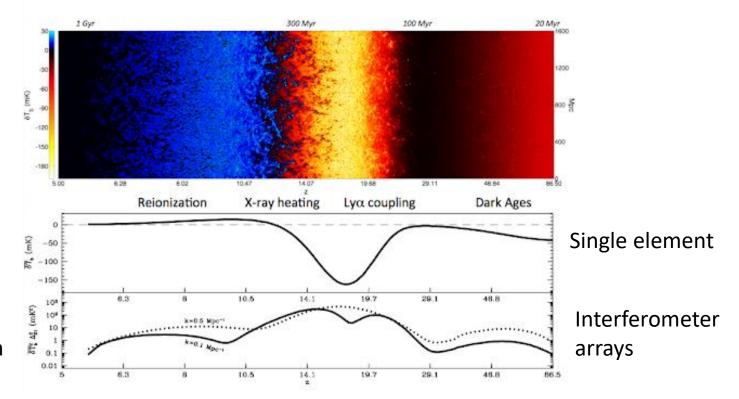


# Challenges and opportunities for innovation in imaging and cosmology with the SKA

Nithyanandan Thyagarajan (CSIRO)



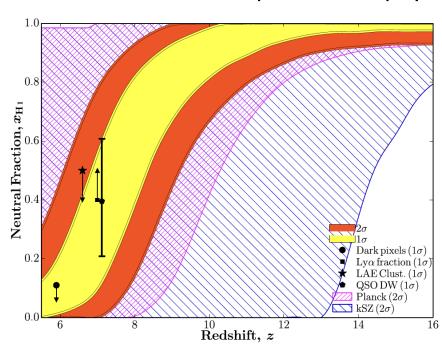

# Challenges or opportunities?

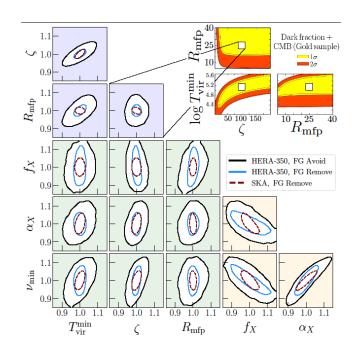
- EoR studies using redshifted 21cm
- Time-domain and Data Intensive astronomy
- Imaging
- Calibration
- RFI



# Epoch of Reionisation (EoR) studies




Global Average Spectrum

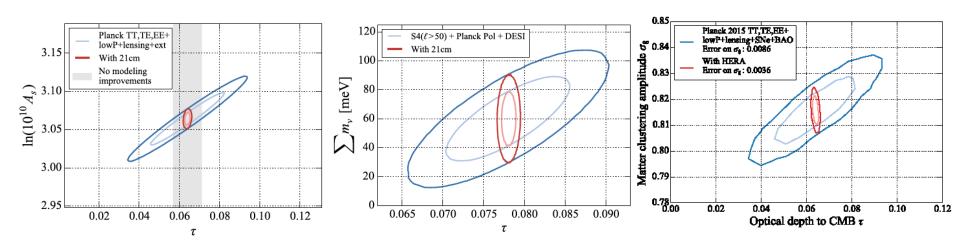

Fluctuations Power Spectrum



# The Potential of 21cm EoR experiments

## **Exquisite Astrophysical constraints**

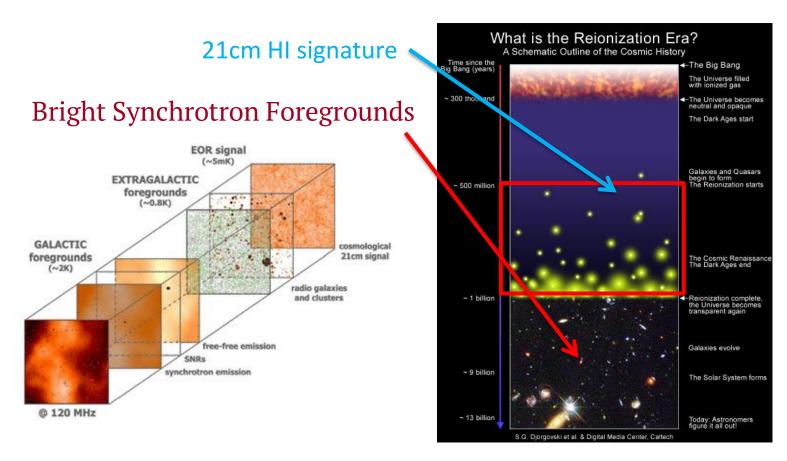





Courtesy: Bradley Greig & Andrei Mesinger

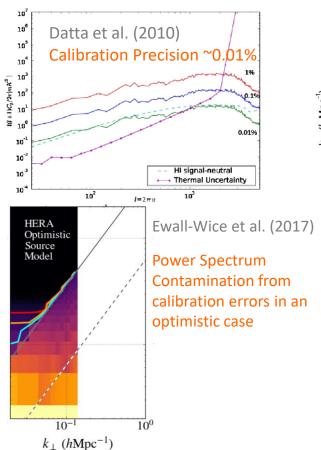


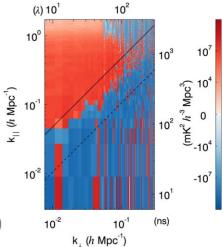
# The Potential of 21cm EoR experiments


### Disentangling cosmology constraints



Liu+ (2016)





# Challenges to 21cm experiments





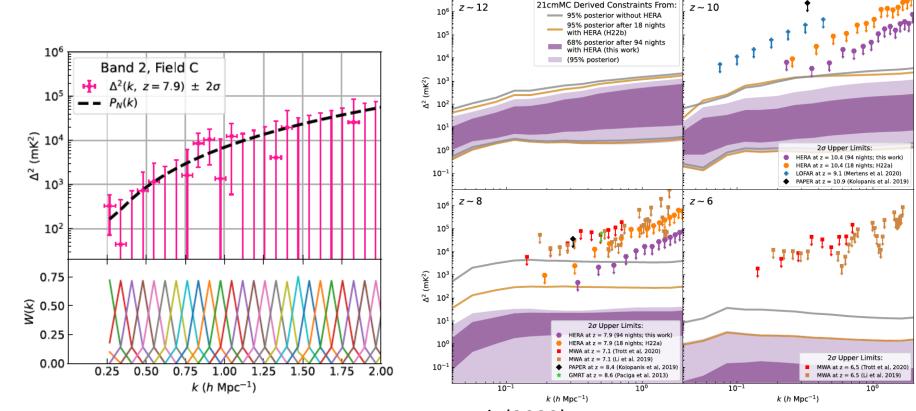
# **Calibration Challenges**





Barry et al. (2016)

Calibration
Precision ~10<sup>-5</sup>

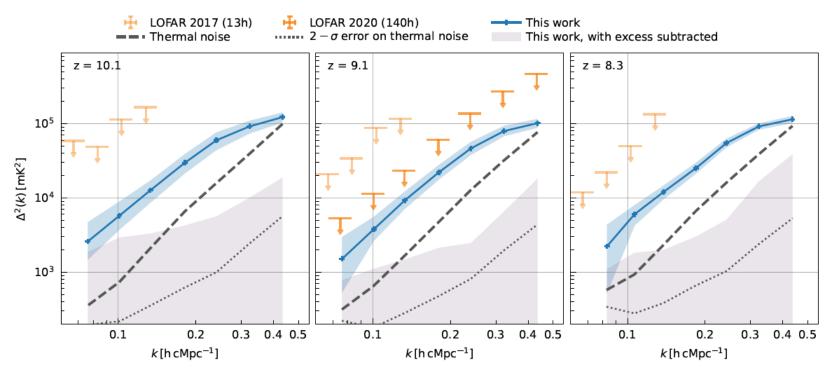

Thorough knowledge of foregrounds required to achieve this precision

#### Similar conclusions from ...

- Trott & Wayth (2016) for MWA and SKA
- Patil et al. (2017) for LOFAR
- ...
- Sophisticated strategies being developed
- HERA redundant calibration (Dillon et al. 2017; Orosz et al. 2018; Byrne+ 2020)
- Sagecal, DDEcal for LOFAR
- Hybrid calibration?



# Recent improved HERA results




HERA et al. (2022)



# Recent improved LOFAR results

LOFAR-EoR: Deeper multi-redshift upper limits on the 21-cm signal power spectrum from LOFAR



Mertens et al. (2025)



# Improved MWA results (coming soon!)

- MWA results using 268 hours
- Redshifts z=6.5 to 7



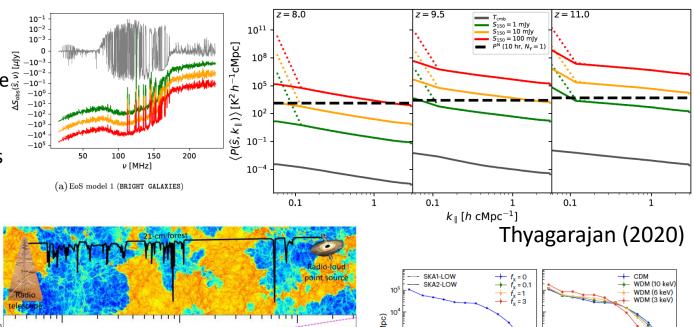
## Gradual but steady improvements

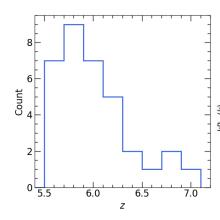
#### LOFAR is improving its results

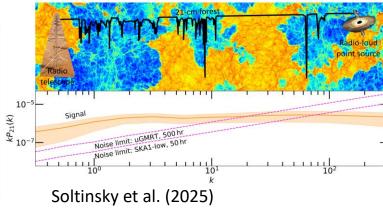
☐ Main limitation has been rotation of sources around North Celestial Pole and associated sidelobe removal due to beam errors

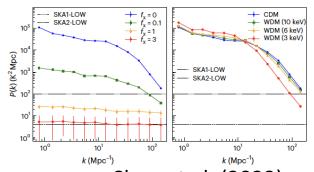
#### HERA is also improving its results

- ☐ Has set very competitive results to date (depends on redshift, k-bin, etc.)
- ☐ Main limitation is inter-antenna coupling effects that introduce spectral structure


#### MWA is also improving its results


☐ Main limitation is sharp features in bandpass structure

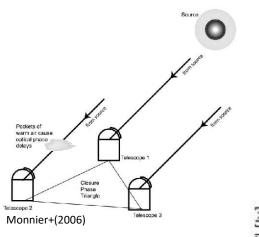


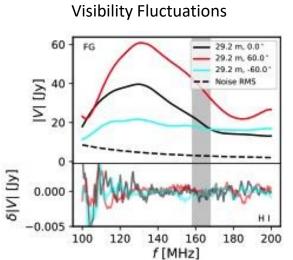


## 21cm forest: Independent, alternate EoR measurement

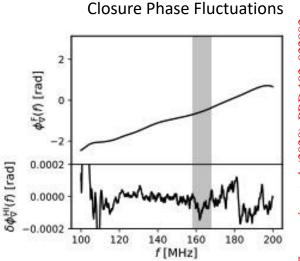
- Have to be lucky for bright background source
- Statistical detection has more prospects
- Sample of high-z RLQSOs growing









Shao et al. (2023)

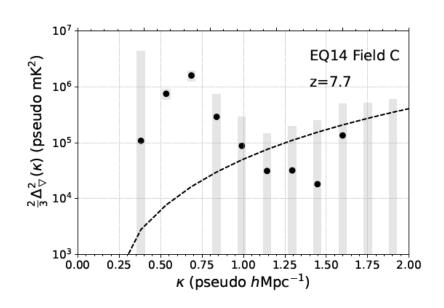


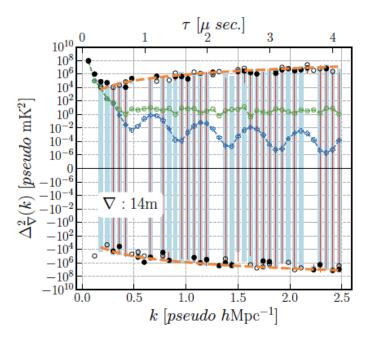
# **Closure phase spectrum** (avoids calibration systematics)








Good correspondence between fluctuations.

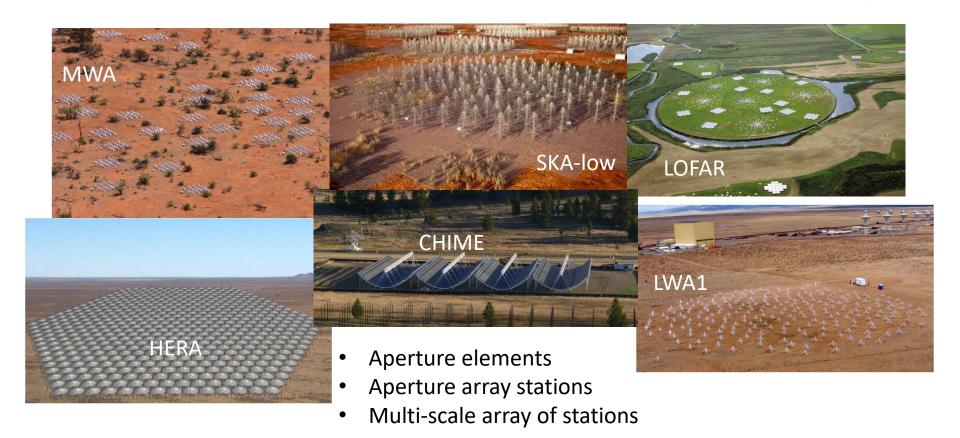

Shape, Dynamic range, Sensitivity, etc.

Thyagarajan et al. (2020): PRD 102, 022002



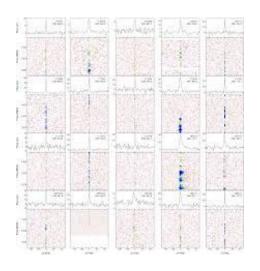
# Closure Phase Power Spectrum Results provides independent constraints






Keller+ 2023 using HERA

Tiwari+ 2023 using MWA




# Time domain and Data Intensive Astronomy





## Need for new paradigm: Extreme time-domain phenomena





ASKAP FRBs: Shannon et al. (2018)

#### Fast transients

- Extreme explosive astrophysical phenomena
- Very short duration (< 1 ms)</li>
- Unknown but very distant origin in the Universe
- Probes for Dark matter, matter under extreme densities

The CHIME / FRB collaboration (2019)

#### Time domain requires...

- Wide fields of view
- Large number of antennas for collecting area
- High time cadence, fast writeouts

Observational Cosmology like 21cm EoR also favours dense, large-N arrays



## E-field Parallel Imaging "Correlator" (EPIC)

## Playing the role of Nature more directly: Direct Imaging

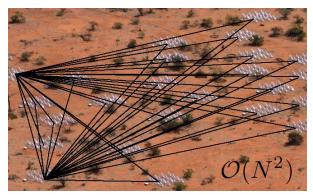
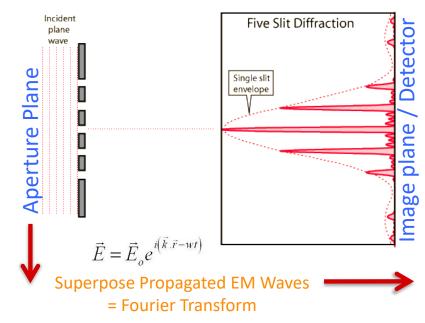




Image credit: Adam Beardsley

$$I(l,m) = \iint \mathcal{V}(u,v) e^{2\pi i (ul + vm)} du dv$$

Spatial correlation: Computationally expensive for Large-N telescopes



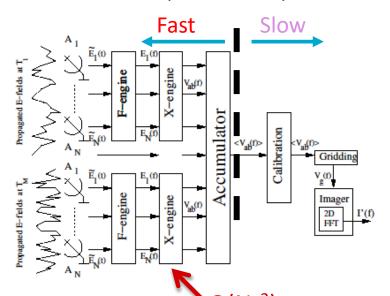
Convolution theorem of Fourier Transform:

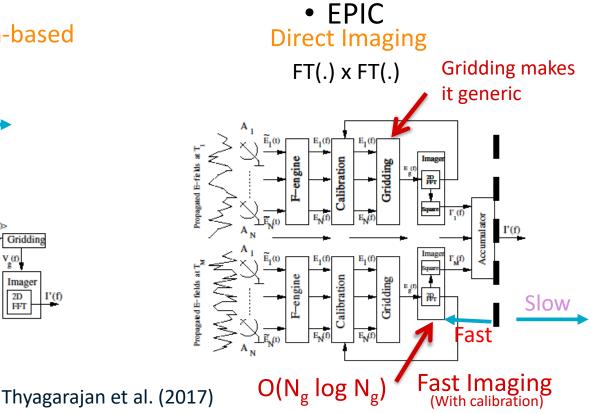
FT(Correlation) 
$$\leftarrow$$

$$\leftarrow \rightarrow$$

FT(Correlation)  $\leftarrow \rightarrow$  FT(.) x FT(.) = |FT(.)|<sup>2</sup>

Traditional / Correlation-based


Direct Imaging (FT and square)




# **EPIC** implementation of Direct Imaging

FX
 Traditional / Correlation-based

FT(Correlation)







## Deployment on LWA-Sevilleta (NM, USA)

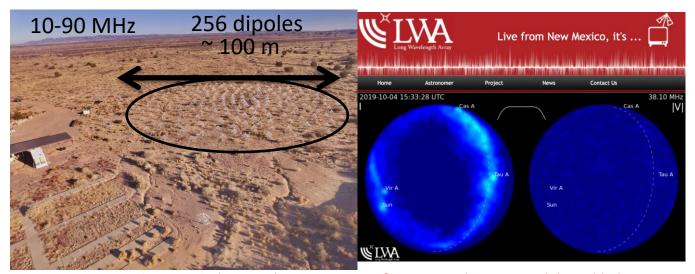
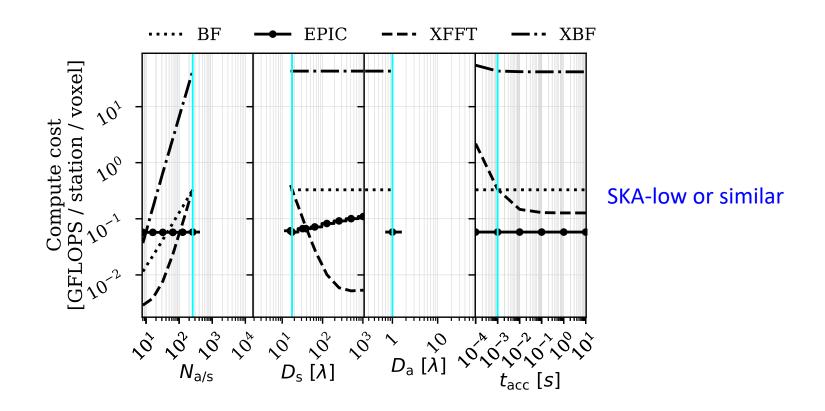



Image Credit: Greg Taylor (PI: LWA-SV)

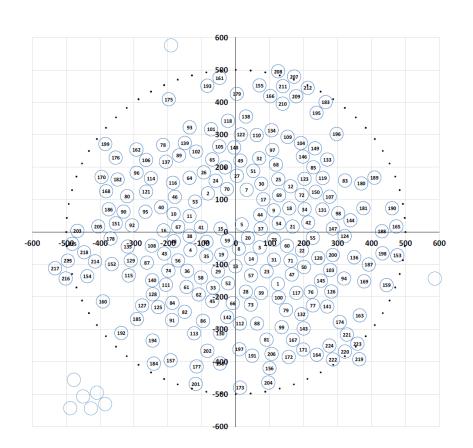

Significant Time-domain Capability added to LWA-SV Before EPIC: > 1 s, After EPIC: ~ 80 ms

| Parameters                | GTX 980 | RTX 2080Ti |
|---------------------------|---------|------------|
| Number of cores           | 2048    | 4352       |
| GPU clock (MHz)           | 1127    | 1350       |
| Streaming multiprocessors | 16      | 68         |
| Memory bandwidth (GB/s)   | 224.4   | 616        |
| FP32 performance (TFLOPS) | 4.891   | 13.45      |
| FP64 performance (GFLOPS) | 155.6   | 420.2      |

64x64 images, 3.6 MHz, 80 ms cadence on two GPU cards
EPIC on commensal mode for users



# **Comparison with other architectures**






## **EPIC on SKA-low**

- 224 stations in the SKA-Low core
  - That's 57344 antennas!
  - 1 km diameter
- Many options for EPIC
  - Single station : 64x64 pixels
  - Sum multiple stations for greater sensitivity
  - Or image with the entire core e.g.
     1024x1024 pixel all-sky images at kHz update rates

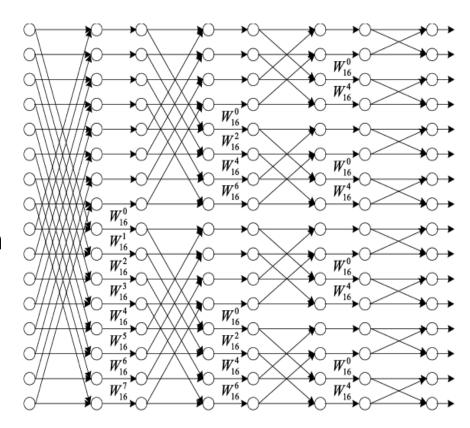
See everything that flashes in the radio sky!





# **LWA EPIC GPU Implementation**

LWA performed a quite detailed analysis of EPIC GPU performance


Memory bandwidth limited

| GPU                   | SM<br>count | Shared<br>Memory<br>per SM<br>(KiB) | lmage<br>size    | Achievable<br>bandwidth <sup>a</sup><br>(Channels/MHz) | Polarization   | Base<br>[Boost]<br>Clock<br>(MHz) | Compute<br>capability | Bus<br>interface | Estimated price   |
|-----------------------|-------------|-------------------------------------|------------------|--------------------------------------------------------|----------------|-----------------------------------|-----------------------|------------------|-------------------|
| RTX<br>2080 Ti        | 68          | 64                                  | 64x64<br>128x128 | 132/3.3 MHz<br>68/1.65 MHz                             | Dual<br>Single | 1350<br>[1545]                    | 7.5                   | PCle 3.0<br>x16  | \$1k              |
| RTX<br>A4500          | 56          | 128                                 | 64x64<br>128x128 | 112/2.8 MHz<br>56/1.4 MHz                              | Dual<br>Single | 1050<br>[1650]                    | 8.6                   | PCIe 4.0<br>x16  | \$1.5k            |
| RTX<br>3090 Ti        | 84          | 128                                 | 64x64<br>128x128 | 132/3.3 MHz<br>84/2.1 MHz                              | Dual<br>Single | 1560<br>[1860]                    | 8.6                   | PCIe 4.0<br>x16  | \$1.6k            |
| RTX<br>4090           | 128         | 128                                 | 64x64<br>128x128 | 132/3.3 MHz<br>128/3.2 MHz                             | Dual<br>Dual   | 2235<br>[2520]                    | 8.9                   | PCIe 4.0<br>x16  | \$1.8k            |
| RTX<br>4090 Ti        | 142         | 128                                 | 64x64<br>128x128 | 132/3.3 MHz<br>132/3.3 MHz                             | Dual<br>Dual   | 2235<br>[2520]                    | 8.9                   | PCIe 4.0<br>x16  | \$2k <sup>#</sup> |
|                       |             |                                     |                  | Data Center GPUs                                       |                |                                   |                       |                  |                   |
| L40                   | 142         | 128                                 | 64x64<br>128x128 | 132/3.3 MHz<br>132/3.3 MHz                             | Dual<br>Single | 735<br>[2490]                     | 8.9                   | PCIe 4.0<br>x16  | \$7.6k            |
| A100<br>PCle<br>40 GB | 108         | 192                                 | 64x64<br>128x128 | 132/3.3 MHz<br>108/2.7 MHz                             | Dual<br>Dual   | 765<br>[1410]                     | 8.0                   | PCIe 4.0<br>x16  | \$11k             |
| H100<br>PCle          | 114         | 256                                 | 64x64<br>128x128 | 132/3.3 MHz<br>114*/2.85 MHz                           | Dual<br>Dual   | 1095<br>[1795]                    | 9.0                   | PCle 5.0<br>x16  | \$35k             |



# **Fully parallel FFT**

- 64 point FFT computed every clock cycle
- Every path in the FFT signal flow graph is implemented in the hardware
- Can be constructed entirely with adders
- The U55C Alveo can implement over 1,000,000 parallel 8-bit adders.



Signal flow graph for a 16-point FFT



# FPGA/GPU comparison

- The LWA GPU implementation is severely memory bandwidth limited
  - gridded voltages and the 2D FFT doesn't fit in GPU register space.
  - Short FFTs are also not particularly efficient in the GPU
- LWA GPU implementation ~ 3 MHz of bandwidth at 300W power (Nvidia RTX 3080/4080)

- The FPGA allows construction of a processing pipeline that uses on chip block RAM with only the final time/frequency integrated image written back to external memory.
  - FFTs achieved with adders and managed with BRAMs
  - expandable to 1024x1024 grids, with thousands of antennas (with significantly reduced bandwidth per FPGA).
- U55C consumes ~120W power for ~60 MHz processing bandwidth
- ~50x bandwidth/power efficiency

Images produced by EPIC on FPGA would be exported to a GPU for further processing, e.g. transient search, de-dispersion etc.



# Scaling to larger N, larger images

- FPGA resources required roughly scales as the image size
  - E.g. 256x256 image = 16x the number of pixels compared with 64x64, so around 4 MHz of bandwidth could be processed per FPGA
  - Allows arrays up to about 8192 antennas.
  - 8192 antennas = about 800 Gbps of voltage data input
- Scales to images of ~1000x1000 = 1MPixels
- Beyond 1000x1000, performance will drop dramatically due to onchip memory constraints

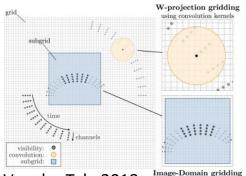


## SKA-Low - EPIC: 64 MHz bandwidth

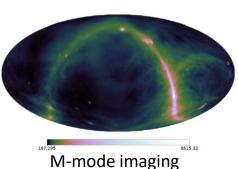
#### EPIC is well suited to SKA-low core

| Configuration               | Image Size (pixels)  | Antennas Used   | Estimated Alveos<br>(Versal) required, 64<br>MHz bandwidth |
|-----------------------------|----------------------|-----------------|------------------------------------------------------------|
| Single SKA-Low Station      | 64x64 = 4096         | 256             | 1                                                          |
| Entire core, incoherent sum | 64x64 = 4096         | 224x256 = 57344 | 224                                                        |
| Entire SKA-Low Core         | 1024x1024 = 1M pixel | 224x256 = 57344 | 448                                                        |

The science cases for EoR, pulsar search, and general transient search needs large field of view, not high angular resolution.


cost(448 Alveos)
~\$5,000,000 =
small fraction of total
SKA-low cost

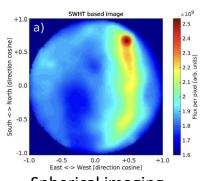



# **Imaging**

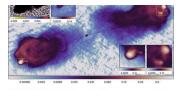
### Significant developments in last 2 decades

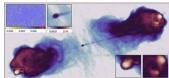
- Non-coplanarity, w-terms
- Heterogeneity, A-terms
- Large sky curvature within FoV
- W-projection, w-stacking, WSCLEAN, etc.
- Increasing use of RML methods for sparse apertures




Van der Tol+ 2018




Kriele+ 2022


### New developments

- Image Domain gridding
- Spherical Harmonic Imaging
- M-mode imaging
- ML methods



Spherical imaging Carozzi 2015

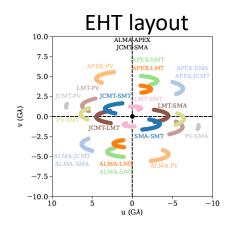




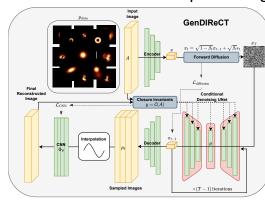
Deep Learning imaging Image credit: Yves Wiaux



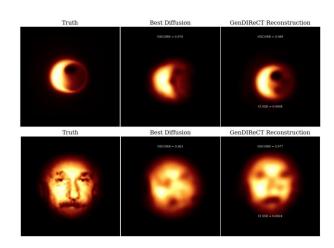
## Calibration


#### Challenging when:

- Signal is weak compared to overwhelming nuisance signal e.g. EoR
  - Applies to low-frequency, dense aperture arrays
- Measurements on sparse aperture coverage, low S/N
  - Applies to VLBI, for example

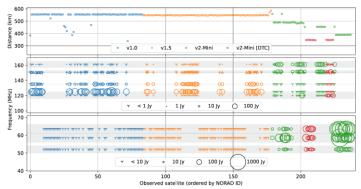



# Closure Invariants: Calibration-independent Imaging


- Closure invariants are calibration-independent
- E.g. Closure phases and amplitudes, but polarimetric invariants too
- Information ratio =  $(N^2-3N+1)/(N^2-N) \sim 1-2/N$  when N is large
- Imaging possible without calibration without much loss of information



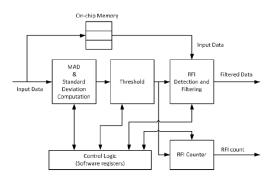
Closure Invariants + Deep Learning

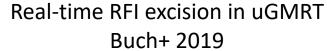


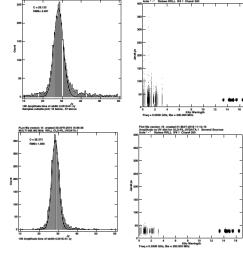

Lai et al. (2025)






- Site selection critical for RFI
- Site options shrinking with satellite RFI
- Lunar far side??





Bassa+ 2024

## **RFI**

- Explore Spatial nulling in beamforming
- Online RFI detection and excision
- Explore pre-correlation RFI detection and flagging at high time- and spectral resolution becoming important









# Summary

- SKA is made possible after decades of innovation
- But requirements have grown due to
  - Date intensive science
  - Dynamic range
  - Sensitivity
  - Sparse measurements of information
  - Time and angular resolution
  - Field of view
- Difficult for current techniques, algorithms, and instrumentation to scale sustainably
- Must start thinking beyond SKA as it is full of opportunities