Signatures of Primordial Black Holes in Cosmology

Vivian Poulin Laboratoire Univers et Particules de Montpellier CNRS and Université of Montpellier

ICTS, "Less travelled path of Dark Matter" 10.11.2020

PBHs are great Dark Matter candidates

 Postulated 40 years ago, they can be created by large density contrast in the early universe;

> Carr&Hawking, MNRAS, vol. 168, pp. 399–415, 1974 Carr, ApJ., vol. 201, pp. 1–19, 1975

- Do not emit light; Non-relativistic; Nearly collisionless; Formed before BBN;
- Solve small scales issues of DM!
 S. Clesse, J. Garcia-Bellido, Phys. Rev. D 92, 023524 (2015)
- Output the seeds of SMBH at the center of galaxies;

Carr&Silk, 1801.00672

They can be probed in many ways, hence subject to many observational constraints ...
Sasaki++, 1801.05235

Today I will discuss (some of the) cosmological constraints.

Table of content

- Briefly: constraints on PBH formation and the primordial power spectrum
- Constraints on disk accreting PBH (1 < M/Msun < 10xxx)
- A new hope: the 21cm signal
- Constraints on mixed (PBH+else) DM models
- Constraints on evaporating PBH $(3*10^{13} < M/g < 10^{17})$

For more details

- B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, 2002.12778
- B. Carr and F. Kuhnel, 2006.02838
- M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, 1801.05235
- Green and Kavanagh 2007.10722

Many more models in the literature, e.g.

• From extended inflation models (Hybrid, curvaton, multi-fields ...): Typically the field driving inflation needs to slow down to create a peak in $P(k) \propto H^2/\epsilon$. (ϵ = slow-roll parameter).

See very complete review by Sasaki++ 1801.05235

Ist and 2nd order phase transitions: lowers the threshold Jedamzik& Nemeyer, PRD59, p. 124014, 1999; Rubin et al., JETP, vol. 91, pp. 921–929, 2001

Vivian Poulin - LUPM

ICTS, DM School

Green and Kavanagh 2007.10722

Constraints on the (primordial) amplitude of density fluctuations

• These constraints can affect specific scenarios of PBH formation

• They can be sensitive to the `statistics' of the fluctuation

Vivian Poulin - LUPM

Cosmological signatures of PBH

Spectral Distortions

ICTS, DM School

Chluba++ 1505.01834

- Power at small scales is damped via Compton scattering- the so-called "Silk Damping": this `thermalization' affect the black-body distribution
- Most important processes to thermalise any energy injection are Bremsstrahlung, Compton and Double-Compton scattering.
- If those processes go out of equilibrium, SD can occur.

Firas: $\mu < 9 \times 10^{-5}$, $y < 1.5 \times 10^{-5}$

$$\frac{\mathrm{d}(Q_{\mathrm{ac}}/\rho_{\gamma})}{\mathrm{d}z} \approx -2A^2 \frac{\mathrm{d}}{\mathrm{d}z} \int \frac{k^2 \,\mathrm{d}k}{2\pi^2} P_{\mathcal{R}}(k) \,\mathrm{e}^{-2k^2/k_{\mathrm{D}}^2} \qquad \qquad r_d^2(\tau) \equiv \left(\frac{2\pi}{k_d}\right)^2 \sim \int_{\tau_{\mathrm{ini}}}^{\tau} \frac{d\tau}{a n_e \sigma_T}$$

- Range probe: 30 Mpc⁻¹ < k < 5000 Mpc⁻¹, which corresponds to the PBH mass range of $10^{5}M_{\odot} < M < 10^{10}M_{\odot}$
- Caveat: the constraints depend on the statistics. It relaxes largely for non-gaussian $(p \neq 2)$ distribution.

Kohri++ 1405.5999 Nakama++ 1710.06945

Constraints from Ly- α

Ashfordi, McDonald, Spergel, JCAP 2003

Introduction

ICTS, DM School

Green and Kavanagh 2007.10722

Vivian Poulin - LUPM

Cosmological signatures of PBH

Wavelength [mm]

FIRAS data with 4000 errorbars

2.725 K Blackbody

How do e.m. energy injection affect the CMB?

() Generate spectral distortions
$$\approx$$
 $\Delta \rho_{\gamma}$ < 10 ⁻⁵.

 $\rho_{\gamma,\rm cmb}$

Problem: $\rho_{\gamma, cmb}$ is huge when interactions are switched on (z > 1000). see e.g. Chluba & Sunyaev, MNRAS 419 (2012) 1294-1314

SD distortions from the PBH are weak. Ali-Haimoud&Kamionkowski, PRD95, no. 4, p. 043534, 2017.

II) Affect baryons, which in turn affects CMB decoupling and CMB anisotropies

Main impact of e.m. energy injection: modification of recombination era

400

ICTS, DM School

For cosmology, sub % precision is needed!

- multilevel atoms in non-equilibrium
- radiative transfer effects
- H and He feedbacks

Numerical codes used: CosmoRec, HyRec and « fudged » Recfast

ICTS, DM School

Standard ionization history

ICTS, DM School

E.m. energy injection can modify the ionization and temperature history

$$\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)} [R_s(z) - I_s(z) - I_X(z)]$$

$$\frac{dT_{\rm M}}{dz} = \frac{1}{1+z} \left[2T_{\rm M} + \gamma (T_{\rm M} - T_{\rm CMB}) + K_h \right]$$

 $\frac{dE}{dVdt}\Big|_{dep c} (z) = \frac{f_c(z, x_e)}{dVdt} \frac{dE}{dVdt}\Big|_{inj} (z)$

The « three levels atom »

 $f_c(z,x_e)$ is the key quantity, it encodes:

• What fraction of the injected energy is left to interact with the IGM

Plasma Properties Particle/Astro-Physics

How this is energy is distributed among each channel: 'heat', 'ionization', 'excitation'

Vivian Poulin - LUPM

ICTS, DM School

We inject γ in a plasma with $n\gamma >> n_b$

Q: What happens to the photon distribution?

High mass BH accrete the surrounding medium

This heats the gas and leads to the emission of x-ray emission that can affect the CMB.

Essential on PBH accretion

See Yacine Ali-Haimoud's lecture

 Problematic of accretion onto a point mass M is old: seminal papers focused on accretion by star in an infinite gas cloud.

Hoyle & Lyttleton, 1939, 1940; Bondy & Hoyle 1944; Bondi 1952

Famous result by Bondi derived in the context of spherical accretion

$$\dot{M}_{\rm HB} \equiv 4\pi\lambda\rho_{\infty}v_{\rm eff}r_{\rm HB}^2 \equiv 4\pi\lambda\rho_{\infty}\frac{(GM)^2}{v_{\rm eff}^3}$$

• This is a « geometrical » result: Mass passing through a sphere of radius $r_{\rm HB}$ = GM/v_{eff} ²

• what is $v_{\rm eff}$? No exact calculation exists... Proxy: $v_{\rm eff}^2 = c_{s,\infty}^2 + v_{\rm rel}^2$

Sound speed in the gas Relative velocity between gas & BH

- $\lambda \approx 1$: accretion eigenvalue. Take into account gas pressure, interaction with CMB...
- The accreted matter gets heated $T_{\rm S} \approx 10^9 \cdot 10^{11}$ K: bremsstrahlung emission. $L = \epsilon \dot{M}_{HB}c^2$ $\epsilon \simeq 10^{-3} - 10^{-5} \dot{M} / \dot{M}_{\rm edd}$ $L_{\nu} \propto \nu^{-0.5} \exp(-\nu / T_s)$ Shapiro 1973, 1974
- This formalism is applied to disk accretion with appropriate values: $\lambda \simeq 10^{-1} - 10^{-2}$ $\epsilon \simeq 10^{-1} - 10^{-3} \dot{M} / \dot{M}_{edd}$ *Review: Narayan& Yuan 2014*

Vivian Poulin - LUPM

Cosmological signatures of PBH

A major unknown: the geometry of the accretion

- CMB constraints strongly depend on the geometry of the accretion: spherical or disk?
- This will then set the typical values required for λ and ϵ .
- Spherical accretion: Ricotti et al, 2007, Ali-Haimoud & Kamionkowski: M > 100Mo (conservative case).
 Ricotti et al., ApJ., vol. 680, p. 829, 2008.

Ali-Haimoud&Kamionkowski, PRD95, no. 4, p. 043534, 2017.

Is spherical accretion a good approximation ??

- If the accreted gas has a high angular momentum, it cannot fall straight onto the BH.
- Energy is dissipated but angular momentum is conserved ==> Accretion disk forms.
- How high should be the angular momentum?
 => Keplerian angular momentum for a rotation around the BH at a distance r_{D.}

$$l_{
m D}\simeq r_{
m D}v_{
m Kep}(r_{
m D})\simeq \sqrt{GMr_{
m D}}$$

Shapiro&Lightman 1976; Ipser&Price 1977; Ruffert 1999; Agol&Kamionkowski 2002

ICTS, DM School

A criterion for disk accretion

• Now the angular momentum is simply

$$l\simeq \left(rac{\delta
ho}{
ho}+rac{\delta v}{v_{
m eff}}
ight)v_{
m eff}r_{
m HB}$$

Density gradients perp. to the BH motion Typical velocity dispersion on small scales

• Hypothesis: a disk forms if the radius of the disk $r_D >> r_S=2GM$

$$\frac{\delta\rho}{\rho}\Big|_{k\sim r_{BH}^{-1}} \gg 10^{-4} \qquad \qquad \delta v \gg 1.5 \left(\frac{1+z}{1000}\right)^{3/2} \,\mathrm{m/s}\,.$$

Agol&Kamionkowski 2002, *VP*++ 1707.04206

• This is easily satisfied because of the enhanced power spectrum on small scales! At z=1000, $k_{\rm NL} \approx 10^3 Mpc^{-1} << k_{\rm BH} \approx 10^5 Mpc^{-1}$

> Afshordi et al., ApJ. 594 (2003) L71-L74 Gong&Kitajima, 1704.04132

- No exact computation possible because of non-linearity, but this is always true for binary BH: $\delta v = \omega r_{\rm HB} = \sqrt{2GM/a^3} \text{ with } a \simeq d/2 \simeq (3M/(4\pi\rho_{\rm PBH}))^{1/3} \Rightarrow M/M_{\odot} \gg ((1+z)/730)^3$
- Spherical accretion leads to conservative constraints but in the early universe, it is possible that a disk forms!

Vivian Poulin - LUPM

Cosmological signatures of PBH

Accreting PBH

- This is also favored by numerical simulations of supersonic moving black holes.
- Accretion transitions from spherical to "bow-shaped".
- At $z \leq 1000$: $v_{\text{rel}} \simeq 5c_s \sqrt{(1+z)/1000}$.

What disk forms?

Review: Yuan&Narayan 1401.0586

- Optimistic: Cold, Thin Disk, high radiative efficiency $\epsilon \sim 0.1$, leads to the strongest Shakura & Sunyaev 1973 constraints.
- More realistic and conservative: Hot, Thick disk with inefficient cooling ADAF (Advection Dominated Accretion Flow). Ichimaru 1977, Narayan&Yi 1994
- Results of numerical simulations confirmed by observations (e.g. Sgr A*). Θ
- Relatively low radiative efficiency and accretion rate.

Power law shape up to 100 keV energies from synchrotron and bremsstrahlung.

Energy deposition function

Depend on PBH mass and accretion rate.

Review: Narayan&Yuan 2014

Delayed recombination, higher freeze-out plateau, early reionization

Vivian Poulin - LUPM

Accreting PBH

Cosmological signatures of PBH

ICTS, DM School

Impact on the CMB power spectra

VP++ *1707.04206*

- Recombination delay: shifts of the peak, more diffusion damping.
- Higher freeze-out plateau: reionization bump higher, higher optical depth.

Cosmological signatures of PBH

ICTS, DM School

Constraints on disk-accreting PBH

- Disk accretion constraints are two to three orders of magnitude stronger.
- Main uncertainty: relative velocities between PBH and baryons.
- Could be improved thanks to better understanding of PBH/baryons structures.

Vivian Poulin - LUPM

21 cm

21 cm as a probe of PBH

 PBH accretion leads to increase in the ionization fraction and temperature of the IGM at late times

Mena++ 1906.07735

- The effect on x_e and T_k is much stronger at late times.
- This is particularly interesting for 21cm experiments!

21 cm		ICTS, DM School
Spin Temperature	21 cm as a probe of PBH	Higher energy Spin flip 1420 MHz $\lambda = 21 \text{ cm}$
$\frac{n_1}{n_0} = 3e^{-E_{10}/k_B T_S}$	$T_{S}^{-1} = \frac{T_{CMB}^{-1} + x_{c}T_{K}^{-1} + x_{\alpha}T_{c}^{-1}}{1 + x_{c} + x_{\alpha}}$	$\delta T_b \propto n_H \left(1 - \frac{T_{\gamma}}{T_s} \right)$
scattering with CMB	collision within the gas interaction	on with UV from stars

• 21cm theoretically "easy" from $z\sim1000$ to 30; then huge astrophysical uncertainty.

21 cm as a probe of PBH

 From the global signal: energy injection increase the baryon temperature and thus reduce the amplitude of the global signal.

If true, the EDGES measurement would strongly constrain PBH in the universe

Vivian Poulin - LUPM

21 cm as a probe of PBH

- PBH can also suppress the amplitude of fluctuations in the 21cm power spectrum
- Huge discovery potential for future experiments (HERA, SKA)!

See also Bernal++ 1712.01311

Vivian Poulin - LUPM

28/47

Signatures of Primordial Black Holes in Cosmology

Vivian Poulin Laboratoire Univers et Particules de Montpellier CNRS and Université of Montpellier

ICTS, "Less travelled path of Dark Matter" 10.11.2020

The SMBH problem

- SMBH have masses $M_{\rm BH} > 10^5 M_{\odot}$. They sit at the center of almost every galaxies.
 - Their accretion disk emission is known to saturate the X-ray background.
- SMBH with masses $M_{\rm BH} > 10^9$ have been observed at $z \gtrsim 6$.

Banados++ 2017

Marloni 1505.04940

• The mass accretion rate is limited to $M \lesssim M_i \exp\left(\frac{1-\epsilon}{\epsilon} \frac{t-t_i}{\tau_E}\right)$ with $\epsilon \sim 0.1$ and $\tau_E \sim 400$ Myrs

• Hence there is barely enough time for a stellar BH formed at $z \sim 15$ with $M \sim 100 M_{\odot}$ to grow to $10^9 M_{\odot}$ by $z \sim 6$.

Volonteri 1003.4404

- Several possibilities: super-Eddington accretion, mergers, direct collapse for heavy gas cloud... and SMBH from PBH!
 Begelman++ astro-ph/0602363
- Even if it seems complicated for PBH to form all of the Dark Matter, f_PBH ≈ 10⁻⁸ with M_PBH ≈ 10⁵ Msun to explain SMBH at the center of galaxies.

Carr & Silk 1801.00672

The existence of a DM halo increases the accretion rate

- Extend bound to sub-fraction of the population: if DM is a particle, what about the DM halo?
- The presence of a DM halo can act as to increase the effective mass of the BH and hence the accretion rate. *Ricotti++ ApJ 2008, Park++ 1512.03434*
- First assuming that the DM particles cannot annihilate: what is the $r_{b,eff}$?

Bertshinger 1985

Vivian Poulin - LUPM

Cosmological signatures of PBH

32/47

Mixed DM constraints

ICTS, DM School

DM or WIMP: All or nothing

See also Lacki&Beacom 1003.3466, Adamek++ 1901.08528

• Alternatively, detecting PBH would strongly constrain WIMP

Bertone++ 1905.01238

33/47

Evaporating PBH

Energy injection by evaporating PBH

ICTS, DM School

BHs emit SM particles with a black body spectrum at a temperature

Hawking, Nat. (1974)

$$T_{\rm BH} = \frac{1}{8\pi GM} \simeq 1.06 \left(\frac{10^{10} \text{g}}{M}\right) \text{ TeV}$$

$$\tau_{\rm BH} \simeq 13.8 \left(\frac{1.6}{\mathscr{F}(M)}\right) \left(\frac{M}{2 \times 10^{14} {\rm g}}\right)^3 {\rm Gyrs}$$

Energy injection rate is proportional to the mass-loss rate

Vivian Poulin - LUPM

Cosmological signatures of PBH Stöcker++JCAP 1803 (2018) no.03, 018

Evaporating PBH

ICTS, DM School

Impact of evaporating PBH on the CMB

VP++2017 Stöcker++ 2018 Poulter++ 1907.06485

• Effect is quite similar to that of accreting PBH unless mass is < 10^{15} g.

Vivian Poulin - LUPM

ICTS, DM School

Evaporating PBH

Constraints on evaporating PBH

Stocker++ 1801.01871

Green and Kavanagh 2007.10722

• CMB largely dominates at low masses and can improve constraints in the future !

Vivian Poulin - LUPM

• The numerical code is public: ExoCLASS

Stocker++ 1801.01871

Exotic energy injection with ExoCLASS: Application to the Higgs portal model and evaporating black holes

Patrick Stöcker,^a Michael Krämer,^a Julien Lesgourgues,^a Vivian Poulin^b

 $^a {\rm Institute}$ for Theoretical Particle Physics and Cosmology (TTK),

RWTH Aachen University, D-52056 Aachen, Germany.

^bDepartment of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.

E-mail: stoecker@physik.rwth-aachen.de, mkraemer@physik.rwth-aachen.de, vpoulin@jhu.edu, lesgourg@physik.rwth-aachen.de

- Try to reproduce some of the figures presented previously.
- You can also study the effect of DM annihilations & decays.

PBH is a great DM candidate that can be probed in many ways:

- Cosmological probes are very powerful to look for electromagnetic signatures of PBH
- Accretion excludes PBH as 100 % DM for $M_{\rm PBH} \gtrsim 30~M_{\odot}$ (spherical) or $M_{\rm PBH} \gtrsim 1~M_{\odot}$ (disk)
- Evaporation excludes PBH as 100 % DM for $M_{\rm PBH} \lesssim 10^{17} g$
- Future 21 cm experiments increase tremendously the discovery potential
- Discovery of even a fraction of PBH as DM (SMBH?) could be the 'silver bullet' for WIMPs.
- There exists also model-dependent constraints depending PBH formation mechanism (e.g. GW background, spectral distortions...) not treated here.

38/47

Thanks for your attention!