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Figure: Scattering rates of Silicon at 300K
(28Si – 92.22%, 29Si – 4.68%, 30Si – 3.09%)
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Thank you


	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page2 (5)
	page2 (6)
	page2 (7)
	page2 (8)
	page2 (9)
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	page3 (5)
	page3 (6)
	page3 (7)
	page3 (8)
	page3 (9)
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	page4 (6)
	page4 (7)
	page4 (8)
	page4 (9)
	page4 (10)
	page4 (11)
	page5 (1)
	page5 (2)
	page5 (3)
	page5 (4)
	page5 (5)
	page5 (6)
	page6 (1)
	page6 (2)
	page6 (3)
	page6 (4)
	page6 (5)
	page6 (6)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page7 (6)
	page7 (7)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page8 (6)

