# On Darmon＇s program for the generalized Fermat equation of signature $(r, r, p)$ <br> with Imin Chen，Luis Dieulefait，and Nuno Freitas 

Nicolas Billerey

Laboratoire de Mathématiques Blaise Pascal Université Clermont Auvergne

Rational Points on Modular Curves（ICTS，Bengaluru） September 22， 2023

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

## Table of contents

Quick review on the modular method

Extension of Darmon's program

Diophantine results

## Table of contents

Quick review on the modular method

## Extension of Darmon's program

Diophantine results

Main steps in the proof of Fermat's last theorem

## Main steps in the proof of Fermat's last theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers $a, b, c$ such that $a^{p}+b^{p}=c^{p}$.

## Main steps in the proof of Fermat's last theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers $a, b, c$ such that $a^{p}+b^{p}=c^{p}$.
[Step 1/5-Construction] (Hellegouarch, Frey)

- Consider

$$
E: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

The discriminant $\Delta=2^{4}(a b c)^{2 p}$ of this model is non-zero, and hence it defines an elliptic curve over $\mathbf{Q}$ (with full 2-torsion).

- There is a 2 -dimensional $\bmod p$ representation attached to $E$

$$
\bar{\rho}_{E, p}: G_{\mathbf{Q}}=\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)
$$

given by the action of $G_{\mathbf{Q}}$ on the group of $p$-torsion points on $E$.

- The representation $\bar{\rho}_{E, p}$ is unramified away from $\{2, p\}$ (Tate).


## Main steps in the proof of Fermat's last theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers $a, b, c$ such that $a^{p}+b^{p}=c^{p}$.
[Step $2 / 5$ - Modularity] (Wiles)

- Without loss of generality, assume from now on that

$$
a^{p} \equiv-1 \quad(\bmod 4) \quad \text { and } \quad b^{p} \equiv 0 \quad(\bmod 16) .
$$

Hence the curve $E$ is semistable (at 2).

- Since $E / \mathbf{Q}$ is semistable, the elliptic curve $E / \mathbf{Q}$ is modular.
- Moreover, $\bar{\rho}_{E, p}$ has weight 2 in the sense of Edixhoven (or Serre) and Serre's conductor $N\left(\bar{\rho}_{E, p}\right)=2$.


## Main steps in the proof of Fermat's last theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers $a, b, c$ such that $a^{p}+b^{p}=c^{p}$.
[Step 3/5 - Irreducibility] (Mazur)

- Since $E$ has full 2-torsion over $\mathbf{Q}$ and is semistable, the representation

$$
\bar{\rho}_{E, p}: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)
$$

is (absolutely) irreducible.

## Main steps in the proof of Fermat's last theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers $a, b, c$ such that $a^{p}+b^{p}=c^{p}$.
[STEP 3/5-Irreducibility] (Mazur)

- Since $E$ has full 2-torsion over $\mathbf{Q}$ and is semistable, the representation

$$
\bar{\rho}_{E, p}: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)
$$

is (absolutely) irreducible.
Sketch of proof. Assume for a contradiction that $\bar{\rho}_{E, p}$ is reducible.
$\Rightarrow$ Write $D$ for a rational subgroup of order $p$ and $\chi: G_{\mathbf{Q}} \rightarrow \mathbf{F}_{p}^{\times}$for the corresponding isogeny character.
$\Rightarrow$ Since $E$ is semistable, either $\chi=\chi_{p}(\bmod p$ cyc.) or $\chi$ is trivial (Serre).
$\Leftrightarrow$ In the latter case, the curve $E$ has a rational point of order $p$, and hence $\# E(\mathbf{Q})_{\text {tors }} \geq 4 p \geq 20$, contradicting Mazur's theorem on torsion.
$\Rightarrow$ In the former case, the elliptic curve $E^{\prime}=E / D$ has a rational point of order $p$ and we conclude as before.

## Main steps in the proof of Fermat's last theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers $a, b, c$ such that $a^{p}+b^{p}=c^{p}$.
[Step 4/5 - Level Lowering] (Ribet)

- Since $E / \mathbf{Q}$ is modular and the representation $\bar{\rho}_{E, p}$ is absolutely irreducible, it arises from a newform of weight 2 and level $N\left(\bar{\rho}_{E, p}\right)=2$ (with trivial character).


## Main steps in the proof of Fermat's last theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers $a, b, c$ such that $a^{p}+b^{p}=c^{p}$.
[Step 4/5-Level lowering] (Ribet)

- Since $E / \mathbf{Q}$ is modular and the representation $\bar{\rho}_{E, p}$ is absolutely irreducible, it arises from a newform of weight 2 and level $N\left(\bar{\rho}_{E, p}\right)=2$ (with trivial character).


## Definition ('arises from')

We say that $\bar{\rho}_{E, p}$ arises from a newform $f$ (of weight 2 and level $N$ ) if

$$
\bar{\rho}_{E, p} \simeq \bar{\rho}_{f, p}
$$

where $\bar{\rho}_{f, p}$ is the $\bmod p$ Galois representation associated with $f$.

## Main steps in the proof of Fermat's last theorem

Let $p \geq 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers $a, b, c$ such that $a^{p}+b^{p}=c^{p}$.
[Step 5/5 - Contradiction]

- For every newform $g$ of weight 2 and level 2 , the representation $\bar{\rho}_{E, p}$ does not arise from $g$.


## The five steps in the modular method

1. Construction
2. Modularity
3. Irreducibility
4. Level lowering
5. Contradiction

## The five steps in the modular method

1. Construction
2. Modularity
3. Irreducibility
4. Level lowering
5. Contradiction

## The five steps in the modular method

1. Construction
2. Modularity
3. Irreducibility
4. Level lowering
5. Contradiction

# Table of contents 

## Quick review on the modular method

Extension of Darmon's program

Diophantine results

## Our Diophantine problem

We wish to extend the modular method to deal with generalized Fermat equations

$$
A x^{r}+B y^{q}=C z^{p}
$$

where $A, B, C$ are fixed non-zero coprime integers and $p, q, r$ are non-negative integers.
In this talk, we restrict ourselves to the case of
where $r \geq 3$ is a fixed prime, $C$ is a fixed positive integer and $p$ is a prime which is allowed to vary.

## Our Diophantine problem

We wish to extend the modular method to deal with generalized Fermat equations

$$
A x^{r}+B y^{q}=C z^{p}
$$

where $A, B, C$ are fixed non-zero coprime integers and $p, q, r$ are non-negative integers.
In this talk, we restrict ourselves to the case of

$$
x^{r}+y^{r}=C z^{p}
$$

where $r \geq 3$ is a fixed prime, $C$ is a fixed positive integer and $p$ is a prime which is allowed to vary.

## Notation

$r \geq 3$ prime number
$\zeta_{r}$ primitive $r$-th root of unity
$\omega_{i}=\zeta_{r}^{i}+\zeta_{r}^{-i}$, for every $i \geq 0$ $(r-1) / 2$
$h(X)=\prod_{i=1}\left(X-\omega_{i}\right) \in \mathbf{Z}[X]$
$K=\mathbf{Q}\left(\zeta_{r}\right)^{+}=\mathbf{Q}\left(\omega_{1}\right)$ maximal totally real subfield of $\mathbf{Q}\left(\zeta_{r}\right)$
$\mathcal{O}_{K}$ integer ring of $K$
$\mathfrak{p}_{r}$ unique prime ideal above $r$ in $\mathcal{O}_{K}$ (totally ramified)

## Step 1 - Kraus' Frey hyperelliptic curve

Let $a, b$ be non-zero coprime integers such that $a^{r}+b^{r} \neq 0$.

$$
C_{r}(a, b): y^{2}=(a b)^{\frac{r-1}{2}} x h\left(\frac{x^{2}}{2}+a b\right)+b^{r}-a^{r} .
$$

The discriminant of this model is

$$
\Delta_{r}(a, b)=(-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^{r}\left(a^{r}+b^{r}\right)^{r-1} .
$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.


## Step 1 - Kraus' Frey hyperelliptic curve

Let $a, b$ be non-zero coprime integers such that $a^{r}+b^{r} \neq 0$.

$$
C_{r}(a, b): y^{2}=(a b)^{\frac{r-1}{2}} x h\left(\frac{x^{2}}{2}+a b\right)+b^{r}-a^{r}
$$

The discriminant of this model is

$$
\Delta_{r}(a, b)=(-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^{r}\left(a^{r}+b^{r}\right)^{r-1} .
$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

## Step 1 - Kraus' Frey hyperelliptic curve

Let $a, b$ be non-zero coprime integers such that $a^{r}+b^{r} \neq 0$.

$$
C_{r}(a, b): y^{2}=(a b)^{\frac{r-1}{2}} x h\left(\frac{x^{2}}{2}+a b\right)+b^{r}-a^{r}
$$

The discriminant of this model is

$$
\Delta_{r}(a, b)=(-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^{r}\left(a^{r}+b^{r}\right)^{r-1} .
$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.
Examples

$$
\begin{array}{ll}
r=3: & y^{2}=x^{3}+3 a b x+b^{3}-a^{3} \\
r=5: & y^{2}=x^{5}+5 a b x^{3}+5 a^{2} b^{2} x+b^{5}-a^{5} \\
r=7: & y^{2}=x^{7}+7 a b x^{5}+14 a^{2} b^{2} x^{3}+7 a^{3} b^{3} x+b^{7}-a^{7}
\end{array}
$$

## Step 1 - Frey representations

For a field $M$ of characteristic 0 , write $G_{M}=\operatorname{Gal}(\bar{M} / M)$ for its absolute Galois group.


## Step 1 - Frey representations

For a field $M$ of characteristic 0 , write $G_{M}=\operatorname{Gal}(\bar{M} / M)$ for its absolute Galois group.

## Definition (Darmon)

A Frey representation of signature $(r, q, p) \in\left(\mathbf{Z}_{>0}\right)^{3}$ over a number field $L$ in characteristic $\ell>0$ is a Galois representation

$$
\bar{\rho}=\bar{\rho}(t): G_{L(t)} \rightarrow \mathrm{GL}_{2}(\mathbf{F})
$$

where $\mathbf{F}$ finite field of characteristic $\ell$ such that the following conditions hold.

1. The restriction of $\bar{\rho}$ to $G_{\bar{L}(t)}$ has trivial determinant and is irreducible.
2. The projectivization $\bar{\rho}^{\text {geom }}: G_{\bar{L}(t)} \rightarrow \mathrm{PSL}_{2}(\mathbf{F})$ of this representation is unramified outside $\{0,1, \infty\}$.
3. It maps the inertia groups at 0,1 , and $\infty$ to subgroups of $\mathrm{PSL}_{2}(\mathbf{F})$ of order $r, q$, and $p$ respectively.

## Step 1 - Hecke-Darmon's classification theorem

Let $p$ be a prime number.
Theorem (Hecke-Darmon)
Up to equivalence, there is only one Frey representation of signature ( $p, p, p$ ). It occurs over $\mathbf{Q}$ in characteristic $p$ and is associated with the Legendre family

$$
L(t): y^{2}=x(x-1)(x-t) .
$$

The classical Frey-Hellegouarch curve
is obtained from $L(t)$ after specialization at $t_{0}=\frac{a^{p}}{a^{p}+b^{p}}$ and quadratic twist by $-\left(a^{p}+b^{p}\right)$.

## Step 1 - Hecke-Darmon's classification theorem

Let $p$ be a prime number.

## Theorem (Hecke-Darmon)

Up to equivalence, there is only one Frey representation of signature ( $p, p, p$ ). It occurs over $\mathbf{Q}$ in characteristic $p$ and is associated with the Legendre family

$$
L(t): y^{2}=x(x-1)(x-t) .
$$

The classical Frey-Hellegouarch curve

$$
y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

is obtained from $L(t)$ after specialization at $t_{0}=\frac{a^{p}}{a^{p}+b^{p}}$ and quadratic twist by $-\left(a^{p}+b^{p}\right)$.

## Step 1 - Abelian varieties of $\mathrm{GL}_{2}$-type

## Definition

Let $A$ be an abelian variety over a field $L$ of characteristic 0 . We say that $A / L$ is of $\mathrm{GL}_{2}$-type ( or $\mathrm{GL}_{2}(F)$-type) if there is an embedding $F \hookrightarrow \operatorname{End}_{L}(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where $F$ is a number field with $[F: \mathbf{Q}]=\operatorname{dim} A$.

$\checkmark$ The representations $\left\{\rho_{A, \lambda}\right\}_{\lambda}$ form a strictly compatible system of $F$-integral representations.
$\rightarrow$ For each prime ideal $\lambda \mid \ell$ in $F$, we have a residual representation

## Step 1 - Abelian varieties of $\mathrm{GL}_{2}$-type

## Definition

Let $A$ be an abelian variety over a field $L$ of characteristic 0 . We say that $A / L$ is of $\mathrm{GL}_{2}$-type (or $\mathrm{GL}_{2}(F)$-type) if there is an embedding $F \hookrightarrow \operatorname{End}_{L}(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where $F$ is a number field with $[F: \mathbf{Q}]=\operatorname{dim} A$.

Let $A / L$ be an abelian variety of $\mathrm{GL}_{2}(F)$-type.

- For each prime ideal $\lambda \mid \ell$ in $F$, there is a linear action of $G_{L}$ on $V_{\lambda}(A):=V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$ which gives rise to a $\lambda$-adic representation

$$
\rho_{A, \lambda}: G_{L} \longrightarrow \operatorname{Aut}_{F_{\lambda}}\left(V_{\lambda}(A)\right) \simeq \operatorname{GL}_{2}\left(F_{\lambda}\right) .
$$

- The representations $\left\{\rho_{A, \lambda}\right\}_{\lambda}$ form a strictly compatible system of $F$-integral representations.
- For each prime ideal $\lambda \mid \ell$ in $F$, we have a residual representation


## Step 1 - Abelian varieties of $\mathrm{GL}_{2}$-type

## Definition

Let $A$ be an abelian variety over a field $L$ of characteristic 0 . We say that $A / L$ is of $\mathrm{GL}_{2}$-type ( or $\mathrm{GL}_{2}(F)$-type) if there is an embedding $F \hookrightarrow \operatorname{End}_{L}(A) \otimes_{\mathbf{z}} \mathbf{Q}$ where $F$ is a number field with $[F: \mathbf{Q}]=\operatorname{dim} A$.

Let $A / L$ be an abelian variety of $\mathrm{GL}_{2}(F)$-type.

- For each prime ideal $\lambda \mid \ell$ in $F$, there is a linear action of $G_{L}$ on $V_{\lambda}(A):=V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$ which gives rise to a $\lambda$-adic representation

$$
\rho_{A, \lambda}: G_{L} \longrightarrow \operatorname{Aut}_{F_{\lambda}}\left(V_{\lambda}(A)\right) \simeq \operatorname{GL}_{2}\left(F_{\lambda}\right) .
$$

- The representations $\left\{\rho_{A, \lambda}\right\}_{\lambda}$ form a strictly compatible system of $F$-integral representations.


## Step 1 - Abelian varieties of $\mathrm{GL}_{2}$-type

## Definition

Let $A$ be an abelian variety over a field $L$ of characteristic 0 . We say that $A / L$ is of $\mathrm{GL}_{2}$-type ( or $\mathrm{GL}_{2}(F)$-type) if there is an embedding $F \hookrightarrow \operatorname{End}_{L}(A) \otimes_{\mathbf{z}} \mathbf{Q}$ where $F$ is a number field with $[F: \mathbf{Q}]=\operatorname{dim} A$.

Let $A / L$ be an abelian variety of $\mathrm{GL}_{2}(F)$-type.

- For each prime ideal $\lambda \mid \ell$ in $F$, there is a linear action of $G_{L}$ on $V_{\lambda}(A):=V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$ which gives rise to a $\lambda$-adic representation

$$
\rho_{A, \lambda}: G_{L} \longrightarrow \operatorname{Aut}_{F_{\lambda}}\left(V_{\lambda}(A)\right) \simeq \operatorname{GL}_{2}\left(F_{\lambda}\right) .
$$

- The representations $\left\{\rho_{A, \lambda}\right\}_{\lambda}$ form a strictly compatible system of $F$-integral representations.
- For each prime ideal $\lambda \mid \ell$ in $F$, we have a residual representation

$$
\bar{\rho}_{A, \lambda}: G_{L} \longrightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{\lambda}\right),
$$

with values in the residue field $\mathbf{F}_{\lambda}$ of $F_{\lambda}$.

## Step 1 - Frey representations in signature ( $r, r, p$ )

## Theorem

There exists a hyperelliptic curve $C_{r}^{\prime}(t)$ over $K(t)$ of genus $\frac{r-1}{2}$ such that $J_{r}^{\prime}(t)=\operatorname{Jac}\left(C_{r}^{\prime}(t)\right)$ satisfies:

1. It is of $\mathrm{GL}_{2}(K)$-type, i.e. $K \hookrightarrow \operatorname{End}_{K(t)}\left(J_{r}^{\prime}(t)\right) \otimes \mathbf{Q}$
2. For every $t_{0} \in K$, the embedding $K \hookrightarrow \operatorname{End}_{K}\left(J_{r}^{\prime}\left(t_{0}\right)\right) \otimes \mathbf{Q}$ is well-defined;
3. For every prime ideal $\mathfrak{p}$ in $\mathcal{O}_{K}$ above a rational prime $p$,

$$
\bar{\rho}_{J_{r}^{\prime}(t), \mathfrak{p}}: G_{K(t)} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{K} / \mathfrak{p}\right)
$$

is a Frey representation of signature $(r, r, p)$.
Moreover, $C_{r}(a, b) / K$ is obtained from $C_{r}^{\prime}(t)$ after specialization
at $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$ and quadratic twist by $-\frac{(a b) \frac{2}{2}}{a^{r}+b^{r}}$
$\Rightarrow$ The proof uses Darmon's construction of Frey representations of signature $(p, p, r)$.

## Step 1 - Frey representations in signature ( $r, r, p$ )

## Theorem

There exists a hyperelliptic curve $C_{r}^{\prime}(t)$ over $K(t)$ of genus $\frac{r-1}{2}$ such that $J_{r}^{\prime}(t)=\operatorname{Jac}\left(C_{r}^{\prime}(t)\right)$ satisfies:

1. It is of $\mathrm{GL}_{2}(K)$-type, i.e. $K \hookrightarrow \operatorname{End}_{K(t)}\left(J_{r}^{\prime}(t)\right) \otimes \mathbf{Q}$
2. For every $t_{0} \in K$, the embedding $K \hookrightarrow \operatorname{End}_{K}\left(J_{r}^{\prime}\left(t_{0}\right)\right) \otimes \mathbf{Q}$ is well-defined;
3. For every prime ideal $\mathfrak{p}$ in $\mathcal{O}_{K}$ above a rational prime $p$,

$$
\bar{\rho}_{J_{r}^{\prime}(t), \mathfrak{p}}: G_{K(t)} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{K} / \mathfrak{p}\right)
$$

is a Frey representation of signature $(r, r, p)$.
Moreover, $C_{r}(a, b) / K$ is obtained from $C_{r}^{\prime}(t)$ after specialization at $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$ and quadratic twist by $-\frac{(a b) \frac{r-1}{2}}{a^{r}+b^{r}}$.

## Step 1 - Frey representations in signature ( $r, r, p$ )

## Theorem

There exists a hyperelliptic curve $C_{r}^{\prime}(t)$ over $K(t)$ of genus $\frac{r-1}{2}$ such that $J_{r}^{\prime}(t)=\operatorname{Jac}\left(C_{r}^{\prime}(t)\right)$ satisfies:

1. It is of $\mathrm{GL}_{2}(K)$-type, i.e. $K \hookrightarrow \operatorname{End}_{K(t)}\left(J_{r}^{\prime}(t)\right) \otimes \mathbf{Q}$
2. For every $t_{0} \in K$, the embedding $K \hookrightarrow \operatorname{End}_{K}\left(J_{r}^{\prime}\left(t_{0}\right)\right) \otimes \mathbf{Q}$ is well-defined;
3. For every prime ideal $\mathfrak{p}$ in $\mathcal{O}_{K}$ above a rational prime $p$,

$$
\bar{\rho}_{J_{r}^{\prime}(t), \mathfrak{p}}: G_{K(t)} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{K} / \mathfrak{p}\right)
$$

is a Frey representation of signature $(r, r, p)$.
Moreover, $C_{r}(a, b) / K$ is obtained from $C_{r}^{\prime}(t)$ after specialization at $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$ and quadratic twist by $-\frac{(a b) \frac{r-1}{2}}{a^{r}+b^{r}}$.
$\Rightarrow$ The proof uses Darmon's construction of Frey representations of signature $(p, p, r)$.

## Step 1 - Two-dimensional $\mathfrak{p}$-adic and $\bmod \mathfrak{p}$ representations

Write $J_{r}=\operatorname{Jac}\left(C_{r}(a, b)\right) / K$ for the Jacobian of $C_{r}(a, b)$ base changed to $K$.

- There is a compatible system of $K$-rational Galois representations

$$
\rho_{J_{r}, \mathfrak{p}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(K_{\mathfrak{p}}\right)
$$

indexed by the prime ideals $\mathfrak{p}$ in $\mathcal{O}_{K}$ associated with $J_{r}$.

- For $\mathfrak{p}=\mathfrak{p}_{r}$, the residual representation $\bar{\rho}_{J_{r, p}, \mathfrak{p}_{r}}$ arises after specialization and twisting from a Frey representation of signature $(r, r, r)$.


## Step 1 - Two-dimensional $\mathfrak{p}$-adic and $\bmod \mathfrak{p}$ representations

Write $J_{r}=\operatorname{Jac}\left(C_{r}(a, b)\right) / K$ for the Jacobian of $C_{r}(a, b)$ base changed to $K$.

- There is a compatible system of $K$-rational Galois representations

$$
\rho_{J_{r}, \mathfrak{p}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(K_{\mathfrak{p}}\right)
$$

indexed by the prime ideals $\mathfrak{p}$ in $\mathcal{O}_{K}$ associated with $J_{r}$.
$\Rightarrow$ For $\mathfrak{p}=\mathfrak{p}_{r}$, the residual representation $\bar{\rho}_{J_{r}, p_{r}}$ arises after specialization and twisting from a Frey representation of
signature $(r, r, r)$.

## Step 1 - Two-dimensional $\mathfrak{p}$-adic and $\bmod \mathfrak{p}$ representations

Write $J_{r}=\operatorname{Jac}\left(C_{r}(a, b)\right) / K$ for the Jacobian of $C_{r}(a, b)$ base changed to $K$.

- There is a compatible system of $K$-rational Galois representations

$$
\rho_{J_{r}, \mathfrak{p}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(K_{\mathfrak{p}}\right)
$$

indexed by the prime ideals $\mathfrak{p}$ in $\mathcal{O}_{K}$ associated with $J_{r}$.

- For $\mathfrak{p}=\mathfrak{p}_{r}$, the residual representation $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}}$ arises after specialization and twisting from a Frey representation of signature ( $r, r, r$ ).


## Step 2 - The representation $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}}$

## Theorem

Assume $r \geq 5$. The representation $\bar{\rho}_{J_{r}, p_{r}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}\left(\zeta_{r}\right)}$.

Sketch of proof. For simplicity, assume $r=11$ or $r \geq 17$.

- By Hecke-Darmon's classification theorem we have $\bar{\rho}_{J_{r}, \mathrm{p}_{r}} \simeq \bar{\rho}_{L, r} \otimes \chi$ where $\chi: G_{K} \rightarrow \overline{\mathbf{F}}_{r}^{\times}$and $L=L\left(t_{0}\right)$, with $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$.
$\Rightarrow$ Since det $\bar{\rho}_{L, r}=\chi_{r}$, we have $\bar{\rho}_{L, r}\left(G_{\mathbf{Q}\left(\zeta_{r}\right)}\right)=\bar{\rho}_{L, r}\left(G_{\mathbf{Q}}\right) \cap \operatorname{SL}_{2}\left(\mathbf{F}_{r}\right)$.
- The elliptic curve $L$ is a quadratic twist of $L^{\prime}: y^{2}=x\left(x-a^{r}\right)\left(x+b^{r}\right)$ which has semistable reduction at $r$.
$\Rightarrow$ If $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right) \neq \mathrm{GL}_{2}\left(\mathrm{~F}_{r}\right)$, then $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right)$ is either contained in a Borel subgroup or in the normalizer of a Cartan subgroup (Serre).
- In the former case, we get a rational point on $Y_{0}(2 r)$ and a contradiction (Mazur, Kenku).
- In the latter case, it follows from results of Mazur, Momose, Merel (split Cartan case) and Darmon, Merel, Lemos (non split Cartan case) that $j(L)=j\left(L^{\prime}\right) \in \mathbf{Z}$ and we conclude from this.


## Step 2 - The representation $\bar{\rho}_{J_{r}, p_{r}}$

## Theorem

Assume $r \geq 5$. The representation $\bar{\rho}_{J_{r}, p_{r}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}\left(\zeta_{r}\right)}$.

Sketch of proof. For simplicity, assume $r=11$ or $r \geq 17$.
$\Rightarrow$ By Hecke-Darmon's classification theorem we have $\bar{\rho}_{J_{r}, \mathrm{p}_{r}} \simeq \bar{\rho}_{L, r} \otimes \chi$ where $\chi: G_{K} \rightarrow \overline{\mathbf{F}}_{r}^{\times}$and $L=L\left(t_{0}\right)$, with $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$.

- Since det $\bar{\rho}_{T,}=\chi_{r}$, we have $\bar{\rho}_{T,}\left(G_{Q\left(\zeta_{1}\right)}\right)=\bar{\rho}_{T, r}\left(G_{Q}\right) \cap \operatorname{SL}_{2}\left(\mathcal{F}_{r}\right)$
- The elliptic curve $L$ is a quadratic twist of $L^{\prime}: y^{2}=x\left(x-a^{r}\right)\left(x+b^{r}\right)$ which has semistable reduction at $r$.
- If $\bar{\rho}_{I^{\prime}}\left(G_{\boldsymbol{O}}\right) \neq \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$, then $\bar{\rho}_{\Psi^{\prime},}\left(G_{\boldsymbol{O}}\right)$ is either contained in a Borel subgroup or in the normalizer of a Cartan subgroup (Serre)
- In the former case, we get a rational point on $Y_{0}(2 r)$ and a contradiction (Mazur, Kenku).
- In the latter case, it follows from results of Mazur, Momose, Merel (split Cartan case) and Darmon, Merel, Lemos (non split Cartan case) that $j(L)=j\left(L^{\prime}\right) \in \mathbf{Z}$ and we conclude from this.


## Step 2 - The representation $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}}$

## Theorem

Assume $r \geq 5$. The representation $\bar{\rho}_{J_{r}, p_{r}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}\left(\zeta_{r}\right)}$.

Sketch of proof. For simplicity, assume $r=11$ or $r \geq 17$.

- By Hecke-Darmon's classification theorem we have $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}} \simeq \bar{\rho}_{L, r} \otimes \chi$ where $\chi: G_{K} \rightarrow \overline{\mathbf{F}}_{r}^{\times}$and $L=L\left(t_{0}\right)$, with $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$.
- The elliptic curve $L$ is a quadratic twist of $L^{\prime}: y^{2}=x\left(x-a^{r}\right)\left(x+b^{r}\right)$ which has semistable reduction at $r$.
$\Rightarrow$ If $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right) \neq \mathrm{GL}_{2}\left(\mathrm{~F}_{r}\right)$, then $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right)$ is either contained in a Borel subgroup or in the normalizer of a Cartan subgroup (Serre)
- In the former case, we get a rational point on $Y_{0}(2 r)$ and a contradiction (Mazur, Kenku).
- In the latter case, it follows from results of Mazur, Momose, Merel (split Cartan case) and Darmon, Merel, Lemos (non split Cartan case) that $\left.j^{\prime}(L)=j^{\prime} L^{\prime}\right) \in \mathbb{Z}$ and we conclude from this.


## Step 2 - The representation $\bar{\rho}_{J_{r}, \boldsymbol{p}_{r}}$

## Theorem

Assume $r \geq 5$. The representation $\bar{\rho}_{J_{r}, p_{r}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}\left(\zeta_{r}\right)}$.

Sketch of proof. For simplicity, assume $r=11$ or $r \geq 17$.

- By Hecke-Darmon's classification theorem we have $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}} \simeq \bar{\rho}_{L, r} \otimes \chi$ where $\chi: G_{K} \rightarrow \overline{\mathbf{F}}_{r}^{\times}$and $L=L\left(t_{0}\right)$, with $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$.
- Since $\operatorname{det} \bar{\rho}_{L, r}=\chi_{r}$, we have $\bar{\rho}_{L, r}\left(G_{\mathbf{Q}\left(\zeta_{r}\right)}\right)=\bar{\rho}_{L, r}\left(G_{\mathbf{Q}}\right) \cap \operatorname{SL}_{2}\left(\mathbf{F}_{r}\right)$.
which has semistable reduction at $r$.
- If $\bar{\rho}_{t^{\prime}, r}\left(G_{\mathbf{Q}}\right) \neq \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$, then $\bar{\rho}_{t^{\prime}, r}\left(G_{\mathbf{Q}}\right)$ is either contained in a Borel
subgroup or in the normalizer of a Cartan subgroup (Serre)
- In the former case, we get a rational point on $Y_{0}(2 r)$ and a
contradiction (Mazur, Kenku).
- In the latter case, it follows from results of Mazur, Momose, Merel (split Cartan case) and Darmon, Merel, Lemos (non split Cartan case) that $j(L)=j\left(L^{\prime}\right) \in \mathbf{Z}$ and we conclude from this.


## Step 2 - The representation $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}}$

## Theorem

Assume $r \geq 5$. The representation $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}\left(\zeta_{r}\right)}$.

Sketch of proof. For simplicity, assume $r=11$ or $r \geq 17$.

- By Hecke-Darmon's classification theorem we have $\bar{\rho}_{J_{r}, \boldsymbol{p}_{r}} \simeq \bar{\rho}_{L, r} \otimes \chi$ where $\chi: G_{K} \rightarrow \overline{\mathbf{F}}_{r}^{\times}$and $L=L\left(t_{0}\right)$, with $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$.
- Since $\operatorname{det} \bar{\rho}_{L, r}=\chi_{r}$, we have $\bar{\rho}_{L, r}\left(G_{\mathbf{Q}\left(\zeta_{r}\right)}\right)=\bar{\rho}_{L, r}\left(G_{\mathbf{Q}}\right) \cap \operatorname{SL}_{2}\left(\mathbf{F}_{r}\right)$.
- The elliptic curve $L$ is a quadratic twist of $L^{\prime}: y^{2}=x\left(x-a^{r}\right)\left(x+b^{r}\right)$ which has semistable reduction at $r$.
> $\Rightarrow$ If $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathrm{Q}}\right) \neq \mathrm{GL}_{2}\left(\mathrm{~F}_{r}\right)$, then $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathrm{Q}}\right)$ is either contained in a Borel

subgroup or in the normalizer of a Cartan subgroup (Serre).

- In the former case, we get a rational point on $Y_{0}(2 r)$ and a
contradiction (Mazur, Kenku).
$\rightarrow$ In the latter case, it follows from results of Mazur, Momose, Merel (split Cartan case) and Darmon, Merel, Lemos (non split Cartan case) that $j(L)=j\left(L^{\prime}\right) \in Z$ and we conclude from this.


## Step 2 - The representation $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}}$

## Theorem

Assume $r \geq 5$. The representation $\bar{\rho}_{J_{r}, p_{r}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}\left(\zeta_{r}\right)}$.

Sketch of proof. For simplicity, assume $r=11$ or $r \geq 17$.

- By Hecke-Darmon's classification theorem we have $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}} \simeq \bar{\rho}_{L, r} \otimes \chi$ where $\chi: G_{K} \rightarrow \overline{\mathbf{F}}_{r}^{\times}$and $L=L\left(t_{0}\right)$, with $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$.
- Since $\operatorname{det} \bar{\rho}_{L, r}=\chi_{r}$, we have $\bar{\rho}_{L, r}\left(G_{\mathbf{Q}\left(\zeta_{r}\right)}\right)=\bar{\rho}_{L, r}\left(G_{\mathbf{Q}}\right) \cap \operatorname{SL}_{2}\left(\mathbf{F}_{r}\right)$.
- The elliptic curve $L$ is a quadratic twist of $L^{\prime}: y^{2}=x\left(x-a^{r}\right)\left(x+b^{r}\right)$ which has semistable reduction at $r$.
- If $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right) \neq \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$, then $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right)$ is either contained in a Borel subgroup or in the normalizer of a Cartan subgroup (Serre).
contradiction (Mazur, Kenku).
- In the latter case, it follows from results of Mazur, Momose, Merel (split Cartan case) and Darmon, Merel, Lemos (non split Cartan case) that $j(L)=j\left(L^{\prime}\right) \in \mathbf{Z}$ and we conclude from this.


## Step 2 - The representation $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}}$

## Theorem

Assume $r \geq 5$. The representation $\bar{\rho}_{J_{r}, p_{r}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}\left(\zeta_{r}\right)}$.

Sketch of proof. For simplicity, assume $r=11$ or $r \geq 17$.

- By Hecke-Darmon's classification theorem we have $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}} \simeq \bar{\rho}_{L, r} \otimes \chi$ where $\chi: G_{K} \rightarrow \overline{\mathbf{F}}_{r}^{\times}$and $L=L\left(t_{0}\right)$, with $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$.
- Since $\operatorname{det} \bar{\rho}_{L, r}=\chi_{r}$, we have $\bar{\rho}_{L, r}\left(G_{\mathbf{Q}\left(\zeta_{r}\right)}\right)=\bar{\rho}_{L, r}\left(G_{\mathbf{Q}}\right) \cap \operatorname{SL}_{2}\left(\mathbf{F}_{r}\right)$.
- The elliptic curve $L$ is a quadratic twist of $L^{\prime}: y^{2}=x\left(x-a^{r}\right)\left(x+b^{r}\right)$ which has semistable reduction at $r$.
- If $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right) \neq \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$, then $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right)$ is either contained in a Borel subgroup or in the normalizer of a Cartan subgroup (Serre).
- In the former case, we get a rational point on $Y_{0}(2 r)$ and a contradiction (Mazur, Kenku).
(split Cartan case) and Darmon, Merel, Lemos (non split Cartan case) that $j(L)=j\left(L^{\prime}\right) \in \mathbf{Z}$ and we conclude from this.


## Step 2 - The representation $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}}$

## Theorem

Assume $r \geq 5$. The representation $\bar{\rho}_{J_{r}, p_{r}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}\left(\zeta_{r}\right)}$.

Sketch of proof. For simplicity, assume $r=11$ or $r \geq 17$.

- By Hecke-Darmon's classification theorem we have $\bar{\rho}_{J_{r}, \boldsymbol{p}_{r}} \simeq \bar{\rho}_{L, r} \otimes \chi$ where $\chi: G_{K} \rightarrow \overline{\mathbf{F}}_{r}^{\times}$and $L=L\left(t_{0}\right)$, with $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$.
- Since $\operatorname{det} \bar{\rho}_{L, r}=\chi_{r}$, we have $\bar{\rho}_{L, r}\left(G_{\mathbf{Q}\left(\zeta_{r}\right)}\right)=\bar{\rho}_{L, r}\left(G_{\mathbf{Q}}\right) \cap \operatorname{SL}_{2}\left(\mathbf{F}_{r}\right)$.
- The elliptic curve $L$ is a quadratic twist of $L^{\prime}: y^{2}=x\left(x-a^{r}\right)\left(x+b^{r}\right)$ which has semistable reduction at $r$.
- If $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right) \neq \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$, then $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right)$ is either contained in a Borel subgroup or in the normalizer of a Cartan subgroup (Serre).
- In the former case, we get a rational point on $Y_{0}(2 r)$ and a contradiction (Mazur, Kenku).
- In the latter case, it follows from results of Mazur, Momose, Merel (split Cartan case) and Darmon, Merel, Lemos (non split Cartan case) that $j(L)=j\left(L^{\prime}\right) \in \mathbf{Z}$ and we conclude from this.


## Step 2 - The representation $\bar{\rho}_{J_{r}, \mathfrak{p}_{r}}$

## Theorem

Assume $r \geq 5$. The representation $\bar{\rho}_{J_{r}, p_{r}}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}\left(\zeta_{r}\right)}$.

Sketch of proof. For simplicity, assume $r=11$ or $r \geq 17$.

- By Hecke-Darmon's classification theorem we have $\bar{\rho}_{J_{r}, \boldsymbol{p}_{r}} \simeq \bar{\rho}_{L, r} \otimes \chi$ where $\chi: G_{K} \rightarrow \overline{\mathbf{F}}_{r}^{\times}$and $L=L\left(t_{0}\right)$, with $t_{0}=\frac{a^{r}}{a^{r}+b^{r}}$.
- Since $\operatorname{det} \bar{\rho}_{L, r}=\chi_{r}$, we have $\bar{\rho}_{L, r}\left(G_{\mathbf{Q}\left(\zeta_{r}\right)}\right)=\bar{\rho}_{L, r}\left(G_{\mathbf{Q}}\right) \cap \operatorname{SL}_{2}\left(\mathbf{F}_{r}\right)$.
- The elliptic curve $L$ is a quadratic twist of $L^{\prime}: y^{2}=x\left(x-a^{r}\right)\left(x+b^{r}\right)$ which has semistable reduction at $r$.
- If $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right) \neq \mathrm{GL}_{2}\left(\mathbf{F}_{r}\right)$, then $\bar{\rho}_{L^{\prime}, r}\left(G_{\mathbf{Q}}\right)$ is either contained in a Borel subgroup or in the normalizer of a Cartan subgroup (Serre).
- In the former case, we get a rational point on $Y_{0}(2 r)$ and a contradiction (Mazur, Kenku).
- In the latter case, it follows from results of Mazur, Momose, Merel (split Cartan case) and Darmon, Merel, Lemos (non split Cartan case) that $j(L)=j\left(L^{\prime}\right) \in \mathbf{Z}$ and we conclude from this.


## Step 2 - Modularity of $J_{r} / K$

Serre's modularity conjecture (Khare-Wintenberger, Dieulefait) and a recent modularity lifting theorem (Khare-Thorne) then give the following.

The abelian variety $J_{r} / K$ is modular (for any prime $r \geq 3$ ).

## Step 2 - Modularity of $J_{r} / K$

Serre's modularity conjecture (Khare-Wintenberger, Dieulefait) and a recent modularity lifting theorem (Khare-Thorne) then give the following.

## Corollary

The abelian variety $J_{r} / K$ is modular (for any prime $r \geq 3$ ).

## Step 3- Irreducibility

## Theorem

Assume $a$ and $b$ satisfy

$$
a \equiv 0 \quad(\bmod 2) \quad \text { and } \quad b \equiv 1 \quad(\bmod 4) .
$$

Assume further that $r \nmid \# \mathbf{F}_{\mathfrak{q}_{2}}^{\times}$where $\mathfrak{q}_{2}$ is a prime ideal above 2 in $K=\mathbf{Q}\left(\zeta_{r}\right)^{+}$.
Then, for all primes $p \neq 2$ and all prime ideals $\mathfrak{p} \mid p$ in $K$ the representation $\bar{\rho}_{J_{r}, \mathfrak{p}}$ is absolutely irreducible.
$\Rightarrow$ Under these two assumptions the representation $\bar{\rho}_{J_{r}, \mathrm{p}}$ is irreducible locally at 2 .
$\Rightarrow$ There are several other situations where we can prove irreducibility (e.g, $r=7$ ).
$\Rightarrow$ We do not know how to prove it in general though.

## Step 3- Irreducibility

## Theorem

Assume $a$ and $b$ satisfy

$$
a \equiv 0 \quad(\bmod 2) \quad \text { and } \quad b \equiv 1 \quad(\bmod 4) .
$$

Assume further that $r \nmid \# \mathbf{F}_{\mathfrak{q}_{2}}^{\times}$where $\mathfrak{q}_{2}$ is a prime ideal above 2 in $K=\mathbf{Q}\left(\zeta_{r}\right)^{+}$.
Then, for all primes $p \neq 2$ and all prime ideals $\mathfrak{p} \mid p$ in $K$ the representation $\bar{\rho}_{J_{r}, \mathfrak{p}}$ is absolutely irreducible.
$\Leftrightarrow$ Under these two assumptions the representation $\bar{\rho}_{J_{r}, \mathfrak{p}}$ is irreducible locally at 2 .
$\Leftrightarrow$ There are several other situations where we can prove irreducibility (e.g, $r=7$ ).
$\Leftrightarrow$ We do not know how to prove it in general though.

## Step 4 - Refined level lowering

Finally assume that there exists a non-zero integer $c$ such that $a^{r}+b^{r}=C c^{p}$ for some fixed positive integer $C$ and that we have

$$
a \equiv 0 \quad(\bmod 2) \quad \text { and } \quad b \equiv 1 \quad(\bmod 4) .
$$

Let $\mathfrak{p}$ be a prime ideal in $\mathcal{O}_{K}$ above the rational prime $p$.
$\square$
Suppose that $\bar{\rho}_{J_{r}, \boldsymbol{p}}$ is absolutely irreducible. Then, there is a Hilbert newform $g$ over $K$ of parallel weight 2, trivial character and level $2^{2} p_{r}^{2} n^{\prime}$ such that

$$
\bar{\rho}_{J_{r}, \mathfrak{p}} \simeq \bar{\rho}_{g, \mathfrak{\beta}}
$$

for some prime ideal $\mathfrak{P} \mid p$ in the coefficient field $K_{g}$ of $g$.
Here, $\mathfrak{n}^{\prime}$ denotes the product of prime ideals coprime to $2 r$ dividing $C$. Moreover, we have $K \subset K_{q}$.
$\Rightarrow$ Refined level lowering theorem of Breuil-Diamond.
$\Leftrightarrow$ Precise description of the image of inertia, notably at prime ideals above 2 in $K$

## Step 4 - Refined level lowering

Finally assume that there exists a non-zero integer $c$ such that $a^{r}+b^{r}=C c^{p}$ for some fixed positive integer $C$ and that we have

$$
a \equiv 0 \quad(\bmod 2) \quad \text { and } \quad b \equiv 1 \quad(\bmod 4) .
$$

Let $\mathfrak{p}$ be a prime ideal in $\mathcal{O}_{K}$ above the rational prime $p$.

## Theorem

Suppose that $\bar{\rho}_{J_{r}, \mathrm{p}}$ is absolutely irreducible. newform $g$ over $K$ of parallel weight 2, trivial character and level $2^{2} \mathrm{p}_{r}^{2} \mathrm{n}^{\prime}$ such that
$\bar{\rho}_{J_{r, \mathfrak{p}}} \simeq \bar{\rho}_{g, \mathfrak{\not}}$
for some prime ideal $\mathfrak{P}^{\prime} \mid \rho$ in the coefficient field $K_{g}$ of $g$
Here, $n^{\prime}$ denotes the product of prime ideals coprime to $2 r$ dividing $C$ Moreover, we have $K \subset K_{q}$.
$\Leftrightarrow$ Refined level lowering theorem of Breuil-Diamond.
$\Leftrightarrow$ Precise description of the image of inertia, notably at prime ideals above 2 in $K$

## Step 4 - Refined level lowering

Finally assume that there exists a non-zero integer $c$ such that $a^{r}+b^{r}=C c^{p}$ for some fixed positive integer $C$ and that we have

$$
a \equiv 0 \quad(\bmod 2) \quad \text { and } \quad b \equiv 1 \quad(\bmod 4) .
$$

Let $\mathfrak{p}$ be a prime ideal in $\mathcal{O}_{K}$ above the rational prime $p$.

## Theorem

Suppose that $\bar{\rho}_{J_{r}, \mathrm{p}}$ is absolutely irreducible. Then, there is a Hilbert newform $g$ over $K$ of parallel weight 2 , trivial character and level $2^{2} \mathfrak{p}_{r}^{2} \mathfrak{n}^{\prime}$ such that

$$
\bar{\rho}_{J_{r}, \mathfrak{p}} \simeq \bar{\rho}_{g, \mathfrak{P}}
$$

for some prime ideal $\mathfrak{P} \mid p$ in the coefficient field $K_{g}$ of $g$. Here, $\mathfrak{n}^{\prime}$ denotes the product of prime ideals coprime to $2 r$ dividing $C$.

## Step 4 - Refined level lowering

Finally assume that there exists a non-zero integer $c$ such that $a^{r}+b^{r}=C c^{p}$ for some fixed positive integer $C$ and that we have

$$
a \equiv 0 \quad(\bmod 2) \quad \text { and } \quad b \equiv 1 \quad(\bmod 4) .
$$

Let $\mathfrak{p}$ be a prime ideal in $\mathcal{O}_{K}$ above the rational prime $p$.

## Theorem

Suppose that $\bar{\rho}_{J_{r}, \mathrm{p}}$ is absolutely irreducible. Then, there is a Hilbert newform $g$ over $K$ of parallel weight 2, trivial character and level $2^{2} \mathfrak{p}_{r}^{2} \mathfrak{n}^{\prime}$ such that

$$
\bar{\rho}_{J_{r}, \mathfrak{p}} \simeq \bar{\rho}_{g, \mathfrak{F}}
$$

for some prime ideal $\mathfrak{P} \mid p$ in the coefficient field $K_{g}$ of $g$. Here, $\mathfrak{n}^{\prime}$ denotes the product of prime ideals coprime to $2 r$ dividing $C$. Moreover, we have $K \subset K_{g}$.

## Step 4 - Refined level lowering

Finally assume that there exists a non-zero integer $c$ such that $a^{r}+b^{r}=C c^{p}$ for some fixed positive integer $C$ and that we have

$$
a \equiv 0 \quad(\bmod 2) \quad \text { and } \quad b \equiv 1 \quad(\bmod 4) .
$$

Let $\mathfrak{p}$ be a prime ideal in $\mathcal{O}_{K}$ above the rational prime $p$.

## Theorem

Suppose that $\bar{\rho}_{J_{r}, \mathrm{p}}$ is absolutely irreducible. Then, there is a Hilbert newform $g$ over $K$ of parallel weight 2, trivial character and level $2^{2} \mathfrak{p}_{r}^{2} \mathfrak{n}^{\prime}$ such that

$$
\bar{\rho}_{J_{r}, \mathfrak{p}} \simeq \bar{\rho}_{g, \mathfrak{F}}
$$

for some prime ideal $\mathfrak{P} \mid p$ in the coefficient field $K_{g}$ of $g$. Here, $\mathfrak{n}^{\prime}$ denotes the product of prime ideals coprime to $2 r$ dividing $C$. Moreover, we have $K \subset K_{g}$.
$\Leftrightarrow$ Refined level lowering theorem of Breuil-Diamond.
$\Rightarrow$ Precise description of the image of inertia, notably at prime ideals above 2 in $K$.

# Table of contents 

## Quick review on the modular method

Extension of Darmon＇s program

Diophantine results

## Step 5 - Main obstacles

In applying the modular method to Fermat equations of the shape

$$
x^{r}+y^{r}=C z^{p}
$$

for specific values of $r$ and $C$, we find that the contradiction step (and, to some extent, the irreducibility step) is the most problematic:


## Step 5 - Main obstacles

In applying the modular method to Fermat equations of the shape

$$
x^{r}+y^{r}=C z^{p}
$$

for specific values of $r$ and $C$, we find that the contradiction step (and, to some extent, the irreducibility step) is the most problematic:
$\Leftrightarrow$ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).

## Step 5 - Main obstacles

In applying the modular method to Fermat equations of the shape

$$
x^{r}+y^{r}=C z^{p}
$$

for specific values of $r$ and $C$, we find that the contradiction step (and, to some extent, the irreducibility step) is the most problematic:
$\Leftrightarrow$ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
$\Rightarrow$ We miss a general method to discard an isomorphism of the shape $\bar{\rho}_{J_{r}, \mathfrak{p}} \simeq \bar{\rho}_{g, \mathfrak{Y}}$.

## The case $r=7$ and $C=3$

## The case $r=7$ and $C=3$

Theorem (B.-Chen-Dieulefait-Freitas, 2022)
For every integer $n \geq 2$, there are no integers $a, b, c$ such that

$$
a^{7}+b^{7}=3 c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

## The case $r=7$ and $C=3$

## Theorem (B.-Chen-Dieulefait-Freitas, 2022)

For every integer $n \geq 2$, there are no integers $a, b, c$ such that

$$
a^{7}+b^{7}=3 c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

$\Rightarrow$ Multi-Frey approach with:
(Darmon) A Frey curve over $\mathbf{Q}$ :

$$
E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where

$$
\begin{aligned}
& a_{2}=-(a-b)^{2}, \\
& a_{4}=-2 a^{4}+a^{3} b-5 a^{2} b^{2}+a b^{3}-2 b^{4}, \\
& a_{6}=a^{6}-6 a^{5} b+8 a^{4} b^{2}-13 a^{3} b^{3}+8 a^{2} b^{4}-6 a b^{5}+b^{6} .
\end{aligned}
$$

## The case $r=7$ and $C=3$

## Theorem (B.-Chen-Dieulefait-Freitas, 2022)

For every integer $n \geq 2$, there are no integers $a, b, c$ such that

$$
a^{7}+b^{7}=3 c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

$\Leftrightarrow$ Multi-Frey approach with:
(Freitas) A Frey curve over the totally real cubic field $F / \mathbf{Q}\left(\zeta_{7}\right)^{+}$(and its quadratic twists $F^{(d)}$ ):

$$
F: y^{2}=x(x-A)(x+B),
$$

where

$$
\begin{aligned}
A= & \left(\omega_{2}-\omega_{1}\right)(a+b)^{2} \\
B= & \left(2-\omega_{2}\right)\left(a^{2}+\omega_{1} a b+b^{2}\right) \\
\text { and } \omega_{i}=\zeta_{7}^{i}+\zeta_{7}^{-i}, & (i=1,2) .
\end{aligned}
$$

## The case $r=7$ and $C=3$

## Theorem (B.-Chen-Dieulefait-Freitas, 2022)

For every integer $n \geq 2$, there are no integers $a, b, c$ such that

$$
a^{7}+b^{7}=3 c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

$\Leftrightarrow$ Multi-Frey approach with:
(Kraus) A Frey hyperelliptic curve over $\mathbf{Q}$ :

$$
C: y^{2}=x^{7}+7 a b x^{5}+14 a^{2} b^{2} x^{3}+7 a^{3} b^{3} x+b^{7}-a^{7}
$$ and its Jacobian $J / \mathbf{Q}\left(\zeta_{7}\right)^{+}$.

## The case $r=7$ and $C=3$

## Theorem (B.-Chen-Dieulefait-Freitas, 2022)

For every integer $n \geq 2$, there are no integers $a, b, c$ such that

$$
a^{7}+b^{7}=3 c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

$\Rightarrow$ Computations in (Hilbert) modular form spaces (Magma).

## The case $r=7$ and $C=3$

## Theorem (B.-Chen-Dieulefait-Freitas, 2022)

For every integer $n \geq 2$, there are no integers $a, b, c$ such that

$$
a^{7}+b^{7}=3 c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

$\Leftrightarrow$ Three different proofs:

|  | $7 \nmid a+b$ | $7 \mid a+b$ |
| :---: | :---: | :---: |
| $2 \nmid a b$ | $E$ or $F^{(-7)}$ | $F$ |
| $2 \\| a b$ | $E$ or $F^{\left(-7 \omega_{2}\right)}$ | $F^{\left(\omega_{2}\right)}$ |
| $4 \mid a b$ | $F^{(-7)}$ | $E$ or $F$ |


|  | $7 \nmid a+b$ | $7 \mid a+b$ |
| :---: | :---: | :---: |
| $2 \nmid a b$ | $E$ or $F^{(-7)}$ | $F$ |
| $2 \\| a b$ | $J$ | $J$ |
| $4 \mid a b$ | $J$ | $J$ |


|  | $7 \nmid a+b$ | $7 \mid a+b$ |
| :---: | :---: | :---: |
| $2 \nmid a b$ | $E$ or $F^{(-7)}$ | $F$ |
| $2 \\| a b$ | $E$ or $F^{\left(-7 \omega_{2}\right)}$ | $J$ |
| $4 \mid a b$ | $F^{(-7)}$ | $J$ |

## The case $r=7$ and $C=3$

## Theorem (B.-Chen-Dieulefait-Freitas, 2022)

For every integer $n \geq 2$, there are no integers $a, b, c$ such that

$$
a^{7}+b^{7}=3 c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

$\Rightarrow$ Multi-Frey approach with three different Frey varieties: two elliptic curves $E / \mathbf{Q}, F / \mathbf{Q}\left(\zeta_{7}\right)^{+}$, and a 3-dimensional abelian variety $J / \mathbf{Q}\left(\zeta_{7}\right)^{+}$.
$\Leftrightarrow$ Computations in (Hilbert) modular form spaces (Magma).
$\Rightarrow$ Three different proofs: $(E+) F(\sim 41 \mathrm{~min}),.(E+) F+J$ (as much as possible) ( $\sim \mathbf{8} \mathbf{~ m i n}.),(E+) F+J(\sim \mathbf{1} \mathbf{~ m i n}$.$) .$

## The case $r=7$ and $C=3$

## Theorem (B.-Chen-Dieulefait-Freitas, 2022)

For every integer $n \geq 2$, there are no integers $a, b, c$ such that

$$
a^{7}+b^{7}=3 c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1 .
$$

$\Leftrightarrow$ Multi-Frey approach with three different Frey varieties: two elliptic curves $E / \mathbf{Q}, F / \mathbf{Q}\left(\zeta_{7}\right)^{+}$, and a 3-dimensional abelian variety $J / \mathbf{Q}\left(\zeta_{7}\right)^{+}$.
$\Leftrightarrow$ Computations in (Hilbert) modular form spaces (Magma).
$\Rightarrow$ Three different proofs: $(E+) F(\sim 41 \mathrm{~min}),.(E+) F+J$ (as much as possible) ( $\sim \mathbf{8} \mathbf{~ m i n}$.), ( $E+$ ) $F+J$ ( $\sim \mathbf{1} \mathrm{min}$.).
$\Leftrightarrow$ Proofs using the hyperelliptic curve $C$ are faster!

A partial answer in the case $r=11$ and $C=1$

Theorem (B.-Chen-Dieulefait-Freitas, 2022)
For every integer $n \geq 2$, there are no integers $a, b, c$ such that
$a^{11}+b^{11}=c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1, \quad$ and $(2 \mid a+b$ or $11 \mid a+b)$.
$\Leftrightarrow$ Multi-Frey approach using a Frey elliptic curve $F / \mathbf{Q}\left(\zeta_{11}\right)^{+}$ (Freitas) and the hyperelliptic Frey curve $C_{11}$.
of the relevant Hilbert space) +1 hour (elimination).
$\Rightarrow$ Proving this result using only properties of $F / \mathbf{Q}\left(\zeta_{11}\right)^{+}$requires in particular computations in the space of Hilbert newforms of level $p_{2}^{3} p_{11}$ over $\mathrm{Q}\left(\zeta_{11}\right)^{+}$which has dimension 12,013 and is not currently feasible to compute.

## A partial answer in the case $r=11$ and $C=1$

## Theorem (B.-Chen-Dieulefait-Freitas, 2022)

For every integer $n \geq 2$, there are no integers $a, b, c$ such that
$a^{11}+b^{11}=c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1$, and $(2 \mid a+b$ or $11 \mid a+b)$.
$\Leftrightarrow$ Multi-Frey approach using a Frey elliptic curve $F / \mathbf{Q}\left(\zeta_{11}\right)^{+}$ (Freitas) and the hyperelliptic Frey curve $C_{11}$.
$\Leftrightarrow$ Total running time in Magma: 7 hours $=6$ hours (computation of the relevant Hilbert space) +1 hour (elimination).
particular computations in the space of Hilbert newforms of
level $\mathfrak{p}_{2}^{3} \mathfrak{p}_{11}$ over $\mathbf{Q}\left(\zeta_{11}\right)^{+}$which has dimension 12,013 and is not
currently feasible to compute.

## A partial answer in the case $r=11$ and $C=1$

## Theorem (B.-Chen-Dieulefait-Freitas, 2022)

For every integer $n \geq 2$, there are no integers $a, b, c$ such that
$a^{11}+b^{11}=c^{n}, \quad a b c \neq 0, \quad \operatorname{gcd}(a, b, c)=1$, and $(2 \mid a+b$ or $11 \mid a+b)$.
$\Leftrightarrow$ Multi-Frey approach using a Frey elliptic curve $F / \mathbf{Q}\left(\zeta_{11}\right)^{+}$ (Freitas) and the hyperelliptic Frey curve $C_{11}$.
$\Leftrightarrow$ Total running time in Magma: 7 hours $=6$ hours (computation of the relevant Hilbert space) +1 hour (elimination).
$\Rightarrow$ Proving this result using only properties of $F / \mathbf{Q}\left(\zeta_{11}\right)^{+}$requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_{2}^{3} \mathfrak{p}_{11}$ over $\mathbf{Q}\left(\zeta_{11}\right)^{+}$which has dimension 12,013 and is not currently feasible to compute.

Thank you!

