†

i Pi}a. Pi is the projector
onto the i− th syndrome subspace.

aM. A. Nielsen, I. L. Chuang Quantum
Computation and Quantum Information,
Cambridge University Press

AQEC condition a:
PE†

i EjP = λijP + PBijP.
The error subspaces are not
orthogonal to each other. The
unitarity (or deformability)
condition gets violated.
Noise-adapted Recovery: could be a
CPTP map!

aC. Bény and O. Oreshkov, PRL,
104(12):120501, 2010
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Noise-adapted QEC

A triple optimization problem:

max
C

max
R

min
|ψ⟩∈C

F2 [|ψ⟩, (R ◦ E) (|ψ⟩⟨ψ|)] .

Optimizing for worst case fidelity is computationally hard:
Optimization is twofold, F2 is not linear in its arguments.
An analytical solution8: For any noise E ∼ {Ei}N

i=1 and code C with
projection P, the Petz map is defined as,

RP ∼ {Ri}N
i=1 , Ri ≡ PE†

i E(P)−1/2

(1) If E is perfectly correctible on C, then, RP = RPerf.
(2) For any pair (E , C), RP achieves a worst-case fidelity close to that of the

optimal recovery channel.
Note: RP ◦ E is unital!

8H.K. Ng and P. Mandayam, Phys Rev A, 81, 62342 (2010)
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QEC for non-Markovian noise?

Codeword fidelity for non-Markovian bit-flip noise, using the 3-qubit code9

More generally, any non-CP map can be represented as10.

ENCP(ρ) =
∑

i
sign(i)EiρE†

i = E1(ρ)− E2(ρ).

A codespace with projector P that satisfies the perfect QEC conditions for
{Ei} may no longer be in the domain of E .

9Oreshkov & Brun, Phys. Rev. A (2007).

10Shabani and Lidar PRA (2009); A. Gonzales, D. Dilley, Mark Byrd, PRA (2020)
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Perfect QEC for non-Markovian AD noise
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Code : [[5, 1, 3]] code
Recovery: R ∼ {U†

i Pi}. {Ui}s are the Pauli matrices.
Noise : Non-Markovian AD (b = 0.01,Γ0 = 5).
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Correcting non-Markovian noise using the Petz map11

Defining a Petz recovery map for the noise process E [.] =
∑

i
sign(i)Ei[.]E†

i

Exactly adapt the recovery map to the noise:
Non-Markovian Petz map: RNM

P [ρ] =
∑

j sign(j)Rj[ρ]R†
j

Adapt the recovery to the Makrovian regime of the noise:
Markovian Petz map: RM

P [ρ] =
∑

j Rj[ρ]R†
j

For a HPTP map E(t) ∼ {sign(i),Ei(t)}, code C with projector P. Let
∆ij(t) ∈ B(C) be traceless operators such that

PE†
i (t)E [P]−1/2Ej(t)P = βij(t)P +∆ij(t),

where βij(t) ∈ C. Then,
The fidelity loss achieved using RNM

P is,

1 − F2(t) = η(t) =
∑
i,j

sign(i)sign(j)(⟨ψ|∆†
ij(t)∆ij(t)|ψ⟩ − |⟨ψ|∆ij(t)|ψ⟩|2).

The fidelity loss achieved using RM
P is,

η(t) =
∑
i,j

sign(i)(⟨ψ|∆†
ij(t)∆ij(t)|ψ⟩ − |⟨ψ|∆ij(t)|ψ⟩|2).

11D. Biswas, S. Utagi and P. Mandayam, arxiv: 2411.09637 (2024)
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Petz recovery vs. Stabilizer recovery
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Performance of the Petz recoveries for the [4, 1] code subject to non-Markovian AD noise
with the noise parameters b = 0.01 and Γ0 = 5. The Markovian Petz is adapted to the
noise regime with b = 0.1 and Γ0 = 0.005. The stabilizer recovery is for the [[5, 1, 3]]
code.
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Performance of different codes
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Leung Recovery
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Summary and Outlook

There are apects of perfect QEC which fail in the presence of non-Markovian
noise. Noise-adapted QEC provides an alternative.

Noise-adapted QEC can provide a good degree of protection from the
dominant noise process affecting the physical qubits.

We obtain sufficent conditions under which a Markovian Petz map, adapted
to the noise achieves a pretty good fidelity in the large noise strength limit.

Circuit implementations of the Markovian Petz map 12?
Generalize the framework of QEC to account for non-Markovian error models:
Process tensor formalism [S. Milz and K Modi PRX Qiuantum (2021),
Strategic code [A Tanaggra, M Gu, K. Bharti, arXiv:2405.17567 (2024)] ….
Simualting exact open system dynamics with repeated cycles of QEC cycles
[Babu et al, Phys Rev Res, (2023).]

12D.Biswas, G. M. Vaidya, P.M, Noise-adapted circuits for quantum error correction, Phys.
Rev. Research 6, 043034 (2024)
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Thank You!
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A counter-example study for correcting NCP error

Given that any NCP map can be represented as

ENCP(ρ) =
∑

i
sign(i)EiρE†

i = E1(ρ)− E2(ρ), (1)

where Ei are CP maps13. When E2(PρP) ̸= 0 =⇒ violation of
PE†

i EjP = diδijP.
In other words, the code space is no more in the domain of the error map.
consider the 3-qubit bit flip code C span

= {|000⟩, |111⟩}.
Consider Φbit−flip(ρ ∈ C) = c0ρ+ c1

∑
XnρXn.

After the noise, if we measure the syndrome, the probability of detection the
ith single qubit bit-flip Tr(PiΦ(ρ)) can be negative.
Makes the perfect QEC approach impractical.

13Shabani and Lidar (2009), PRA, 80, 012309; A. Gonzales, D. Dilley, Mark Byrd (2020) PRA
102 062415
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Implementing noise-adapted recovery protocols15

The map RP can be decomposed as a composition of,

(a) the adjoint map E†(.) with Kraus operators {E†
i },

(b) the normalization or amplification map E(P)−1/2(.)E(P)−1/2 and
(c) the projection map P(.) = P(.)P.

These maps are trace increasing in general, but the overall map obtained by
composing these three maps is indeed trace-preserving.
Past work: An algorithm based on Quantum Singular Value Transform 14

Approximate, probabilistic implementation requiring O(44n + n24n) gates for
an n-qubit code subject to arbitrary noise.
We demonstrate three different circuit constructions for implementing the
Petz map and estimate the resource requirements in each case.

Isometric Extension (O(n242n))
A sequence of general quantum measurements (POVMs)
(O(42n(5n2 + O(n))))
Algorithmic approach using block-encoding (O(n24n + 44n) )

14A. Gilyén et al, Phys Rev Lett 128, 220502 (2022)

15D. Biswas, G. Vaidya and P. Mandayam, Phys. Rev. Res. 6 (4), 043034 (2024).
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Calculation of F2
min = 1− η

1 The action of a channel Φ can be represented by a matrix M acting on the
vectors in a Hilbert-Schmidt space , with the matrix elements

Mα,β = Tr[OαΦ(Oβ)] (2)
For a qubit channel Oα are the Pauli operators.

2 For a [n, 1]- qubit code , the cardinality of the set {Oα} is four, and the
operators are

O0 = P(projector onto the code space) (3)
O1 = |0L⟩⟨1L|+ |1L⟩⟨0L| (4)
O2 = i(|0L⟩⟨1L| − |1L⟩⟨0L|) (5)
O3 = |0L⟩⟨0L| − |1L⟩⟨1L| (6)

3 The matrix M is then a 4× 4 matrix and has the structure as(
1 0
τ⃗ T3×3

)
. (7)

4 For a d− dimension code C,(
1 0
τ⃗ Td−1×d−1

)
(8)
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Calculation

The fidelity between a state |ψ⟩ ∈ C and the state Φ(|ψ⟩⟨ψ|) is

F2 =
1
2 (r

T.T.r + τ⃗ .⃗r). (9)

r⃗ is the Bloch vector of the encoded Bloch sphere.
If the channel Φ is unital onto the code space =⇒ Φ(P) = P, then
F2 = 1

2 (r
T.T.r).

The min of the F2
min = 1

2 (1− tmin), tmin is the minimum eigenvalue of the T.
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Non-Markovinity of a Map

A Hermitian dynamical map is said to be P-divisible iff 16

d
dtλk(t) = λ′k ≤ 0 ← kth − eigenvalue of the matrix M. (10)
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Code : [4,1]-Leung code.
Noise: Non-Markovian amplitude
damping (b = 0.01,Γ0 = 5).
Petz Recovery:

1 Non-Markov Petz: Adapted to
the noise (b = 0.01,Γ0 = 5).

2 Markov Petz: Adapted to the
Markovian regime
(b = 0.1,Γ0 = 0.005) of the
noise.

16D.Chruściński, C. Macchiavello, and S. Maniscalco, PRL: 118(8):080404, 2017
P Mandayam (IIT M) QTr 25 22 Jan 2025 30 / 30


