Signatures of Primordial Black Holes in Cosmology

 Vivian Poulin Laboratoire Univers et Particules de Montpellier CNRS and Université of Montpellier

ICTS, "Less travelled path of Dark Matter" 10.11.2020

1

PBHs are great Dark Matter candidates

Postulated 40 years ago, they can be created by large density contrast in the early universe;

> *Carr&Hawking, MNRAS, vol. 168, pp. 399–415, 1974 Carr, ApJ., vol. 201, pp. 1–19, 1975*

- Do not emit light; Non-relativistic; Nearly collisionless; Formed before BBN; \bigcirc
- Solve small scales issues of DM! *S. Clesse, J. Garcia-Bellido, Phys. Rev. D 92, 023524 (2015)*
- Can be the seeds of SMBH at the center of galaxies; \bigcirc

Carr&Silk, 1801.00672

They can be probed in many ways, hence subject to many observational \bigcirc constraints … *Sasaki++, 1801.05235*

Today I will discuss (some of the) cosmological constraints.

Table of content

- Briefly: constraints on PBH formation and the primordial power spectrum
- Constraints on disk accreting PBH $(1 < M/Msun < 10^{xxx})$ \bigcirc
- A new hope: the 21cm signal
- Constraints on mixed (PBH+else) DM models \bigcirc
- Constraints on evaporating PBH $(3 * 10^{13} < M/g < 10^{17})$

For more details

- B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, 2002.12778
- B. Carr and F. Kuhnel, 2006.02838
- M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, 1801.05235
- Green and Kavanagh 2007.10722

Many more models in the literature, e.g.

 Typically the field driving inflation needs to slow down to create a From extended inflation models (Hybrid, curvaton, multi-fields …): peak in $P(k) \propto H^2/\varepsilon$. (ε = slow-roll parameter).

See very complete review by Sasaki++ 1801.05235

1st and 2nd order phase transitions: lowers the threshold \bigcirc *Jedamzik& Nemeyer, PRD59, p. 124014, 1999; Rubin et al., JETP, vol. 91, pp. 921–929, 2001*

ICTS, DM School

Green and Kavanagh 2007.10722

Constraints on the (primordial) amplitude of density fluctuations

These constraints can affect specific scenarios of PBH formation

They can be sensitive to the `statistics' of the fluctuation

Vivian Poulin - LUPM Cosmological signatures of PBH

Spectral Distortions

ICTS, DM School

Chluba++ 1505.01834

- Power at small scales is damped via Compton scattering- the so-called "Silk Damping": this \bigcirc `thermalization' affect the black-body distribution
- Most important processes to thermalise any energy injection are Bremsstrahlung, Compton \bigcirc and Double-Compton scattering.
- If those processes go out of equilibrium, SD can occur.

Firas: $\mu < 9 \times 10^{-5}$, $y < 1.5 \times 10^{-5}$ *Fixsen++ ApJ 1996*

$$
\frac{\mathrm{d}(Q_{\rm ac}/\rho_\gamma)}{\mathrm{d}z} \approx -2A^2 \frac{\mathrm{d}}{\mathrm{d}z} \int \frac{k^2 \, \mathrm{d}k}{2\pi^2} P_{\mathcal{R}}(k) \, \mathrm{e}^{-2k^2/k_{\rm D}^2} \qquad \qquad r_d^2(\tau) \equiv \left(\frac{2\pi}{k_d}\right)^2 \sim \int_{\tau_{\rm ini}}^{\tau} \frac{d\tau}{a n_e \sigma_T}
$$

- Range probe: 30 Mpc⁻¹ < k < 5000 Mpc⁻¹, which corresponds to the PBH mass range of $10^5M\odot < M < 10^{10}M\odot$
- Caveat: the constraints depend on the statistics. It relaxes largely for non-gaussian $(p \neq 2)$ distribution.

Kohri++ 1405.5999 Nakama++ 1710.06945

Constraints from Ly-*α*

Introduction

ICTS, DM School

Green and Kavanagh 2007.10722

Wavelength [mm]

How do e.m. energy injection affect the CMB?

I) Generate spectral distortions
$$
\approx \frac{\Delta \rho_{\gamma}}{2.5}
$$
 < 10⁻⁵.

 $\rho_{\gamma, \text{cmb}}$

Problem: $ρ_{γ,cmb}$ is huge when interactions are switched on (z >1000). *see e.g. Chluba & Sunyaev, MNRAS 419 (2012) 1294-1314*

SD distortions from the PBH are weak. *Ali-Haimoud&Kamionkowski, PRD95, no. 4, p. 043534, 2017.*

II) Affect baryons, which in turn affects CMB decoupling and CMB anisotropies

Main impact of e.m. energy injection: modification of recombination era

Vivian Poulin - LUPM Cosmological signatures of PBH

ICTS, DM School

For cosmology, sub % precision is needed!

- multilevel atoms in non-equilibrium
- radiative transfer effects
- H and He feedbacks

Numerical codes used: **CosmoRec, HyRec and « fudged » Recfast**

ICTS, DM School

Standard ionization history

ICTS, DM School

E.m. energy injection can modify the ionization and temperature history

$$
\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)}[R_s(z) - I_s(z) - I_X(z)] \qquad \frac{dT_M}{dz}
$$

dE

 $\overline{\mathbf{r}}$ $\overline{}$ $\overline{}$

dep*,*c

dV dt

$$
\frac{dT_{\rm M}}{dz} = \frac{1}{1+z} \left[2T_{\rm M} + \gamma (T_{\rm M} - T_{\rm CMB}) + K_h \right]
$$

Typical parametrization through the $f_c(z, x_e)$ functions :

 $(z) = f_c(z, x_e) \frac{dE}{dV}$

The « three levels atom »

 $f_c(z, x_e)$ is the key quantity, it encodes:

 $\overline{}$ $\overline{}$ $\overline{}$

 $\lim_{i \to j}$

(*z*)

dV dt

What fraction of the injected energy is left to interact with the IGM \bigcirc

Plasma Properties Particle/Astro-Physics

How this is energy is distributed among each channel: 'heat', 'ionization', 'excitation' \bigcirc

ICTS, DM School

We inject γ in a plasma with $n_\gamma >> n_b$

Q : What happens to the photon distribution?

High mass BH accrete the surrounding medium

This heats the gas and leads to the emission of x-ray emission that can affect the CMB.

Accreting PBH

Essential on PBH accretion

See Yacine Ali-Haimoud's lecture

Problematic of accretion onto a point mass M is old: seminal papers focused on accretion by star in an infinite gas cloud.

Hoyle & Lyttleton, 1939, 1940; Bondy & Hoyle 1944; Bondi 1952

Famous result by Bondi derived in the context of spherical accretion

$$
\dot{M}_{\rm HB} \equiv 4\pi \lambda \rho_{\infty} v_{\rm eff} r_{\rm HB}^2 \equiv 4\pi \lambda \rho_{\infty} \frac{(GM)^2}{v_{\rm eff}^3}
$$

This is a « geometrical » result: Mass passing through a sphere of radius $r_{HB} = GM/v_{eff}$ ² \bigcirc

 \bullet what is v_{eff}? No exact calculation exists... Proxy: $v_{\text{eff}}^2 = c_{s,\infty}^2 + v_{\text{rel}}^2$

Sound speed in the gas Relative velocity between gas & BH

- $\lambda \approx 1$: accretion eigenvalue. Take into account gas pressure, interaction with CMB...
- The accreted matter gets heated $T_s \approx 109-10^{11}K$: bremsstrahlung emission. $L = \epsilon \dot{M}_{H B} c^2$ $\epsilon \simeq 10^{-3} - 10^{-5} \dot{M} / \dot{M}_{\rm edd}$ $L_{\nu} \propto \nu^{-0.5} \exp(-\nu/T_s)$ Shapiro 1973, 1974
- This formalism is applied to disk accretion with appropriate values: $\lambda \simeq 10^{-1} - 10^{-2}$ $\epsilon \simeq 10^{-1} - 10^{-3} \dot{M} / \dot{M}_{\rm edd}$ Review: Narayan&Yuan 2014

A major unknown: the geometry of the accretion

- CMB constraints strongly depend on the geometry of the accretion: spherical or disk?
- This will then set the typical values required for λ and ϵ . \bigcirc
- Spherical accretion: Ricotti et al, 2007, Ali-Haimoud & Kamionkowski: M > 100M☉ \bigcirc (conservative case). *Ricotti et al., ApJ., vol. 680, p. 829, 2008.*

Ali-Haimoud&Kamionkowski, PRD95, no. 4, p. 043534, 2017.

Is spherical accretion a good approximation ??

- If the accreted gas has a high angular momentum, it cannot fall straight onto the BH.
- Energy is dissipated but angular momentum is conserved ==> Accretion disk forms.
- How high should be the angular momentum? \Rightarrow Keplerian angular momentum for a rotation around the BH at a distance r_{D} .

$$
l_{\rm D} \simeq r_{\rm D} v_{\rm Kep}(r_{\rm D}) \simeq \sqrt{GMr_{\rm D}}
$$

Shapiro&Lightman 1976; Ipser&Price 1977; Ruffert 1999; Agol&Kamionkowski 2002

ICTS, DM School

A criterion for disk accretion

Now the angular momentum is simply

$$
l \simeq \left(\frac{\delta \rho}{\rho} + \frac{\delta v}{v_{\text{eff}}} \right) v_{\text{eff}} r_{\text{HB}}
$$

Density gradients perp. to the BH motion Typical velocity dispersion on small scales

Hypothesis: a disk forms if the radius of the disk $r_D \gg r_S = 2GM$

$$
\left.\frac{\delta\rho}{\rho}\right|_{k\sim r_{BH}^{-1}}\gg 10^{-4}\qquad \qquad \delta v\gg 1.5\left(\frac{1+z}{1000}\right)^{3/2}\,\mathrm{m/s}\,.
$$

Agol&Kamionkowski 2002, VP++ 1707.04206

This is easily satisfied because of the enhanced power spectrum on small scales! At z=1000, $k_{NL} \approx 10^{3}$ Mpc⁻¹ << $k_{BH} \approx 10^{5}$ Mpc⁻¹

> *Afshordi et al., ApJ. 594 (2003) L71-L74 Gong&Kitajima, 1704.04132*

No exact computation possible because of non-linearity, but this is always true for binary BH: $\delta v = \omega r_{\text{HB}} = \sqrt{2GM/a^3}$ with $a \simeq d/2 \simeq (3M/(4\pi\rho_{\text{PBH}}))^{1/3} \Rightarrow M/M_{\odot} \gg ((1+z)/730)^3$

Spherical accretion leads to conservative constraints but in the early universe, it is \bigcirc possible that a disk forms!

Accreting PBH

- This is also favored by numerical simulations of supersonic moving black holes. \bigcirc
- Accretion transitions from spherical to "bow-shaped". \bigcirc
- At $z \lesssim 1000$: $v_{\text{rel}} \simeq 5c_s \sqrt{(1+z)/1000}$. \bigcirc

Xie&Yuan 2012

What disk forms?

Review: Yuan&Narayan 1401.0586

- Optimistic: Cold, Thin Disk, high radiative efficiency $\epsilon \sim 0.1$, leads to the strongest constraints. *Shakura & Sunyaev 1973*
- More realistic and conservative: Hot, Thick disk with inefficient cooling ADAF (Advection Dominated Accretion Flow). *Ichimaru 1977, Narayan&Yi 1994*
- Results of numerical simulations confirmed by observations (e.g. Sgr A*).
- Relatively low radiative efficiency and accretion rate.

Vivian Poulin - LUPM Cosmological signatures of PBH 21/47 10^2 10^3 redshift *z* 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} *l* \parallel *L / L*Edd Maximum sensitivity $M_{\text{PBH}} = 500 M_{\odot} \lambda_{\text{ADAF}} = 10^{-2}$ Spherical accretion ADAF benchmark ADAF high luminosity ADAF low luminosity 10^2 10^3 redshift *z* 10^{-6} 10^{-5} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} ˙*m* $=\dot{M}c^2/(10$ \times *L*Edd) Spherical accretion $\lambda_{ADAF} = 10^{-2}$ (benchmark) $30 M_{\odot}$ $1000 M_{\odot}$ *VP++ 1707.04206*

Power law shape up to 100 keV energies from synchrotron and bremsstrahlung.

Depend on PBH mass and accretion rate. *Review: Narayan&Yuan 2014*

Delayed recombination, higher freeze-out plateau, early reionization

Accreting PBH

Energy deposition function

Impact on the CMB power spectra

VP++ 1707.04206

- Recombination delay: shifts of the peak, more diffusion damping. \bigcirc
- Higher freeze-out plateau: reionization bump higher, higher optical depth. \bigcirc

ICTS, DM School

Constraints on disk-accreting PBH

- Disk accretion constraints are two to three orders of magnitude stronger.
- Main uncertainty: relative velocities between PBH and baryons.
- Could be improved thanks to better understanding of PBH/baryons structures.

ICTS, DM School

21 cm

21 cm as a probe of PBH

PBH accretion leads to increase in the ionization fraction and temperature of the IGM \bigcirc at late times

Mena++ 1906.07735

- The effect on x_e and T_k is much stronger at late times. \bigcirc
- This is particularly interesting for 21cm experiments! C

• 21cm theoretically "easy" from $z \sim 1000$ to 30; then huge astrophysical uncertainty.

21 cm

21 cm as a probe of PBH

From the global signal: energy injection \bigcirc increase the baryon temperature and thus reduce the amplitude of the global signal.

If true, the EDGES measurement would strongly constrain PBH in the universe

 $log_{10}(M_{\text{PBH}}/M_{\odot})$ *Hektor++ 1803.09697*

21 cm as a probe of PBH 21 cm

- PBH can also suppress the amplitude of fluctuations in the 21cm power spectrum
- Huge discovery potential for future experiments (HERA, SKA)! \ominus

See also Bernal++ 1712.01311

28/47

Signatures of Primordial Black Holes in Cosmology

 Vivian Poulin Laboratoire Univers et Particules de Montpellier CNRS and Université of Montpellier

ICTS, "Less travelled path of Dark Matter" 10.11.2020

29

The SMBH problem

- SMBH have masses $M_\mathrm{BH}>10^5 M_\odot.$ They sit at the center of almost every galaxies.
	- *Marloni 1505.04940*
- Their accretion disk emission is known to saturate the X-ray background.
- SMBH with masses $M_{\rm BH}>10^9$ have been observed at $z\gtrsim6.$

Banados++ 2017

The mass accretion rate is limited to $M\lesssim M_i\exp\Big(-\frac{1}{\epsilon}-\frac{1}{\tau_F}\Big)$ with $\epsilon\sim 0.1$ and $\tau_E\sim 400$ Myrs $1 - \epsilon$ *ϵ* $\left(\frac{t-t_i}{\tau_E}\right)$ with $\epsilon \sim 0.1$ and $\tau_E \sim 400$

Hence there is barely enough time for a stellar BH formed at $z\sim 15$ with $M\sim 100M_\odot$ to grow to $10^9 M_{\odot}$ by $z \sim 6$.

Volonteri 1003.4404

- Several possibilities: super-Eddington accretion, mergers, direct collapse for heavy gas cloud… and SMBH from PBH! *Begelman++ astro-ph/0602363*
- Even if it seems complicated for PBH to form all of the Dark Matter, f_PBH $\approx 10^{-8}$ with M_PBH $\approx 10^{5}$ \bigcirc Msun to explain SMBH at the center of galaxies.

Carr & Silk 1801.00672

The existence of a DM halo increases the accretion rate

- Extend bound to sub-fraction of the population: if DM is a particle, what about the DM halo?
- The presence of a DM halo can act as to increase the effective mass of the BH and hence the accretion rate. *Ricotti++ ApJ 2008, Park++ 1512.03434*
- First assuming that the DM particles cannot annihilate: what is the $r_{b, \rm eff}$?

Bertshinger 1985

Vivian Poulin - LUPM Cosmological signatures of PBH

32/47

Mixed DM constraints

ICTS, DM School

DM or WIMP: All or nothing

See also Lacki&Beacom 1003.3466, Adamek++ 1901.08528

Alternatively, detecting PBH would strongly constrain WIMP *Bertone++ 1905.01238*

33/47

Evaporating PBH

Energy injection by evaporating PBH

ICTS, DM School

BHs emit SM particles with a black body spectrum at a temperature *Hawking, Nat. (1974)* \bigcirc

$$
T_{\rm BH} = \frac{1}{8\pi GM} \simeq 1.06 \left(\frac{10^{10} \text{g}}{M}\right) \text{ TeV}
$$

$$
\tau_{\rm BH} \simeq 13.8 \left(\frac{1.6}{\mathcal{F}(M)} \right) \left(\frac{M}{2 \times 10^{14} \text{g}} \right)^3 \text{Gyrs}
$$

Energy injection rate is proportional to the mass-loss rate

Vivian Poulin - LUPM Cosmological signatures of PBH /47 34 *Stöcker++JCAP 1803 (2018) no.03, 018*

Evaporating PBH

ICTS, DM School

Impact of evaporating PBH on the CMB

VP++2017 Stöcker++ 2018 Poulter++ 1907.06485

Effect is quite similar to that of accreting PBH unless mass is $< 10^{15}$ g. \bigcirc

ICTS, DM School

Evaporating PBH

Constraints on evaporating PBH

Stocker++ 1801.01871 Green and Kavanagh 2007.10722

CMB largely dominates at low masses and can improve constraints in the future !

The numerical code is public: ExoCLASS *Stocker++ 1801.01871*

Exotic energy injection with ExoCLASS: Application to the Higgs portal model and evaporating black holes

Patrick Stöcker,^a Michael Krämer,^a Julien Lesgourgues,^a Vivian Poulin b

^aInstitute for Theoretical Particle Physics and Cosmology (TTK),

RWTH Aachen University, D-52056 Aachen, Germany.

 b Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.

E-mail: stoecker@physik.rwth-aachen.de, mkraemer@physik.rwth-aachen.de, vpoulin@jhu.edu, lesgourg@physik.rwth-aachen.de

- Try to reproduce some of the figures presented previously.
- You can also study the effect of DM annihilations & decays. \bigcirc

38/47

PBH is a great DM candidate that can be probed in many ways:

- Cosmological probes are very powerful to look for electromagnetic signatures of PBH
- Accretion excludes PBH as 100 % DM for $M_{\rm PBH} \gtrsim 30$ M_{\odot} (spherical) or $M_{\rm PBH} \gtrsim 1$ M_{\odot} (disk) \bigcirc
- Evaporation excludes PBH as 100 % DM for $\,M_{\text{PBH}} \lesssim 10^{17}g$
- Future 21 cm experiments increase tremendously the discovery potential \bigcirc
- Discovery of even a fraction of PBH as DM (SMBH?) could be the 'silver bullet' for WIMPs. \bigcirc
- There exists also model-dependent constraints depending PBH formation mechanism (e.g. \bigcirc GW background, spectral distortions…) not treated here.

Thanks for your attention!