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Main steps in the proof of Fermat’s last theorem
Let p ≥ 5 be a prime. Assume for a contradiction that there exist
non-zero coprime integers a, b, c such that ap + bp = cp.

[Step 1/5 – Construction] (Hellegouarch, Frey)
▶ Consider

E : y2 = x(x− ap)(x+ bp).

The discriminant ∆ = 24(abc)2p of this model is non-zero,
and hence it defines an elliptic curve over Q (with full
2-torsion).

▶ There is a 2-dimensional mod p representation attached to E

ρE,p : GQ = Gal(Q/Q) → GL2(Fp)

given by the action of GQ on the group of p-torsion points
on E.

▶ The representation ρE,p is unramified away from {2, p}
(Tate).
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Main steps in the proof of Fermat’s last theorem
Let p ≥ 5 be a prime. Assume for a contradiction that there exist
non-zero coprime integers a, b, c such that ap + bp = cp.

[Step 2/5 – Modularity] (Wiles)
▶ Without loss of generality, assume from now on that

ap ≡ −1 (mod 4) and bp ≡ 0 (mod 16).

Hence the curve E is semistable (at 2).
▶ Since E/Q is semistable, the elliptic curve E/Q is modular.
▶ Moreover, ρE,p has weight 2 in the sense of Edixhoven (or

Serre) and Serre’s conductor N(ρE,p) = 2.
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Main steps in the proof of Fermat’s last theorem
Let p ≥ 5 be a prime. Assume for a contradiction that there exist
non-zero coprime integers a, b, c such that ap + bp = cp.

[Step 3/5 – Irreducibility] (Mazur)
▶ Since E has full 2-torsion over Q and is semistable, the

representation
ρE,p : GQ → GL2(Fp)

is (absolutely) irreducible.
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Main steps in the proof of Fermat’s last theorem
Let p ≥ 5 be a prime. Assume for a contradiction that there exist
non-zero coprime integers a, b, c such that ap + bp = cp.

[Step 3/5 – Irreducibility] (Mazur)
▶ Since E has full 2-torsion over Q and is semistable, the

representation
ρE,p : GQ → GL2(Fp)

is (absolutely) irreducible.
Sketch of proof. Assume for a contradiction that ρE,p is reducible.

➥ Write D for a rational subgroup of order p and χ : GQ → F×
p for the

corresponding isogeny character.

➥ Since E is semistable, either χ = χp (mod p cyc.) or χ is trivial (Serre).

➥ In the latter case, the curve E has a rational point of order p, and
hence #E(Q)tors ≥ 4p ≥ 20, contradicting Mazur’s theorem on torsion.

➥ In the former case, the elliptic curve E′ = E/D has a rational point of
order p and we conclude as before.
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Main steps in the proof of Fermat’s last theorem
Let p ≥ 5 be a prime. Assume for a contradiction that there exist
non-zero coprime integers a, b, c such that ap + bp = cp.

[Step 4/5 – Level lowering] (Ribet)
▶ Since E/Q is modular and the representation ρE,p is

absolutely irreducible, it arises from a newform of weight 2
and level N(ρE,p) = 2 (with trivial character).
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Main steps in the proof of Fermat’s last theorem
Let p ≥ 5 be a prime. Assume for a contradiction that there exist
non-zero coprime integers a, b, c such that ap + bp = cp.

[Step 4/5 – Level lowering] (Ribet)
▶ Since E/Q is modular and the representation ρE,p is

absolutely irreducible, it arises from a newform of weight 2
and level N(ρE,p) = 2 (with trivial character).

Definition (‘arises from’)
We say that ρE,p arises from a newform f (of weight 2 and level N) if

ρE,p ≃ ρf,p

where ρf,p is the mod p Galois representation associated with f .
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Main steps in the proof of Fermat’s last theorem
Let p ≥ 5 be a prime. Assume for a contradiction that there exist
non-zero coprime integers a, b, c such that ap + bp = cp.

[Step 5/5 – Contradiction]
▶ For every newform g of weight 2 and level 2, the

representation ρE,p does not arise from g.
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The five steps in the modular method

1. Construction
2. Modularity
3. Irreducibility
4. Level lowering
5. Contradiction
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Our Diophantine problem

We wish to extend the modular method to deal with generalized
Fermat equations

Axr +Byq = Czp

where A,B,C are fixed non-zero coprime integers and p, q, r are
non-negative integers.
In this talk, we restrict ourselves to the case of

xr + yr = Czp

where r ≥ 3 is a fixed prime, C is a fixed positive integer and p
is a prime which is allowed to vary.
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Our Diophantine problem

We wish to extend the modular method to deal with generalized
Fermat equations

Axr +Byq = Czp

where A,B,C are fixed non-zero coprime integers and p, q, r are
non-negative integers.
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Notation

r ≥ 3 prime number
ζr primitive r-th root of unity
ωi = ζir + ζ−i

r , for every i ≥ 0

h(X) =

(r−1)/2∏
i=1

(X − ωi) ∈ Z[X]

K = Q(ζr)
+ = Q(ω1) maximal totally real subfield of Q(ζr)

OK integer ring of K
pr unique prime ideal above r in OK (totally ramified)
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Step 1 – Kraus’ Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that ar + br ̸= 0.

Cr(a, b) : y
2 = (ab)

r−1
2 xh

(
x2

2
+ ab

)
+ br − ar.

The discriminant of this model is

∆r(a, b) = (−1)
r−1
2 22(r−1)rr(ar + br)r−1.

In particular, it defines a hyperelliptic curve of genus r−1
2 .

Examples

r = 3 : y2 = x3 + 3abx+ b3 − a3

r = 5 : y2 = x5 + 5abx3 + 5a2b2x+ b5 − a5

r = 7 : y2 = x7 + 7abx5 + 14a2b2x3 + 7a3b3x+ b7 − a7.
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Step 1 – Frey representations
For a field M of characteristic 0, write GM = Gal(M/M) for its
absolute Galois group.

Definition (Darmon)
A Frey representation of signature (r, q, p) ∈ (Z>0)

3 over a number
field L in characteristic ℓ > 0 is a Galois representation

ρ = ρ(t) : GL(t) → GL2(F)

where F finite field of characteristic ℓ such that the following
conditions hold.

1. The restriction of ρ to GL(t) has trivial determinant and is
irreducible.

2. The projectivization ρgeom : GL(t) → PSL2(F) of this
representation is unramified outside {0, 1,∞}.

3. It maps the inertia groups at 0, 1, and ∞ to subgroups
of PSL2(F) of order r, q, and p respectively.
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Step 1 – Hecke–Darmon’s classification theorem

Let p be a prime number.

Theorem (Hecke–Darmon)
Up to equivalence, there is only one Frey representation of
signature (p, p, p). It occurs over Q in characteristic p and is
associated with the Legendre family

L(t) : y2 = x(x− 1)(x− t).

The classical Frey–Hellegouarch curve

y2 = x(x− ap)(x+ bp)

is obtained from L(t) after specialization at t0 = ap

ap+bp and
quadratic twist by −(ap + bp).
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Step 1 – Abelian varieties of GL2-type
Definition
Let A be an abelian variety over a field L of characteristic 0. We say
that A/L is of GL2-type (or GL2(F )-type) if there is an embedding
F ↪→ EndL(A)⊗Z Q where F is a number field with [F : Q] = dimA.

Let A/L be an abelian variety of GL2(F )-type.
▶ For each prime ideal λ | ℓ in F , there is a linear action of GL

on Vλ(A) := Vℓ(A)⊗F⊗Qℓ
Fλ which gives rise to a λ-adic

representation

ρA,λ : GL −→ AutFλ
(Vλ(A)) ≃ GL2(Fλ).

▶ The representations {ρA,λ}λ form a strictly compatible system of
F -integral representations.

▶ For each prime ideal λ | ℓ in F , we have a residual representation

ρA,λ : GL −→ GL2(Fλ),

with values in the residue field Fλ of Fλ.
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Step 1 – Frey representations in signature (r, r, p)

Theorem
There exists a hyperelliptic curve C ′

r(t) over K(t) of genus r−1
2 such

that J ′
r(t) = Jac(C ′

r(t)) satisfies:
1. It is of GL2(K)-type, i.e. K ↪→ EndK(t)(J

′
r(t))⊗Q

2. For every t0 ∈ K, the embedding K ↪→ EndK(J ′
r(t0))⊗Q is

well-defined;
3. For every prime ideal p in OK above a rational prime p,

ρJ′
r(t),p

: GK(t) → GL2(OK/p)

is a Frey representation of signature (r, r, p).
Moreover, Cr(a, b)/K is obtained from C ′

r(t) after specialization

at t0 = ar

ar+br and quadratic twist by − (ab)
r−1
2

ar+br .

➥ The proof uses Darmon’s construction of Frey representations of
signature (p, p, r).
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Step 1 – Two-dimensional p-adic and mod p

representations

Write Jr = Jac(Cr(a, b))/K for the Jacobian of Cr(a, b) base changed
to K.
▶ There is a compatible system of K-rational Galois representations

ρJr,p : GK → GL2(Kp)

indexed by the prime ideals p in OK associated with Jr.
▶ For p = pr, the residual representation ρJr,pr

arises after
specialization and twisting from a Frey representation of
signature (r, r, r).
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Step 2 – The representation ρJr,pr
Theorem
Assume r ≥ 5. The representation ρJr,pr

: GK → GL2(Fr) is
absolutely irreducible when restricted to GQ(ζr).

Sketch of proof. For simplicity, assume r = 11 or r ≥ 17.

▶ By Hecke–Darmon’s classification theorem we have ρJr,pr
≃ ρL,r ⊗ χ

where χ : GK → F
×
r and L = L(t0), with t0 = ar

ar+br
.

▶ Since det ρL,r = χr, we have ρL,r(GQ(ζr)) = ρL,r(GQ) ∩ SL2(Fr).

▶ The elliptic curve L is a quadratic twist of L′ : y2 = x(x− ar)(x+ br)
which has semistable reduction at r.

▶ If ρL′,r(GQ) ̸= GL2(Fr), then ρL′,r(GQ) is either contained in a Borel
subgroup or in the normalizer of a Cartan subgroup (Serre).

▶ In the former case, we get a rational point on Y0(2r) and a
contradiction (Mazur, Kenku).

▶ In the latter case, it follows from results of Mazur, Momose, Merel
(split Cartan case) and Darmon, Merel, Lemos (non split Cartan case)
that j(L) = j(L′) ∈ Z and we conclude from this.
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Step 2 – Modularity of Jr/K

Serre’s modularity conjecture (Khare–Wintenberger, Dieulefait) and a
recent modularity lifting theorem (Khare–Thorne) then give the
following.

Corollary
The abelian variety Jr/K is modular (for any prime r ≥ 3).
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Step 3– Irreducibility

Theorem
Assume a and b satisfy

a ≡ 0 (mod 2) and b ≡ 1 (mod 4).

Assume further that r ∤ #F×
q2

where q2 is a prime ideal above 2 in
K = Q(ζr)

+.
Then, for all primes p ̸= 2 and all prime ideals p | p in K the
representation ρJr,p is absolutely irreducible.

➥ Under these two assumptions the representation ρJr,p is
irreducible locally at 2.

➥ There are several other situations where we can prove
irreducibility (e.g, r = 7).

➥ We do not know how to prove it in general though.
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Step 4 – Refined level lowering
Finally assume that there exists a non-zero integer c such that
ar + br = Ccp for some fixed positive integer C and that we have

a ≡ 0 (mod 2) and b ≡ 1 (mod 4).

Let p be a prime ideal in OK above the rational prime p.

Theorem
Suppose that ρJr,p is absolutely irreducible. Then, there is a Hilbert
newform g over K of parallel weight 2, trivial character and
level 22p2rn′ such that

ρJr,p ≃ ρg,P

for some prime ideal P | p in the coefficient field Kg of g.
Here, n′ denotes the product of prime ideals coprime to 2r dividing C.
Moreover, we have K ⊂ Kg.

➥ Refined level lowering theorem of Breuil–Diamond.
➥ Precise description of the image of inertia, notably at prime

ideals above 2 in K.
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Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

xr + yr = Czp

for specific values of r and C, we find that the contradiction step
(and, to some extent, the irreducibility step) is the most problematic:

➥ Newform subspaces may not be accessible to computer softwares
(as they are too large or by lack of efficient algorithms, for
instance).

➥ We miss a general method to discard an isomorphism of the
shape ρJr,p ≃ ρg,P.
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For every integer n ≥ 2, there are no integers a, b, c such that

a7 + b7 = 3cn, abc ̸= 0, gcd(a, b, c) = 1.

➥ Multi-Frey approach with:
(Darmon) A Frey curve over Q:

E : y2 = x3 + a2x
2 + a4x+ a6

where

a2 = −(a− b)2,

a4 = −2a4 + a3b− 5a2b2 + ab3 − 2b4,

a6 = a6 − 6a5b+ 8a4b2 − 13a3b3 + 8a2b4 − 6ab5 + b6.
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Theorem (B.–Chen–Dieulefait–Freitas, 2022)
For every integer n ≥ 2, there are no integers a, b, c such that

a7 + b7 = 3cn, abc ̸= 0, gcd(a, b, c) = 1.

➥ Multi-Frey approach with:
(Freitas) A Frey curve over the totally real cubic
field F/Q(ζ7)

+ (and its quadratic twists F (d)):

F : y2 = x(x−A)(x+B),

where

A = (ω2 − ω1)(a+ b)2

B = (2− ω2)(a
2 + ω1ab+ b2)

and ωi = ζi7 + ζ−i
7 , (i = 1, 2).
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For every integer n ≥ 2, there are no integers a, b, c such that

a7 + b7 = 3cn, abc ̸= 0, gcd(a, b, c) = 1.

➥ Multi-Frey approach with:
(Kraus) A Frey hyperelliptic curve over Q:

C : y2 = x7 + 7abx5 + 14a2b2x3 + 7a3b3x+ b7 − a7

and its Jacobian J/Q(ζ7)
+.
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➥ Computations in (Hilbert) modular form spaces (Magma).
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For every integer n ≥ 2, there are no integers a, b, c such that

a7 + b7 = 3cn, abc ̸= 0, gcd(a, b, c) = 1.

➥ Three different proofs:
7 ∤ a+ b 7 | a+ b

2 ∤ ab E or F (−7) F

2 ∥ ab E or F (−7ω2) F (ω2)

4 | ab F (−7) E or F

7 ∤ a+ b 7 | a+ b

2 ∤ ab E or F (−7) F

2 ∥ ab J J

4 | ab J J

7 ∤ a+ b 7 | a+ b

2 ∤ ab E or F (−7) F

2 ∥ ab E or F (−7ω2) J

4 | ab F (−7) J
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➥ Multi-Frey approach with three different Frey varieties: two
elliptic curves E/Q, F/Q(ζ7)

+, and a 3-dimensional abelian
variety J/Q(ζ7)

+.
➥ Computations in (Hilbert) modular form spaces (Magma).
➥ Three different proofs: (E+)F (∼ 41 min.), (E+)F + J (as

much as possible) (∼ 8 min.), (E+)F + J (∼ 1 min.).



Quick review on the modular method Extension of Darmon’s program Diophantine results

The case r = 7 and C = 3

Theorem (B.–Chen–Dieulefait–Freitas, 2022)
For every integer n ≥ 2, there are no integers a, b, c such that

a7 + b7 = 3cn, abc ̸= 0, gcd(a, b, c) = 1.

➥ Multi-Frey approach with three different Frey varieties: two
elliptic curves E/Q, F/Q(ζ7)

+, and a 3-dimensional abelian
variety J/Q(ζ7)

+.
➥ Computations in (Hilbert) modular form spaces (Magma).
➥ Three different proofs: (E+)F (∼ 41 min.), (E+)F + J (as

much as possible) (∼ 8 min.), (E+)F + J (∼ 1 min.).
➥ Proofs using the hyperelliptic curve C are faster!
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A partial answer in the case r = 11 and C = 1

Theorem (B.–Chen–Dieulefait–Freitas, 2022)
For every integer n ≥ 2, there are no integers a, b, c such that

a11+b11 = cn, abc ̸= 0, gcd(a, b, c) = 1, and (2 | a+ b or 11 | a+ b).

➥ Multi-Frey approach using a Frey elliptic curve F/Q(ζ11)
+

(Freitas) and the hyperelliptic Frey curve C11.
➥ Total running time in Magma: 7 hours = 6 hours (computation

of the relevant Hilbert space) + 1 hour (elimination).
➥ Proving this result using only properties of F/Q(ζ11)

+ requires in
particular computations in the space of Hilbert newforms of
level p32p11 over Q(ζ11)

+ which has dimension 12, 013 and is not
currently feasible to compute.
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Thank you!


