Introduction	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion	Summary and Conclusion
	000	000	00000	

Perturbation spreading in a non-reciprocal classical isotropic magnet

Nisarg Bhatt, Subroto Mukerjee, Sriram Ramaswamy

Dept of Physics, Indian Institute of Science

18 March 2022

Introduction	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion 00000	Summary and Conclusion
Introductio	n			

- $\bullet\,$ Classical Heisenberg spins: precessional Hamiltonian dynamics $\rightarrow\,$ thermalisation, spin diffusion
- This work: effect of minimal nonequilibrium dynamics via non-reciprocal exchange coupling (J. Das et al. EPL 2002)
- Time-evolution of the overlap between spin configuration and perturbed copy: propagating decorrelation front as in Hamiltonian case (A. Das et al. PRL 2018)
- Characterise nonequilibrium nature of the system through energy dissipation

Introduction	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion	Summary and Conclusion	
	000				
Driven dynamics, Hamiltonian dynamics					
Equation	s of motion				

• Spins of unit length precess in a local field as

$$\dot{\mathbf{S}}_{x} = \mathbf{S}_{x} \times (J_{x,x-1} \mathbf{S}_{x-1} + J_{x+1,x} \mathbf{S}_{x+1})$$
 (1)

• A non-reciprocal exchange coupling $J_{x,x+1} \neq J_{x+1,x}$ cannot be obtained from Hamiltonian

$$H = -\sum J_{x,x+1} \, \boldsymbol{S}_x \cdot \boldsymbol{S}_{x+1}$$

• Taking the simplest, extreme limit $J_{x,x+1} = -J_{x+1,x}$ we study the driven dynamics of a Heisenberg spin chain

$$\dot{\boldsymbol{S}}_{x} = \mu \boldsymbol{S}_{x} \times (\boldsymbol{S}_{x+1} - \boldsymbol{S}_{x-1})$$
(2)

x = 0, 1, ..., L - 1and compare it with the classical Hamiltonian dynamics

•

$$\dot{\mathbf{S}}_{x} = \lambda \mathbf{S}_{x} \times (\mathbf{S}_{x+1} + \mathbf{S}_{x-1}) = \{\mathbf{S}_{x}, H\}$$
(3)

Introduction O	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion 00000	Summary and Conclusion	
Decorrelator, analogy with OTOC					
Decorrelat	or and OTOC analogy				

- Our system is chaotic at infinite temperature. The chaos can be quantified by measuring the divergence of the dynamical trajectories.
- The classical Out-of-Time Ordered Correlator is one such quantity

$$F(t) = -\langle \{A(x,t), B(0,0)\}^2 \rangle$$

• We define the decorrelator as the deviation of a spin configuration from its perturbed copy under a time evolution, averaged over an infinite temperature thermal distribution. (A. Das *et al*)

$$D(\mathbf{x},t) = \frac{1}{2} \langle \delta \mathbf{S}(\mathbf{x},t)^2 \rangle \tag{4}$$

Introduction	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion	Summary and Conclusion
Decorrelator, ana	logy with OTOC			
Decorrol	ator and OTOC analogy			

• A copy of the initial configuration (a) is perturbed at a single site

$$egin{aligned} \delta oldsymbol{S}_0^b(0) &= oldsymbol{S}_0^a(0) + \delta oldsymbol{S}_0^a \ oldsymbol{S}_x^b(0) &= oldsymbol{S}_x^a(0) \quad orall x
eq 0 \end{aligned}$$

$$\begin{aligned} \delta \boldsymbol{S}_{0} &= \varepsilon(\hat{\boldsymbol{\mathsf{n}}} \times \boldsymbol{S}_{0}) \\ \hat{\boldsymbol{\mathsf{n}}} &= (\hat{\boldsymbol{\mathsf{z}}} \times \boldsymbol{S}_{0}) / |\hat{\boldsymbol{\mathsf{z}}} \times \boldsymbol{S}_{0}| \end{aligned} \tag{5}$$

where $\varepsilon \to$ perturbation strength, $\hat{\mathbf{z}}$ is a unit-vector along the global spin z-axis.

• The variation of a spin at site x depends on ε , as

$$\delta S_{x}^{\alpha}(t) \approx \frac{\partial S_{x}^{\alpha}(t)}{\partial S_{0}^{\beta}} \delta S_{0}^{\beta} = \varepsilon n^{\gamma} \epsilon_{\beta \gamma \nu} S_{0}^{\nu} \frac{\partial S_{x}^{\alpha}(t)}{\partial S_{0}^{\beta}} = \varepsilon n^{\gamma} \{ S_{x}^{\alpha}(t), S_{0}^{\gamma}(0) \}$$

allows us to write decorrelator in a form similar to the OTOC

$$D(\boldsymbol{x},t) = \frac{1}{2} \langle \delta \boldsymbol{S}(\boldsymbol{x},t)^2 \rangle \approx \frac{\varepsilon^2}{2} \langle \{ \boldsymbol{S}_{\boldsymbol{x}}(t), \hat{\boldsymbol{n}} \cdot \boldsymbol{S}_0 \}^2 \rangle$$
(6)

with $m{S}_x(t)
ightarrow A(x,t), \, arepsilon \hat{m{n}} \cdot m{S}_0
ightarrow B(0,0)$

Introduction O	Non-reciprocal dynamics of Heisenberg spins	Numerical study ●OO	Discussion 00000	Summary and Conclusion
Results				
Numerica	results			

• Initial spins of unit length are drawn from a uniform random distribution, with L = 2048 (periodic b.c.); $\varepsilon = 0.001$. The equations are integrated via a fourth-order Runge-Kutta iteration with $\Delta t = 0.005$, and a tolerance of 10^{-5} on each spins. The system is averaged over 5000 configurations.

Figure: D(x, t) for the pure Heisenberg and pure driven dynamics. The decorrelator for the non-conserving dynamics propagates ballistically, and symmetrically from the initial site of perturbation, quite similar to the one obtained from Hamiltonian dynamics.

Introduction O	Non-reciprocal dynamics of Heisenberg spins	Numerical study O●O	Discussion 00000	Summary and Conclusion
Results				

• For the generalized dynamics

$$\frac{d\mathbf{S}_x}{dt} = \mathbf{S}_x \times ((\lambda + \mu)\mathbf{S}_{x+1} + (\lambda - \mu)\mathbf{S}_{x-1})$$

the decorrelator doesn't show a left-right symmetry when $\lambda, \mu \neq 0$.

Figure: D(x, t) for the hybrid dynamics

Introduction	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion	Summary and Conclusion
		000		
Results				
Polation	with chaos eprending			

• The decorrelator front represents the rate of spread of chaos, and is quantified through an empirical formula

$$D(x,t) = \varepsilon^2 e^{\left(2\kappa t (1 - (x/v_B t)^2)\right)}$$
(7)

where $\varepsilon \rightarrow$ initial perturbation, $\kappa \rightarrow$ Lyapunov exponent, $v_B \rightarrow$ butterfly velocity. Plotting $log\left(\frac{D(x,t)}{\varepsilon^2}\right)$ against x/t, we find $v_B = 1.64$, $\kappa = 0.50$ and $v_B = 1.32$, $\kappa = 0.46$ for the Heisenberg dynamics and the pure driven dynamics respectively.

Symmetries of the equation of motion				
Symmetries of the equation of motion				
			• 0 000	
Introduction	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion	Summary and Conclusion

The generalized equation of motion

$$\dot{\mathbf{S}}_{x} = \mathbf{S}_{x} \times ((\lambda + \mu)\mathbf{S}_{x+1} + (\lambda - \mu)\mathbf{S}_{x-1})$$
(8)

under spatial inversion \mathcal{X} , $\boldsymbol{S}_{x}^{\mathcal{X}} = \boldsymbol{S}_{-x}$,

$$\dot{\boldsymbol{S}}_{\boldsymbol{x}}^{\mathcal{X}} = \boldsymbol{S}_{\boldsymbol{x}}^{\mathcal{X}} \times ((\lambda - \mu)\boldsymbol{S}_{\boldsymbol{x}+1}^{\mathcal{X}} + (\lambda + \mu)\boldsymbol{S}_{\boldsymbol{x}-1}^{\mathcal{X}})$$
(9)

doesn't remain invariant.

• Let a \mathcal{O} be a second operation to restore the invariance such that

$$\dot{\boldsymbol{S}}_{\boldsymbol{x}}^{\mathcal{O}\mathcal{X}} = \boldsymbol{S}_{\boldsymbol{x}}^{\mathcal{O}\mathcal{X}} \times ((\lambda - \mu)\boldsymbol{S}_{\boldsymbol{x}+1}^{\mathcal{O}\mathcal{X}} + (\lambda + \mu)\boldsymbol{S}_{\boldsymbol{x}-1}^{\mathcal{O}\mathcal{X}})$$
(10)

Comparing with the original equation, this is true only for

$$\boldsymbol{S}_{x}^{\mathcal{OX}} = \frac{\lambda + \mu}{\lambda - \mu} \boldsymbol{S}_{-x} = \frac{\lambda - \mu}{\lambda + \mu} \boldsymbol{S}_{-x}$$
(11)

 $\Rightarrow (\lambda + \mu)^2 = (\lambda - \mu)^2 \quad \Rightarrow \lambda = 1, \mu = 0 \text{ or } \lambda = 0, \mu = 1.$

Introduction O	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion OOOOO	Summary and Conclusion	
Symmetries of the equation of motion					
Symmetr	ies of the decorrelator				

- No transformation S_x → S_{-x} exists for the hybrid case (λ, μ ≠ 0) that leaves the EOM invariant.
- When (λ + μ)² = (λ − μ)², we have S^{OX}_x(t) = ±S_{-x}(t) as we integrate the equation from the initial condition. This means that two distinct initial configurations (a) and (c) are invariant under OX with (b), (d) as their perturbed copies.
- This one-one mapping translates to the definition of the decorrelator

$$\langle \mathbf{S}_{x}^{a}(t) \cdot \mathbf{S}_{x}^{b}(t) \rangle = \langle \mathbf{S}_{-x}^{c}(t) \cdot \mathbf{S}_{-x}^{d}(t) \rangle$$
(12)

The perturbed copy differs as

$$oldsymbol{\mathcal{S}}_0^d(0) = oldsymbol{\mathcal{S}}_0^c(0) \pm arepsilon(\hat{oldsymbol{n}} imes oldsymbol{\mathcal{S}}_0^c(0))$$

for $\lambda = 1, \mu = 0$; $\lambda = 0, \mu = 1$ respectively.

Thus

$$D_x(t) = D_{-x}(t)$$
 (13)

for both cases upto $\mathcal{O}(\varepsilon^2)$.

Introduction O	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion 00000	Summary and Conclusion
Energy dissipation				
Energy dissipation				

• For the microscopic dynamics

$$\dot{\boldsymbol{S}}_{x} = \boldsymbol{S}_{x} imes ((\lambda + \mu) \boldsymbol{S}_{x+1} + (\lambda - \mu) \boldsymbol{S}_{x-1})$$

the energy dissipation is given by

$$\dot{H} = -\sum_{x} \left(\boldsymbol{S}_{x+1} \cdot \dot{\boldsymbol{S}}_{x} + \boldsymbol{S}_{x} \cdot \dot{\boldsymbol{S}}_{x+1} \right)$$

= $-2\mu \sum_{x} \boldsymbol{S}_{x} \cdot (\boldsymbol{S}_{x+1} \times \boldsymbol{S}_{x-1})$ (14)

Expanding in the continuum limit

$$\mathbf{S}_{x\pm a}\simeq \mathbf{S}_{x}\pm a\partial_{x}\mathbf{S}_{x}+rac{a^{2}}{2}\partial_{xx}\mathbf{S}_{x}$$

the non-zero contribution to the energy dissipation comes from

$$\dot{H} = -2\mu a^{3} \boldsymbol{S}_{x} \cdot \left(\partial_{x} \boldsymbol{S} \times \partial_{x}^{2} \boldsymbol{S}\right)$$
(15)

Introduction O	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion	Summary and Conclusion
Energy dissipation				

• Continuum coarse-grained 1-D Langevin dynamics,

$$\partial_{x} \mathbf{S}(x,t) = D[\partial_{x}^{2}(r-\partial_{x}^{2})]\mathbf{S} + \mu(\mathbf{S} \times \partial_{x}\mathbf{S}) + \boldsymbol{\zeta}.$$
 (16)

We write the dynamic action in terms of Martin-Siggia-Rose response fields,

$$\begin{aligned} \boldsymbol{A}_{0}[\tilde{\boldsymbol{S}}, \boldsymbol{S}] &= \int_{\boldsymbol{x}, t} \left(\tilde{\boldsymbol{S}}^{\alpha} \left(\partial_{t} \boldsymbol{S}^{\alpha} - \boldsymbol{D} \partial_{\boldsymbol{x}}^{2} \left(\boldsymbol{r} - \partial_{\boldsymbol{x}}^{2} \right) \boldsymbol{S}^{\alpha} \right) + \boldsymbol{D} \tilde{\boldsymbol{S}}^{\alpha} \partial_{\boldsymbol{x}}^{2} \tilde{\boldsymbol{S}}^{\alpha} \right) \\ \boldsymbol{A}_{\mu}[\tilde{\boldsymbol{S}}, \boldsymbol{S}] &= -\mu \int_{\boldsymbol{x}, t} \epsilon_{\alpha\beta\gamma} \tilde{\boldsymbol{S}}^{\alpha} \boldsymbol{S}^{\beta} \partial_{\boldsymbol{x}} \boldsymbol{S}^{\gamma} \end{aligned}$$
(17)

and carry out a first-order perturbative expansion at the $\mu\text{-vertex}$.

۲

$$\left\langle \dot{H} \right\rangle = \frac{\int D[i\tilde{S}]D[S]\dot{H}e^{-A_0[\tilde{S},S]}e^{A_{\mu}[\tilde{S},S]}}{\int D[i\tilde{S}]D[S]e^{-A_0[\tilde{S},S]}e^{A_{\mu}[\tilde{S},S]}}$$
(18)

Introduction O	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion	Summary and Conclusion
Energy dissipation				

• Counting the contributions to the μ term in the Fourier space, we get per unit length

$$\mu^{2} \int_{(k,k',q,q')} \left\langle (ik - iq) \tilde{\mathbf{S}}_{k-q} \cdot (\mathbf{S}_{k} \times \mathbf{S}_{q}) (-iq') (k' - q')^{2} \mathbf{S}_{k'-q'} \cdot (\mathbf{S}_{k'} \times \mathbf{S}_{q'}) \right\rangle_{\mathbf{C}}$$
(19)

which can be split into 4 distinct contributions.

scaling the subsequent integral, the rate of energy-dissipation reduces to

$$\left\langle \dot{H} \right\rangle = \\ \mu^{2} (2\pi)^{3} \int_{k,q} \frac{dkdq}{r} \frac{(k-q)^{2}q(2q-k)}{D(1+q^{2})(q+(k-q)^{2})} \\ \frac{1}{k^{2}(1+k^{2})+q^{2}(1+q^{2})+(k-q)^{2}(1+(k-q)^{2})}$$
(20)

• This integral is ultraviolet and infrared convergent, which puts a finite value on the power dissipation for the driven dynamics, which is proportional to a non-zero entropy production. It is precisely zero for the Hamiltonian dynamics.

Introduction O	Non-reciprocal dynamics of Heisenberg spins	Numerical study	Discussion 00000	Summary and Conclusion
Summary	and Conclusion			

- We discover ballistic spreading of decorrelation in a 1-D Heisenberg chain with non-reciprocal, non-Hamiltonian dynamics.
- Spreading is left-right symmetric for purely antisymmetric exchange.
- We present a partial analytical understanding of the symmetry.
- We characterise the nonequilibrium nature of the dynamics through the rate of energy dissipation.
- N. Bhatt, S. Mukerjee, S. Ramaswamy; in preparation