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Decoherence

fwvirnhmewl'

@ Loss of coherence due to 'unwanted’ interactions with a bath/environment
= Noise!

@ System dynamics are modelled by completely positive, trace-preserving
(CPTP) maps.

E(ps) = tru] Usp(ps © ®p) Uly) ).

e Quantum channel: £ is described by a set of noise (Kraus) operators {E;}
acting on any given state p as,

E(p)=> EipEl; > EE <I
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Quantum Channels

e Example: Transmon qubits
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Quantum Channels

e Example: Transmon qubits
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@ Decoherence mechanism mimics energy dissipation in a 2-level system via the
Jaynes-Cummings interaction
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Amplitude-damping Channel

e Amplitude-damping channel (T process), with Kraus operators,

e (3 )4 7)

o v(t) =1 —exp(—t/T1) : Probability of a transition from the excited state to
the ground state
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Amplitude-damping Channel

e Amplitude-damping channel (T process), with Kraus operators,

e (3 )4 7)

o v(t) =1 —exp(—t/T1) : Probability of a transition from the excited state to
the ground state

o T is the coherence time.
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Quantum Non-Markovianity

@ The master equation formulation of open system dynamics assumes,
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Quantum Non-Markovianity

@ The master equation formulation of open system dynamics assumes,
(i) Factorizability of initial state: joint system-environment (S-E) state is assumed
to be of the product form

(ii) Born-Markov approximation: a large separation between system and
environment time-scales

(iii) Rotating-wave approximation: fast (or, counter)-rotating terms in the
interaction Hamiltonian are ignored.

e Relaxing (i) or (iii) = system evolution map is no longer a CP map!

'Sudarshan et al (1961), Lindblad (1976)
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Quantum Non-Markovianity

@ The master equation formulation of open system dynamics assumes,

(i) Factorizability of initial state: joint system-environment (S-E) state is assumed
to be of the product form

(ii) Born-Markov approximation: a large separation between system and
environment time-scales

(iii) Rotating-wave approximation: fast (or, counter)-rotating terms in the
interaction Hamiltonian are ignored.

e Relaxing (i) or (iii) = system evolution map is no longer a CP map!

e If (i) and (iii) hold, but (ii) is relaxed,
= a time-dependent GKSL master equation!

2 — 000} = S0 (0050~ S 55010, )

{L;(t)} are the jump operators, {I';(¢)} are the canonical decay rates.

'Sudarshan et al (1961), Lindblad (1976)
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Non-Markovianity of Quantum Dynamical Maps

@ When T'; are time-independent, L(%) is time-independent.
= One-parameter dynamical map £(¢) = exp (t£) (quantum channel!),
the system state evolves as p(t) = £(t)[p(0)].
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@ When T'; are time-independent, L(%) is time-independent.
= One-parameter dynamical map £(¢) = exp (t£) (quantum channel!),
the system state evolves as p(t) = £(t)[p(0)].

e Markovianity = dynamical semigroup structure: E(ta + t1) = E(t)E(t)

o If the decay rates I';(t) are time-dependent, the dynamical map is of the form,

t
E(t to) =T exp { L(7) dT} , T : time — ordering operator.
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2Breuer and Petruccione (2002).
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Non-Markovianity of Quantum Dynamical Maps

When I'; are time-independent, £(t) is time-independent.
= One-parameter dynamical map £(¢) = exp (t£) (quantum channel!),
the system state evolves as p(t) = £(t)[p(0)].

Markovianity = dynamical semigroup structure: E(tz + t1) = E(t2)E(t)

o If the decay rates I';(t) are time-dependent, the dynamical map is of the form,

t
E(t to) =T exp { L(7) dT} , T : time — ordering operator.

to

The dynamics may be non-Markovian, when at least one of the decay rates
I'(t) becomes negative for a certain interval of time?.

2Breuer and Petruccione (2002).
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CP-indivisible Maps*

e A quantum channel £(%2, ) is CP-divisible if: E(ta, &) = E(te, t1)E(t1, to).

4Quantum non-Markovianity: Overview and recent developments, Shrikant.U and
P.Mandayam, Frontiers of Q. Sci. and Tech. (2023)
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CP-indivisible Maps*

e A quantum channel £(%2, ) is CP-divisible if: E(ta, &) = E(te, t1)E(t1, to).

e This breaks down for a non-Markovian noise: the intermediate map £(t3, 1)
may not be completely positive (CP).

@ The corresponding Choi-Jamiolkowski matrix
X(t2, t1) = (E(ta, 1) @ T) [|¥) (P[] is not positive3!

@ For such CP-indivisible maps, the non-CP intermediate map &(i, ) is still a
linear, Hermiticity-preserving and trace-preserving (HPTP) map with an
Operator-sum-difference representation:

EPTE(L,7)p) = 3 sign() it T)pE (1,7)

sign(4) = —1 if the map is non-CP, else it is +1.

3Quantifying non-Markovian memory in a sc quantum computer, Morris, Pollock & K. Modi
(2022)

4Quantum non-Markovianity: Overview and recent developments, Shrikant.U and
P.Mandayam, Frontiers of Q. Sci. and Tech. (2023).
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Example: Amplitude-Damping Noise

e Jaynes-Cummings model of a two-level system interacting with a dissipative
bosonic reservoir at zero temperature.

woo *
Hiot = 5 £ 4+ ija;[aj + Z(gjo+aj + gja,a})
J J
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Example: Amplitude-Damping Noise

e Jaynes-Cummings model of a two-level system interacting with a dissipative
bosonic reservoir at zero temperature.

woo *

Hyor = D) *+ ija;[“j + Z(ngJr“j + gja,a;)
J J

o Consider the case of a single mode, with a Lorentzian bath spectral density

I'ob?
27m[(wo — A —w)2 + b?]’

J(w) =
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Example: Amplitude-Damping Noise

e Jaynes-Cummings model of a two-level system interacting with a dissipative
bosonic reservoir at zero temperature.

woo *
Hiot = 5 4 ija;[aj + Z(gjo+aj + gjo,a;)
J J

o Consider the case of a single mode, with a Lorentzian bath spectral density

I'ob?
27m[(wo — A —w)2 + b?]’

J(w) =

@ wy represents the energy gap between ground state |0) and exited state |1),
A = w — wy is the detuning parameter.
I’y quantifies the strength of the system-environment coupling and b the
spectral bandwidth.
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Non-markovian Amplitude-Damping Noise®

@ The reduced dynamics of the qubit corresponds to an amplitude-damping
(AD) channel with Kraus operators

El(,g):<(1) \/1077(15)> ; Ez(t):<8 @)

5Breuer et al, Rev Mod Phys (2016).
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Non-markovian Amplitude-Damping Noise®

@ The reduced dynamics of the qubit corresponds to an amplitude-damping
(AD) channel with Kraus operators

=4 )+ mo=(8 ")

Y
e Damping paramter v(t) = 1 — | G(1)|?,
G(t) =

b
b2 ( sinh <0.5t\/b2 — 2F0b> + cosh (0.5t\/b2 — 2F0b> |
V2 — 204b

5Breuer et al, Rev Mod Phys (2016).
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Non-markovian Amplitude-Damping Noise®

@ The reduced dynamics of the qubit corresponds to an amplitude-damping
(AD) channel with Kraus operators

=4 )+ m0-(§ 47)

11—~

e Damping paramter v(t) = 1 — | G(1)|?,
G(t) =

b
b2 ( sinh (O.5t\/b2 — 2F0b> + cosh (0.5t\/b2 — 2F0b> |
V2 — 204b

@ The system undergoes non-Markovian evolution when b < 2T.
When b > 2Ty, the dynamics is time-homogeneous Markovian — it has a
Lindblad form with a constant decay rate (I'(t) = T'p).

5Breuer et al, Rev Mod Phys (2016).
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Markovian vs Non-Markovian regimes
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Markovian vs Non-Markovian regimes
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Quantum Error Correction

“With group and eigenstate, we've learned to fix,
Your quantum errors with our quantum tricks.”

- QEC Sonnet, Daniel Gottesman
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e Bit-flip noise:
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Quantum Error Correction

“With group and eigenstate, we've learned to fix,
Your quantum errors with our quantum tricks.”

- QEC Sonnet, Daniel Gottesman
e Bit-flip noise:
{\/T)Xa Vv 1- pI}
@ 3-qubit code:

al0) + B[1) —
[0)|0)[0) 4+ B[1)[1)[1).

12 /30
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12 /30

P Mandayam (IIT M)



Quantum Error Correction

“With group and eigenstate, we've learned to fix,
Your quantum errors with our quantum tricks.”

- QEC Sonnet, Daniel Gottesman

e Bit-flip noise: )

{\/T)Xa VI— pI} 0) D

@ 3-qubit code:
al0) + B|1) — o
|0)[0)[0) + B[1)[1)[1). 0

013

e Logical qubits from physical qubits: |01) = |0)|0)]0), |1.)

o Bit flip on different qubits are distinguishable
= Errors can be detected and corrected.
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Quantum Error Correction

“With group and eigenstate, we've learned to fix,
Your quantum errors with our quantum tricks.”

- QEC Sonnet, Daniel Gottesman

e Bit-flip noise: )

{\/ﬁXa VI— pI} 0) D

@ 3-qubit code:
a|0) + BI1) — ) B
|0)[0)[0) + B[1)[1)[1). 0

013

L: / L

e Logical qubits from physical qubits: |0,) = |0)|0}|0), |1.) = [1)|1}|1).

o Bit flip on different qubits are distinguishable
= Errors can be detected and corrected.
The 3-qubit code corrects for single-qubit bit-flip noise, provided p < %

12 /30
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QEC Schematic
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@ Span of {|0.),|1.)} is the quantum Codespace (C).
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QEC Schematic
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@ Span of {|0.),|1.)} is the quantum Codespace (C).

e A QEC protocol is characterized by a code C (encoding) and the
corresponding recovery map K.
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QEC Schematic
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@ Span of {|0.),|1.)} is the quantum Codespace (C).

e A QEC protocol is characterized by a code C (encoding) and the
corresponding recovery map K.

o For Pauli errors — X, Y, Z errors — the recovery operation is simply the inverse
of the noise operator.

P Mandayam (IIT M)

13 /30



Beyond Pauli noise

o A continuum of different errors can occur on a single qubit : erasure,
phase-flip ( 72-process), amplitude-damping ( T1-process), depolarizing noise.
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Beyond Pauli noise

o A continuum of different errors can occur on a single qubit : erasure,
phase-flip ( 72-process), amplitude-damping ( T1-process), depolarizing noise.

o Discretize the errors in terms of a finite, unitary set of errors
Pauli error basis: {X, Y, Z, I}
o For example, amplitude-damping in the Pauli basis:

Eo=1+VI—I24+(1-1-79)Z/2, B, = (X +iY)/2.

@ Quantum Hamming Bound: shortest perfect QEC code requires 5 qubits to
protect one.
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Beyond Pauli noise

o A continuum of different errors can occur on a single qubit : erasure,
phase-flip ( 72-process), amplitude-damping ( T1-process), depolarizing noise.

o Discretize the errors in terms of a finite, unitary set of errors
Pauli error basis: {X, Y, Z, I}
o For example, amplitude-damping in the Pauli basis:

Eo=1+VI—I24+(1-1-79)Z/2, B, = (X +iY)/2.

@ Quantum Hamming Bound: shortest perfect QEC code requires 5 qubits to
protect one.

o For amplitude-damping noise, a 4-qubit code was constructed®, that provides
a degree of protection comparable to that of 5-qubit code.

6D.W.Leung et al, Phys.Rev.A 56, 2567 (1997).
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Beyond Pauli noise

o A continuum of different errors can occur on a single qubit : erasure,
phase-flip ( 72-process), amplitude-damping ( T1-process), depolarizing noise.

o Discretize the errors in terms of a finite, unitary set of errors
Pauli error basis: {X, Y, Z, I}
o For example, amplitude-damping in the Pauli basis:

Eo=1+VI—I24+(1-1-79)Z/2, B, = (X +iY)/2.

@ Quantum Hamming Bound: shortest perfect QEC code requires 5 qubits to
protect one.

o For amplitude-damping noise, a 4-qubit code was constructed®, that provides
a degree of protection comparable to that of 5-qubit code.

o Noise-adapted QEC: Develop efficient QEC protocols for specific noise
models and qubit architectures.

6D.W.Leung et al, Phys.Rev.A 56, 2567 (1997).
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Beyond perfectly correctable codes

@ A 4-qubit code that corrects for single qubit amplitude damping errors ’:
1
0 = —=(/|0000) + |1111
0}z 7 (10000) + [1111))
1
1 = —(|0011) + |1100
e = 5 (0011) + [1200)

It is stabilized by the 4-qubit Pauli subgroup (XXXX, ZZII, I177).

"D.W.Leung, M.A.Nielsen, |.L.Chuang, and Y.Yamamoto, Phys.Rev.A 56, 2567 (1997)
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@ A 4-qubit code that corrects for single qubit amplitude damping errors ’:
1
0 = —=(/|0000) + |1111
0}z 7 (10000) + [1111))
1
1 = —(|0011) + |1100
e = 5 (0011) + [1200)

It is stabilized by the 4-qubit Pauli subgroup (XXXX, ZZII, I177).

@ Noise operators map C to mutually orthogonal subspaces which are not
unitary transforms of C.

"D.W.Leung, M.A.Nielsen, |.L.Chuang, and Y.Yamamoto, Phys.Rev.A 56, 2567 (1997)
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Beyond perfectly correctable codes

@ A 4-qubit code that corrects for single qubit amplitude damping errors ’:

10)

— (|0000) +[1111))

-5 -

1), (|0011) + [1100))

E
It is stabilized by the 4-qubit Pauli subgroup (XXXX, ZZII, I177).

@ Noise operators map C to mutually orthogonal subspaces which are not
unitary transforms of C.

@ Non-trivial decoding and recovery operations: secondary syndrome
(non-stabilizer) measurements, CPTP recovery map.

o For amplitude damping noise,
o The 4-qubit code: F2;, =1 — 1.75% + O(¥%).

"D.W.Leung, M.A.Nielsen, I.L.Chuang, and Y.Yamamoto, Phys.Rev.A 56, 2567 (1997)
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Beyond perfectly correctable codes

@ A 4-qubit code that corrects for single qubit amplitude damping errors ’:

10)

— (|0000) +[1111))

-5 -

1), (|0011) + [1100))

E
It is stabilized by the 4-qubit Pauli subgroup (XXXX, ZZII, I177).
@ Noise operators map C to mutually orthogonal subspaces which are not
unitary transforms of C.
@ Non-trivial decoding and recovery operations: secondary syndrome
(non-stabilizer) measurements, CPTP recovery map.
o For amplitude damping noise,
o The 4-qubit code: F%;, =1 — 1.75v% + O(¥%).
o Compare with the 'perfect’ 5-qubit code: F2;, =1 —2.59% + O(¥%).

"D.W.Leung, M.A.Nielsen, I.L.Chuang, and Y.Yamamoto, Phys.Rev.A 56, 2567 (1997)
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Beyond perfectly correctable codes

@ A 4-qubit code that corrects for single qubit amplitude damping errors ’:

10)

— (|0000) +[1111))

-5 -

1), (|0011) + [1100))

E
It is stabilized by the 4-qubit Pauli subgroup (XXXX, ZZII, I177).
@ Noise operators map C to mutually orthogonal subspaces which are not
unitary transforms of C.
@ Non-trivial decoding and recovery operations: secondary syndrome
(non-stabilizer) measurements, CPTP recovery map.
o For amplitude damping noise,
o The 4-qubit code: F2;, =1 — 1.75% + O(¥%).
o Compare with the 'perfect’ 5-qubit code: F2;, =1 —2.59% + O(¥%).
= The [4,1] code is a shorter code of comparable fidelity!

"D.W.Leung, M.A.Nielsen, I.L.Chuang, and Y.Yamamoto, Phys.Rev.A 56, 2567 (1997)
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Perfect vs Approximate QEC

o Khnill-Lafllame condition:
] _
PE}E;P = \;;P
o At least five qubits are necessary to
correct arbitrary single qubit noise.
@ There exists a recovery
R ~ {UIP;}2. P;is the projector
onto the 7 — th syndrome subspace.
M. A. Nielsen, I. L. Chuang Quantum

Computation and Quantum Information,
Cambridge University Press

22 Jan 2025 16 /30
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Perfect vs Approximate QEC

o AQEC condition 2:
PE!E;P = \;iP + PBj;P.

@ The error subspaces are not
orthogonal to each other. The
unitarity (or deformability)
condition gets violated.

o Khnill-Lafllame condition:
PE!E;P = \;P

o At least five qubits are necessary to
correct arbitrary single qubit noise.

@ There exists a recovery
R ~ {UIP;}2. P;is the projector

onto the i — th syndrome subspace. o Noise-adapted Recovery: could be a

CPTP map!

2C. Bény and O. Oreshkov, PRL,
104(12):120501, 2010

M. A. Nielsen, I. L. Chuang Quantum
Computation and Quantum Information,
Cambridge University Press
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Noise-adapted QEC

o A triple optimization problem:

max max min F* [|v), (R o €) (|¢)(¥])]

R |¢y)ecC

8H.K. Ng and P. Mandayam, Phys Rev A, 81, 62342 (2010)
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Noise-adapted QEC

o A triple optimization problem:

max max min F* [|v), (R o €) (|¢)(¥])]

R |¢y)ecC

e Optimizing for worst case fidelity is computationally hard:
Optimization is twofold, F2 is not linear in its arguments.

8H.K. Ng and P. Mandayam, Phys Rev A, 81, 62342 (2010)
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o An analytical solution®: For any noise €& ~ {E;}Y | and code C with
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Noise-adapted QEC

o A triple optimization problem:
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Noise-adapted QEC

o A triple optimization problem:

max max min F* [|v), (R o €) (|¢)(¥])]

R |¢y)ecC

e Optimizing for worst case fidelity is computationally hard:
Optimization is twofold, F2 is not linear in its arguments.

o An analytical solution®: For any noise €& ~ {E;}Y | and code C with
projection P, the Petz map is defined as,

Rp ~{R:}Y¥,, R, = PEIE(P)~Y/?

(1) If € is perfectly correctible on C, then, Rp = Rpert.

(2) For any pair (£,C), Rp achieves a worst-case fidelity close to that of the
optimal recovery channel.

o Note: Rp o & is unitall

8H.K. Ng and P. Mandayam, Phys Rev A, 81, 62342 (2010)
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QEC for non-Markovian noise?
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Codeword fidelity for non-Markovian bit-flip noise, using the 3-qubit code®

90reshkov & Brun, Phys. Rev. A (2007).
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Codeword fidelity for non-Markovian bit-flip noise, using the 3-qubit code®

o More generally, any non-CP map can be represented as'C.

ENCP(p) = Zsign(z‘)EipEI = &1(p) — &a(p).

90reshkov & Brun, Phys. Rev. A (2007).
0Shabani and Lidar PRA (2009); A. Gonzales, D. Dilley, Mark Byrd, PRA (2020)
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Codeword fidelity for non-Markovian bit-flip noise, using the 3-qubit code®
o More generally, any non-CP map can be represented as'C.

ENCP(p) = Zsign(z‘)EipEl = &1(p) — &a(p).

@ A codespace with projector P that satisfies the perfect QEC conditions for
{E;} may no longer be in the domain of £.

90reshkov & Brun, Phys. Rev. A (2007).
0Shabani and Lidar PRA (2009); A. Gonzales, D. Dilley, Mark Byrd, PRA (2020)
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Perfect QEC for non-Markovian AD noise
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e Code : [[5,1,3]] code

o Recovery: R ~ {UIP;}. {U;}s are the Pauli matrices.
@ Noise : Non-Markovian AD (b = 0.01,T'y = 5).




Correcting non-Markovian noise using the Petz map!?

o Defining a Petz recovery map for the noise process £[.] = 3 sign(i) E;[.| E!

11D, Biswas, S. Utagi and P. Mandayam, arxiv: 2411.09637 (2024)

P Mandayam (IIT M) 22 Jan 2025 20/30



Correcting non-Markovian noise using the Petz map!?

o Defining a Petz recovery map for the noise process £[.] = 3 sign(i) E;[.| E!

o Exactly adapt the recovery map to the noise:
Non-Markovian Petz map: REM[p] = > sign(j)Rj[p]R}

11D, Biswas, S. Utagi and P. Mandayam, arxiv: 2411.09637 (2024)

P Mandayam (IIT M) 22 Jan 2025 20/30



Correcting non-Markovian noise using the Petz map!?

o Defining a Petz recovery map for the noise process £[.] = 3 sign(i) E;[.| E!

o Exactly adapt the recovery map to the noise:
Non-Markovian Petz map: REM[p] = > sign(j)Rj[p]R}

o Adapt the recovery to the Makrovian regime of the noise:
Markovian Petz map: R [p] = 2 Rj[p]Rj-

11D, Biswas, S. Utagi and P. Mandayam, arxiv: 2411.09637 (2024)

P Mandayam (IIT M) 22 Jan 2025 20/30



Correcting non-Markovian noise using the Petz map'!

o Defining a Petz recovery map for the noise process £[.] = 3 sign(i) E;[.| E!

o Exactly adapt the recovery map to the noise:
Non-Markovian Petz map: REM[p] = > sign(j)Rj[p]R}

o Adapt the recovery to the Makrovian regime of the noise:
Markovian Petz map: R [p] = 2 Rj[p]Rj

e For a HPTP map £(¢t) ~ {sign(7), E;(¢)}, code C with projector P. Let
Ay;(t) € B(C) be traceless operators such that

PE[(OE[P]TVE()P = Biy(t) P+ Ay(2),

where 3;;(t) € C. Then,
o The fidelity loss achieved using RE™ is,

1- ZSlgn Dsign() (WAL AG(B)) = (W AG(D)$)).

o The fidelity loss achieved using R is,

n(t) = Z sign(9) (VIAL(OA5 (DY) — [(WA5(D]Y)[).

1D. Biswas, S. Utagi and P. Mandayam, arxiv: 2411.09637 (2024)
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Petz recovery vs. Stabilizer recovery

=

=

o
T

©

g

Ul
T

1 v '\.—"/ ’Il
\ ,'l ---- Without recovery
\‘ ;o Markov-Petz
‘\\ K —— Non-Markov-Petz
————— Stabilizer recovery
1 " " " 1 " " 1

0 10 20 30 40
Time

Wworst-case riaelity
o o
N o
Ul =}
T T

o
o
=)
T
-
\
N

Performance of the Petz recoveries for the [4, 1] code subject to non-Markovian AD noise
with the noise parameters b = 0.01 and I'y = 5. The Markovian Petz is adapted to the

noise regime with b = 0.1 and I’y = 0.005. The stabilizer recovery is for the [[5, 1, 3]]
code.

P Mandayam (IIT M)
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Performance of different codes
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noise. Noise-adapted QEC provides an alternative.

o Noise-adapted QEC can provide a good degree of protection from the
dominant noise process affecting the physical qubits.

@ We obtain sufficent conditions under which a Markovian Petz map, adapted
to the noise achieves a pretty good fidelity in the large noise strength limit.

o Circuit implementations of the Markovian Petz map 12?

12D Biswas, G. M. Vaidya, P.M, Noise-adapted circuits for quantum error correction, Phys.
Rev. Research 6, 043034 (2024)
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@ There are apects of perfect QEC which fail in the presence of non-Markovian
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o Noise-adapted QEC can provide a good degree of protection from the
dominant noise process affecting the physical qubits.

@ We obtain sufficent conditions under which a Markovian Petz map, adapted
to the noise achieves a pretty good fidelity in the large noise strength limit.

o Circuit implementations of the Markovian Petz map 12?

o Generalize the framework of QEC to account for non-Markovian error models:
Process tensor formalism [S. Milz and K Modi PRX Qiuantum (2021),
Strategic code [A Tanaggra, M Gu, K. Bharti, arXiv:2405.17567 (2024)] ...
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Summary and Outlook

@ There are apects of perfect QEC which fail in the presence of non-Markovian
noise. Noise-adapted QEC provides an alternative.

o Noise-adapted QEC can provide a good degree of protection from the
dominant noise process affecting the physical qubits.

@ We obtain sufficent conditions under which a Markovian Petz map, adapted
to the noise achieves a pretty good fidelity in the large noise strength limit.

o Circuit implementations of the Markovian Petz map 12?

o Generalize the framework of QEC to account for non-Markovian error models:
Process tensor formalism [S. Milz and K Modi PRX Qiuantum (2021),
Strategic code [A Tanaggra, M Gu, K. Bharti, arXiv:2405.17567 (2024)] ...

e Simualting exact open system dynamics with repeated cycles of QEC cycles
[Babu et al, Phys Rev Res, (2023).]

12D Biswas, G. M. Vaidya, P.M, Noise-adapted circuits for quantum error correction, Phys.
Rev. Research 6, 043034 (2024)
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Thank You!




A counter-example study for correcting NCP error

o Given that any NCP map can be represented as

EN(p) =3 _sign(i) Eip B} = £1(p) = &x(p), (1)

where &; are CP maps!3. When & (PpP) # 0 = violation of

PE!E;P = d;6,;P.
@ In other words, the code space is no more in the domain of the error map.
o consider the 3-qubit bit flip code C *2" {|000), [111)}.
o Consider ®p;y_piip(p € C) = cop+ c1 Y XppXn.

o After the noise, if we measure the syndrome, the probability of detection the
in single qubit bit-flip Tr(P,®(p)) can be negative.
o Makes the perfect QEC approach impractical.

13Shabani and Lidar (2009), PRA, 80, 012309; A. Gonzales, D. Dilley, Mark Byrd (2020) PRA
102 062415

P Mandayam (IIT M)



Implementing noise-adapted recovery protocols!®

@ The map Rp can be decomposed as a composition of,

15D. Biswas, G. Vaidya and P. Mandayam, Phys. Rev. Res. 6 (4), 043034 (2024).
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(c) the projection map P(.) = P(.)P.
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@ Past work: An algorithm based on Quantum Singular Value Transform 4

Approximate, probabilistic implementation requiring O(4*™ + n24™) gates for
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Implementing noise-adapted recovery protocols!®

@ The map Rp can be decomposed as a composition of,
(a) the adjoint map £T(.) with Kraus operators {E'},
(b) the normalization or amplification map £(P)~*/?(.)&(P)~'/? and
(c) the projection map P(.) = P(.)P.
@ These maps are trace increasing in general, but the overall map obtained by
composing these three maps is indeed trace-preserving.

@ Past work: An algorithm based on Quantum Singular Value Transform 4
Approximate, probabilistic implementation requiring O(4%™ + n?4™) gates for
an n-qubit code subject to arbitrary noise.

o We demonstrate three different circuit constructions for implementing the
Petz map and estimate the resource requirements in each case.

o Isometric Extension (O(n?4°"))

o A sequence of general quantum measurements (POVMs)
(04" (5% + O(n))))

o Algorithmic approach using block-encoding (O(n?4™ +4*") )

4A_ Gilyén et al, Phys Rev Lett 128, 220502 (2022)
15D. Biswas, G. Vaidya and P. Mandayam, Phys. Rev. Res. 6 (4), 043034 (2024).
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Calculation of F2, =1—n

m

@ The action of a channel ® can be represented by a matrix M acting on the
vectors in a Hilbert-Schmidt space , with the matrix elements

Mo 5 = Tr[Oa®(Op)] (@)

For a qubit channel O, are the Pauli operators.
@ For a [n,1]- qubit code , the cardinality of the set {O,} is four, and the
operators are

Qg = P(projector onto the code space) 3)
O1 = [0)(Le| +[12)(0g] (4)
O =4(|01)(1| = [11£)(0L]) (5)
O3 = 10£){0r] — [12) (1] (6)

@® The matrix M is then a 4 x 4 matrix and has the structure as

(HH2) )

@ For a d— dimension code C,

P Mandayam (IIT M)



Calculation

@ The fidelity between a state |1)) € C and the state ®(|¢)(¢]) is
. %(TT.T.T—F 7). 9)

7" is the Bloch vector of the encoded Bloch sphere.

o If the channel ® is unital onto the code space =— ®(P) = P, then
F2=L1(T.Tr).

o The min of the F2, = 1(1—t,,in), tmin is the minimum eigenvalue of the T.
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Non-Markovinity of a Map

A Hermitian dynamical map is said to be P-divisible if

Derivatives

f16

d
EAk(t) =\, <0 < k™ — eigenvalue of the matrix M. (10)

Markovian Petz

Non-Markovian Petz
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16D .Chruécinski, C. Macchiavello, and S. Maniscalco, PRL: 118(8):080404, 2017
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o Code : [4,1]-Leung code.

@ Noise: Non-Markovian amplitude
damping (b = 0.01,T = 5).
@ Petz Recovery:

@ Non-Markov Petz: Adapted to
the noise (b= 0.01,Ty = 5).

@ Markov Petz: Adapted to the
Markovian regime
(b=0.1,T¢ = 0.005) of the
noise.
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