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Introduction

Classical Heisenberg spins: precessional Hamiltonian dynamics →
thermalisation, spin diffusion

This work: effect of minimal nonequilibrium dynamics via non-reciprocal
exchange coupling (J. Das et al. EPL 2002)

Time-evolution of the overlap between spin configuration and perturbed
copy: propagating decorrelation front as in Hamiltonian case (A. Das et
al. PRL 2018)

Characterise nonequilibrium nature of the system through energy
dissipation
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Driven dynamics, Hamiltonian dynamics

Equations of motion

Spins of unit length precess in a local field as

Ṡx = Sx × (Jx,x−1Sx−1 + Jx+1,x Sx+1) (1)

A non-reciprocal exchange coupling Jx,x+1 ̸= Jx+1,x cannot be obtained
from Hamiltonian

H = −
∑

Jx,x+1Sx · Sx+1

Taking the simplest, extreme limit Jx,x+1 = −Jx+1,x we study the driven
dynamics of a Heisenberg spin chain

Ṡx = µSx × (Sx+1 − Sx−1) (2)

x = 0, 1, ..., L − 1
and compare it with the classical Hamiltonian dynamics

Ṡx = λSx × (Sx+1 + Sx−1) = {Sx ,H} (3)
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Decorrelator, analogy with OTOC

Decorrelator and OTOC analogy

Our system is chaotic at infinite temperature. The chaos can be
quantified by measuring the divergence of the dynamical trajectories.

The classical Out-of-Time Ordered Correlator is one such quantity

F (t) = −⟨{A(x , t),B(0, 0)}2⟩

We define the decorrelator as the deviation of a spin configuration from
its perturbed copy under a time evolution, averaged over an infinite
temperature thermal distribution. (A. Das et al)

D(x , t) =
1
2
⟨δS(x , t)2⟩ (4)
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Decorrelator, analogy with OTOC

Decorrelator and OTOC analogy

A copy of the initial configuration (a) is perturbed at a single site

δSb
0 (0) = Sa

0(0) + δSa
0

Sb
x (0) = Sa

x (0) ∀x ̸= 0

δS0 = ε(n̂ × S0)

n̂ = (ẑ × S0)/|ẑ × S0|
(5)

where ε → perturbation strength, ẑ is a unit-vector along the global spin
z-axis.
The variation of a spin at site x depends on ε, as

δSα
x (t) ≈

∂Sα
x (t)

∂Sβ
0

δSβ
0 = εnγϵβγνSν

0
∂Sα

x (t)
∂Sβ

0

= εnγ{Sα
x (t),S

γ
0 (0)}

allows us to write decorrelator in a form similar to the OTOC

D(x , t) =
1
2
⟨δS(x , t)2⟩ ≈ ε2

2
⟨{Sx(t), n̂ · S0}2⟩ (6)

with Sx(t) → A(x , t), εn̂ · S0 → B(0, 0)
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Results

Numerical results

Initial spins of unit length are drawn from a uniform random distribution,
with L = 2048 (periodic b.c.); ε = 0.001. The equations are integrated
via a fourth-order Runge-Kutta iteration with ∆t = 0.005, and a
tolerance of 10−5 on each spins. The system is averaged over 5000
configurations.

(a) λ = 1, µ = 0 (b) λ = 0, µ = 1

Figure: D(x , t) for the pure Heisenberg and pure driven dynamics. The decorrelator for
the non-conserving dynamics propagates ballistically, and symmetrically from the initial
site of perturbation, quite similar to the one obtained from Hamiltonian dynamics.
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Results

For the generalized dynamics

dSx

dt
= Sx × ((λ+ µ)Sx+1 + (λ− µ)Sx−1)

the decorrelator doesn’t show a left-right symmetry when λ, µ ̸= 0.

(a) λ = 0.6, µ = 0.4 (b) λ = 0.4, µ = 0.6

Figure: D(x , t) for the hybrid dynamics
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Results

Relation with chaos spreading

The decorrelator front represents the rate of spread of chaos, and is
quantified through an empirical formula

D(x , t) = ε2e(2κt(1−(x/vB t)2)) (7)

where ε → initial perturbation , κ → Lyapunov exponent, vB → butterfly
velocity. Plotting log

(
D(x,t)
ε2

)
against x/t , we find vB = 1.64, κ = 0.50

and vB = 1.32, κ = 0.46 for the Heisenberg dynamics and the pure
driven dynamics respectively.



Introduction Non-reciprocal dynamics of Heisenberg spins Numerical study Discussion Summary and Conclusion

Symmetries of the equation of motion

Symmetries of the equation of motion

The generalized equation of motion

Ṡx = Sx × ((λ+ µ)Sx+1 + (λ− µ)Sx−1) (8)

under spatial inversion X , SX
x = S−x ,

ṠX
x = SX

x × ((λ− µ)SX
x+1 + (λ+ µ)SX

x−1) (9)

doesn’t remain invariant.

Let a O be a second operation to restore the invariance such that

ṠOX
x = SOX

x × ((λ− µ)SOX
x+1 + (λ+ µ)SOX

x−1) (10)

Comparing with the original equation, this is true only for

SOX
x =

λ+ µ

λ− µ
S−x =

λ− µ

λ+ µ
S−x (11)

⇒ (λ+ µ)2 = (λ− µ)2 ⇒ λ = 1, µ = 0 or λ = 0, µ = 1.
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Symmetries of the equation of motion

Symmetries of the decorrelator

No transformation Sx → S−x exists for the hybrid case (λ, µ ̸= 0) that
leaves the EOM invariant.

When (λ+ µ)2 = (λ− µ)2, we have SOX
x (t) = ±S−x(t) as we integrate

the equation from the initial condition. This means that two distinct initial
configurations (a) and (c) are invariant under OX with (b), (d) as their
perturbed copies.

This one-one mapping translates to the definition of the decorrelator

⟨Sa
x (t) · Sb

x (t)⟩ = ⟨Sc
−x(t) · Sd

−x(t)⟩ (12)

The perturbed copy differs as

Sd
0 (0) = Sc

0(0)± ε(n̂ × Sc
0(0))

for λ = 1, µ = 0;λ = 0, µ = 1 respectively.

Thus

Dx(t) = D−x(t) (13)

for both cases upto O(ε2).
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Energy dissipation

Energy dissipation

For the microscopic dynamics

Ṡx = Sx × ((λ+ µ)Sx+1 + (λ− µ)Sx−1)

the energy dissipation is given by

Ḣ = −
∑

x

(
Sx+1 · Ṡx + Sx · Ṡx+1

)
= −2µ

∑
x

Sx · (Sx+1 × Sx−1)
(14)

Expanding in the continuum limit

Sx±a ≃ Sx ± a∂x Sx +
a2

2
∂xx Sx

the non-zero contribution to the energy dissipation comes from

Ḣ = −2µa3Sx ·
(
∂x S × ∂2

x S
)

(15)
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Energy dissipation

Continuum coarse-grained 1-D Langevin dynamics,

∂x S(x , t) = D[∂2
x (r − ∂2

x )]S + µ(S × ∂x S) + ζ. (16)

We write the dynamic action in terms of Martin-Siggia-Rose response
fields,

A0[S̃,S] =

∫
x,t

(
S̃α

(
∂tSα − D∂2

x

(
r − ∂2

x

)
Sα

)
+ DS̃α∂2

x S̃α
)

Aµ[S̃,S] = −µ

∫
x,t

ϵαβγS̃αSβ∂x Sγ

(17)

and carry out a first-order perturbative expansion at the µ-vertex .

〈
Ḣ
〉
=

∫
D[i S̃]D[S]Ḣe−A0[S̃,S]eAµ[S̃,S]∫
D[i S̃]D[S]e−A0[S̃,S]eAµ[S̃,S]

(18)
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Energy dissipation

Counting the contributions to the µ term in the Fourier space, we get per
unit length

µ2
∫
(k,k′,q,q′)

〈
(ik − iq)S̃k−q · (Sk × Sq)(−iq′)(k ′ − q′)2Sk′−q′ · (Sk′ × Sq′)

〉
0

(19)
which can be split into 4 distinct contributions.
scaling the subsequent integral, the rate of energy-dissipation reduces to〈

Ḣ
〉
=

µ2(2π)3
∫

k,q

dkdq
r

(k − q)2q(2q − k)
D(1 + q2)(q + (k − q)2)

1
k2(1 + k2) + q2(1 + q2) + (k − q)2(1 + (k − q)2)

(20)

This integral is ultraviolet and infrared convergent, which puts a finite
value on the power dissipation for the driven dynamics, which is
proportional to a non-zero entropy production. It is precisely zero for the
Hamiltonian dynamics.
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Summary and Conclusion

We discover ballistic spreading of decorrelation in a 1-D Heisenberg
chain with non-reciprocal, non-Hamiltonian dynamics.

Spreading is left-right symmetric for purely antisymmetric exchange.

We present a partial analytical understanding of the symmetry.

We characterise the nonequilibrium nature of the dynamics through the
rate of energy dissipation.

N. Bhatt, S. Mukerjee, S. Ramaswamy; in preparation
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