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PREFACE

This book answers the eternal question, How much can we say and do about
something we do not know? People in many trades and walks of life have per-
fected the art of bluffing without blushing, and acting blindly. This particular
text grew out of a one-semester course, intended as a parting gift to those
leaving physics for greener pastures and wondering what was worth taking
with them. Statistically, most former physicists use statistics because this dis-
cipline was the first to develop quantitative tools to answer the question posed
above. Yet when the course was taught in different institutions and countries,
it attracted a motley mix of students, postdocs, and faculty from physics, math-
ematics, engineering, computer science, economics, and biology. Eventually,
it evolved into a meeting place where we learn from each other, using the
universal language of information theory.

The simplest way to answer the opening question is with a phenomenology
traditionally called thermodynamics. It deals only with visible manifestations
of the hidden, using general principles (like symmetries and conservation
laws) to restrict possible outcomes. The focus is on mean values, and fluctu-
ations are ignored. A more sophisticated approach derives the statistical laws
by explicitly averaging over the hidden degrees of freedom. Those laws jus-
tify thermodynamics and describe the probability of fluctuations. Two basic
notions of this approach—entropy and free energy—turn out to be among
the few most important conceptual and technical tools of modern science and
technology.

This book is an introduction that requires prior knowledge of neither ther-
modynamics and statistics nor information theory. The first chapter gives,
in a minimalist way, the basics of thermodynamics and statistical physics
and describes their dual focus on what we have (energy) and what we don’t
(knowledge). When ignorance exceeds knowledge, the right strategy is to
measure ignorance. Entropy does that. We understand that entropy is not a
property of a system, but the information we lack about it. It is then natural to
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start using in the second chapter the language of information theory, revealing
the universality of the approach. When viewed from the perspective of infor-
mation theory, the essence of statistics is essentially common sense, which
could be compressed to the maxim “the whole truth and nothing but the
truth.” That means using all the available data and maximizing missing infor-
mation, that is, looking for the entropy maximum conditional on the data.
This approach is valid not only for thermal equilibrium (where data are on
conserved quantities) but for any state. Mathematically, the approach is based
to a large extent on the simple trick of adding many random numbers. Build-
ing on that basis, one develops versatile instruments, like mutual information
and its quantum sibling, entanglement entropy, which are widely applied to
subjects ranging from bacteria and neurons to markets and quantum com-
puters. The third chapter describes several applications, elucidating different
aspects of the approach and directions of its development. The fourth chapter
follows a tireless random walker to rank web pages and obtain a more power-
ful form of the second law of thermodynamics. In the fifth chapter, we learn
that only full knowledge must persist; if we let in even the smallest semblance
of ignorance, it grows and fills the space. This is illustrated by the irreversible
entropy change produced by reversible flows in phase space. We also discuss
the most sophisticated way to forget information: the renormalization group.
Forgetting is a fascinating activity—one learns truly important things this
way. The sixth chapter describes the fundamental lower and upper limits of
uncertainty imposed, respectively, by quantum theory and relativity. Chapter
7 closes out the main body of the text with a compact conclusion stating the
main lessons. The appendix presents more advanced subjects and material for
tutorials. Exercises are provided after the respective sections. The last section
of the appendix lists all the exercises presented in the book, along with detailed
solutions.

The textbook is self-sufficient and contains no reference list. Those wish-
ing to go above and beyond are encouraged to do searches using prompts like
( Joule 1845), which will bring you not only to the original text but also to
important texts citing it.

Even though this is a graduate text, we use only elementary mathemati-
cal tools, but from all three fields—geometry, algebra, and analysis—which
correspond, respectively, to studying space, time, and continuum. We employ
two complementary ways of thinking: continuous flows and discrete count-
ing (thus involving both brain hemispheres). They equip the reader with a
powerful and universal tool, applied everywhere, from computer science and
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machine learning to biophysics and economics. The book is panoramic, try-
ing to combine into a reasonably coherent whole the subjects taught in much
detail in different departments: thermodynamics and statistical mechanics (as
taught in physics and engineering), dynamical chaos (as taught in physics and
applied mathematics), information and communication theories (as taught
in computer science and engineering). My desire is to reveal an essential
unity between these disciplines. In addition, I felt compelled to tell a story
worth telling: how we discover the limits imposed by uncertainty on engines,
communications, computations, and perception. The story’s protagonist is
the notion of entropy/information, which was born in the Industrial Revolu-
tion, matured during the digital revolution, and leads the present revolution,
blurring the boundaries between physical, digital, and biological domains.

In the end, recognizing the informational nature of the world and breaking
the barriers of specialization is also of value for physicists. People working on
quantum computers and the entropy of black holes use the same tools as those
designing self-driving cars and market strategies, studying molecular biology,
animal behavior, and human languages, figuring out how the brain works, and
trying to quantify conscience. Many go out and apply the tools of physics to
new domains. Few can come back enriched by the knowledge of how the tools
work in linguistics and brain research and look at the physical theories as an
example of human language developed by the human brain. It may open new
perspectives.

The amount of material exceeds that for a standard one-semester course so
that lecturers can choose what is more appropriate for their audience. Shorter
and less technical versions of the course can be based on chapters 1–4 and
7. A longer course can include chapters 5 and 6, which involve more physics.
The book can also be used for independent study by senior undergraduate and
graduate students, postdocs, and faculty who want to see a bigger picture with
connections between different disciplines and find new research opportuni-
ties. Readers familiar with thermodynamics and statistics can start from the
second chapter, consulting the material from the first one when it is referred
to. On the other hand, readers from computer science, engineering, mathe-
matics, or biology may benefit from reading the first chapter, as it provides
a unifying framework for the rest of the book. Bear in mind that the book
is written by a natural scientist focused more on “how it works” and “what
it is like” and less on the rigor of definitions and statements. Truly impatient
readers could read only the short seventh chapter, which lists the take-home
lessons.
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For a book with such a wide scope, it is probably inevitable not only
that my limited expertise in engineering, computer science, biology, eco-
nomics, and linguistics has caused infelicities and technical errors but that
the dilettante perspective has distorted essential elements in the culture
of these disciplines. As Schrodinger wrote, “Some of us should venture
to embark on a synthesis of facts and theories, albeit with second-hand
and incomplete knowledge of some of them—and at the risk of making
fools of ourselves.” Fully accepting this risk, I shall maintain a website at
https://www.weizmann.ac.il/complex/falkovich/information-theory where
objections and corrections will be gratefully received and discussed.

Small-print parts can be omitted upon the first few readings.

Gregory Falkovich, 2024
Rehovot, Israel
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“Entropy is not a property of a system, but the information we lack about it,
right? Where is my Information textbook?”
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Thermodynamics and
Statistical Physics

Our knowledge is always partial. If we study macroscopic systems, some
degrees of freedom remain hidden. For small sets of atoms or subatomic par-
ticles, their quantum nature prevents us from knowing precise values of their
momenta and coordinates simultaneously. We used to believe that we found
the way around the partial knowledge in mechanics, electricity, and mag-
netism, where we have closed sets of equations describing explicitly known degrees
of freedom. In other words, we learned how to restrict our description only
to things that can be considered independent of the unknown within a given
accuracy. For example, planets are large complex bodies, and yet the motion of
their centers of mass in the limit of large distances satisfies closed equations.1

Despite the spectacular successes of electromagnetic theory and celestial
mechanics, we soon realized how illusory was our belief in the closed descrip-
tion, since we needed to feed it with initial or boundary conditions taken from
measurements. Here our knowledge is incomplete because of a finite precision
of measurements. This has dramatic consequences when there is instability,
so small data uncertainty at a given moment leads to large uncertainty in pre-
dicting the future and recovering the past. In a sense, every new decimal in
precision is a new degree of freedom for unstable systems (including our solar
system).

In this chapter, we deal with observable manifestations of the hidden degrees of
freedom. While we do not know their state, we do know their nature—whether
those degrees of freedom are related to moving particles, spins, bacteria, or

1. The next step—description of a planet rotation—needs to account for many extra
degrees of freedom, for instance, oceanic flows (which slow down rotation by tidal forces).
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2 c h a p t e r 1

market traders. That means, in particular, that we know the symmetries and
conservation laws of the system.

The first two sections present a phenomenological approach called ther-
modynamics. The last two sections serve as a brief introduction into statistical
physics.

1.1 Basics of Thermodynamics

One can teach monkeys to differentiate; integration requires humans.

—gleb kotkin

For at least a few thousand years, people have been burning things to propel
objects. That was put on an industrial scale by the use of steam engines in the
mid- to late 1700s. The Industrial Revolution generated a practical need to
estimate engine efficiency, which triggered a regular scientific inquiry on gen-
eral principles governing the conversion of heat into mechanical work. That
led to the development of the abstract concept of entropy.

A heat engine works by delivering heat from a reservoir with some tem-
perature T1 via some system to another reservoir, with T2, doing some work
in the process. Look under the hood of your car to appreciate the level of
abstraction achieved in that definition. The work W is the difference between
the heat given by the hot reservoir, Q 1, and the heat absorbed by the cold
one, Q 2. What is the maximal fraction of heat we can use for work? Carnot
in 1824 stated that we cannot make Q 2 arbitrarily small: in all processes,
Q 2/T2≥Q 1/T1, so that the efficiency is bounded from above:

W
Q 1
= Q 1−Q 2

Q 1
≤ 1− T2

T1
. (1.1)T1

W

T2

Q2

Q1

His elaborate arguments are of only historical interest now. Clausius in 1864
called the ratio Q/T entropy (the word starts with en-, like energy, and ends
with -tropos, which means “turn” or “way” in Greek). We now interpret
the Carnot criterion, saying that the entropy decrease of the hot reservoirs,
�S1=Q 1/T1, must be less than the entropy increase of the cold one,
�S2=Q 2/T2. Maximal work is achieved for minimal (zero) total entropy
change,�S2=�S1.

-1—
0—

+1—



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 16:34 — page 3 — #3
�

�

�

�

�

�

t h e r m o d y n a m i c s a n d s tat i s t i c a l p h y s i c s 3

Just like the path from the Carnot engine to general thermodynamics, we
discover the laws of nature by induction: from particular cases to general
law and from processes to state functions. The latter step requires integra-
tion (to pass, for instance, from the Newton mechanics equations to the
Hamiltonian or from thermodynamic equations of state to thermodynamic
potentials). It is much easier to differentiate than to integrate, so deduction
(or the postulation approach) is usually more pedagogical.2 It also provides a
good vantage point for generalizations and appeals to our brain, which likes
to hypothesize before receiving any data, as we shall see later. In such an
approach, one starts by postulating a variational principle for some function
of the state of the system. Then one deduces from that principle the laws that
govern change when one passes from state to state.

Here we present a deductive description of thermodynamics. Thermody-
namics studies restrictions on the possible macroscopic properties that follow from
the fundamental conservation laws. Therefore, thermodynamics does not pre-
dict numerical values but rather sets inequalities and establishes relations
among different properties.

A traditional way to start building thermodynamics is to identify a con-
served quantity, which can be exchanged but not created. It could be matter,
money, energy, etc. For most physical systems, the basic symmetry is the
invariance of the fundamental laws with respect to time shifts.3 The evolu-
tion of an isolated physical system is usually governed by the Hamiltonian
(the energy written in canonical variables), whose time independence means
energy conservation. In what follows, the conserved quantity of thermody-
namics is called energy and denoted E. We wish to ascribe to the states of the
system the values of E. First, we focus on the states independent of how they
are prepared; such equilibrium states are completely characterized by the static
values of observable variables.

Passing from state to state involves energy change, which generally con-
sists of two parts: the energy change of visible degrees of freedom (which we
call work) and the energy change of hidden degrees of freedom (which we call
heat). To be able to measure energy changes in principle, we need adiabatic

2. In science, we strive to get the whole truth at any price. In teaching, we sell its parts at
affordable prices.

3. Be careful trying to build thermodynamics for biological or social-economic systems,
since generally the laws that govern them are not time invariant. For example, the metabolism
of living beings changes with age, and the number of market regulations generally increases
(as well as the total money mass, albeit not necessarily in our pockets).
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4 c h a p t e r 1

processes, where there is no heat exchange so that all the energy changes are
visible (or no under-the-table payments are made). Ascribing to every state
its energy (up to an additive constant common for all states) hinges on our
ability to relate any two states A and B by an adiabatic process, either A→B
or B→A, which allows us to measure the difference in their energies by the
work W done by the system. Now, if we encounter a process where the energy
change is not equal to the work, we call the difference the heat exchange, δQ :

dE= δQ − δW . (1.2)

This statement is known as the first law of thermodynamics. It is nothing but
a declaration of our belief in energy conservation: if the visible energy bal-
ance does not hold, then the energy of the hidden must change. The energy
is a function of the state, so we use the differential, but we use δ for heat
and work, which aren’t differentials of any function. Heat exchange and work
depend on the path taken from A to B; that is, they refer to particular forms of
energy transfer (not energy content). Before the first law was experimentally
discovered (Mayer 1842, Joule 1845), heat was believed to be a separate fluid
conserved by itself.

The basic problem of thermodynamics is determining the equilibrium state
that eventually results after all internal constraints are removed in a closed
composite system. The problem is solved with the help of the extremum prin-
ciple: There exists a quantity S called entropy, which is a function of the
parameters of the system. The values assumed by the parameters without an
internal constraint maximize the entropy over the manifold of available states
(Clausius 1865).

Thermodynamic limit Traditionally, thermodynamics has dealt with exten-
sive parameters whose value grows linearly with the number of degrees of
freedom. Additive quantities, like the number of particles N, electric charge,
and magnetic moment, are extensive. Energy generally is not additive; that
is, the energy of a composite system is not the sum of the parts because
of an interaction energy: E(N1)+ E(N2) �= E(N1+N2). To treat energy as
an additive variable, we assume short-range forces of interaction acting only
along the boundary and take the thermodynamic limit V→∞. Then one
can neglect the interaction energy, which scales as a surface V 2/3∝N2/3, in
comparison with the additive bulk terms, which scale as V ∝N.-1—

0—
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t h e r m o d y n a m i c s a n d s tat i s t i c a l p h y s i c s 5

In that limit, thermodynamic entropy is also an extensive variable,4 which
is a homogeneous first-order function of all the extensive parameters:

S(λE, λV , . . .)= λS(E, V , . . .). (1.3)

The function S(E, V , . . .), also called a fundamental relation, is everything
one needs to know to solve the basic problem (and others) in thermo-
dynamics.

Of course, (1.3) does not mean that S(E) is a linear function when other
parameters are fixed: S(λE, V , . . .) �= λS(E, V , . . .). On the contrary, the equi-
librium curve S(E) must be convex to guarantee the stability of a homoge-
neous state. Indeed, imagine that a system breaks spontaneously into two
halves with a bit different energies, E+� and E−�. For equilibration to
bring back the homogeneous state, its entropy 2S(E)must exceed the sum of
the halves: 2S(E)> S(E+�)+ S(E−�)≈ 2S(E)+ S′′�2. That requires
S′′< 0 (the argument does not work for systems with long-range interaction
where energy is nonadditive).

The figure shows the restriction imposed by thermodynamics on pos-
sible states: unconstrained equilibrium states are on the curve, while all
other states lie below. Convexity guarantees that one can reach state A either
by maximizing entropy at a given energy or minimizing energy at a given
entropy:

S

A

EPossible states

Let us complement the visual geometric picture by an analytic relation between
the extrema of entropy and energy. We assume the functions S(E, X) and
E(S, X) to be continuous differentiable for any other parameter X. An efficient

4. We shall see later that nonextensive parts of entropy are also important for studying
interaction and correlations between subsystems. —-1

—0
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6 c h a p t e r 1

way to treat partial derivatives of two functions of two variables is to organize
them into a 2× 2 matrix and use its determinant, called a Jacobian:

∂(u, v)
∂(x, y)

≡ ∂u
∂x
∂v
∂y
− ∂v
∂x
∂u
∂y

.

It changes sign upon any interchange of functions or variables. The partial
derivative is a Jacobian: (

∂u
∂x

)
y
= ∂(u, y)
∂(x, y)

.

Then from (
∂S
∂X

)
E
= ∂(SE)
∂(SX)

= 0

follows
(
∂E
∂X

)
S
= ∂(ES)
∂(XS)

∂(EX)
∂(EX)

=− ∂(ES)
∂(EX)

∂(EX)
∂(SX)

=−
(
∂S
∂X

)
E

(
∂E
∂S

)
X
= 0.

That means that any entropy extremum is also an energy extremum. Differenti-
ating the last relation one more time, we differentiate only the first factor since
it turns into zero at equilibrium:

(
∂2E
∂X2

)
S
=−

(
∂2S
∂X2

)
E

(
∂E
∂S

)
X

.

The equilibrium is an entropy maximum; that is, (∂2S/∂X2)E is negative.
Which type of extremum has energy at equilibrium depends on the sign of
(∂E/∂S)X , which is called temperature; see (1.4) below. When the temper-
ature is positive, as in the figure, the equilibrium is the entropy maximum
at a fixed energy or the energy minimum at a fixed entropy—very much
like a ball can be defined as the figure of either maximal volume V for a
given surface area A or minimal area for a given volume. Such analogies cre-
ate rich connections between thermodynamics and isoperimetric inequalities
of the type Ad≥ dV d−1V0, where V0 is the volume of the unit ball in d
dimensions.

The temperature could be negative—an example of a two-level system
in section 1.4 shows that S(E) could be nonmonotonic for systems with a
finite phase space. Still, for every interval of a definite derivative sign, say,
(∂E/∂S)X > 0, we can solve S= S(E, V , . . .) uniquely for E(S, V , . . .), which
is an equivalent fundamental relation.
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Experimentally, one usually measures changes, thus finding derivatives. The
partial derivatives of an extensive variable with respect to its arguments (which
are also extensive parameters) are intensive parameters. In thermodynamics,
we have only extensive and intensive variables, because we take the ther-
modynamic limit N→∞, V→∞, keeping N/V finite. For energy, one
writes

∂E
∂S
≡T(S, V , N) ,

∂E
∂V
≡−P(S, V , N)

∂E
∂N
≡μ(S, V , N), . . . . (1.4)

These relations are called the equations of state, and they serve as defini-
tions for temperature T, pressure P, and chemical potential μ, correspond-
ing to the respective extensive variables S, V , N. Our entropy is dimension-
less, so T is assumed to be multiplied by the Boltzmann constant, k= 1.3 ·
10−23J/K, and has the same dimensionality as the energy. From (1.4), we
write

dE(S, V , N)= δQ − δW =TdS− PdV +μdN. (1.5)

The extensive parameters V , N describe macroscopic (visible) degrees of
freedom. Entropy is responsible for hidden degrees of freedom (i.e., heat). We
shall see later that entropy is the missing information, which is thus maximal
for hidden degrees of freedom in equilibrium. Temperature is the energetic
price of information.

The derivatives (1.4) are taken at equilibrium, where a definite relation
exists between variables, for instance, E and S. That means that (1.5) is true
only for quasi-static processes, i.e., such that the system is close to equilib-
rium at every point of the process. A process can be considered quasi-static
if its typical time of change is larger than the relaxation times (which can
be estimated for pressure as L/c, where L is system size and c is sound
velocity, and for temperature as L2/κ , where κ is thermal conductivity).
Finite deviations from equilibrium make dS>δQ/T because entropy can
increase without heat transfer. Only recently have we learned how to mea-
sure equilibrium quantities in fast, nonequilibrium processes, as described in
section 4.4.

Let us see how the entropy maximum principle solves the basic problem.
Consider two simple systems separated by a rigid wall that is impermeable to
anything but heat. The whole composite system is closed; that is, E1+ E2=
const.

—-1
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8 c h a p t e r 1

E1 E2

The entropy change under the energy exchange must be nonnegative:

dS= ∂S1

∂E1
dE1+ ∂S2

∂E2
dE2= dE1

T1
+ dE2

T2
=

(
1

T1
− 1

T2

)
dE1≥ 0. (1.6)

For positive temperature, that means energy flows from the hot subsystem to
the cold one: T1>T2⇒ dE1 < 0. We see that our definition (1.4) agrees with
our intuitive notion of temperature. When equilibrium is reached, dS= 0,
which requires T1=T2. If the fundamental relation is known, then so is
the function T(E, V). Two equations, T(E1, V1)=T(E2, V2) and E1+ E2=
const, completely determine E1 and E2. In the same way, one can consider
a movable wall and get P1= P2 in equilibrium. If the wall allows for particle
penetration, we getμ1=μ2 in equilibrium.

Example 1.1: Consider a system that is characterized solely by its
energy, which can change between zero and Em=Nε. The equation
of state is the energy-temperature relation E= Em/

(
1+ eε/T)

, which
tends to Em 1/2 at T� ε and is exponentially small at T ε. In
section 1.3, we identify this with a set of N= Em/ε elements with two
energy levels, 0 and ε. To find the fundamental relation in the entropy
representation, we integrate the equation of state:

1
T
= dS

dE
= 1
ε

ln
Em− E

E
⇒ S(E)=N ln

N
N− E/ε

+ E
ε

ln
N− E/ε

E/ε
.

(1.7)

1.2 Thermodynamic Potentials

Even though it is always possible to eliminate, say, S from E= E(S, V , N)
and T=T(S, V , N), getting E= E(T, V , N), this is not a fundamental rela-
tion and it does not contain all the information. The point is, E= E(T, V , N)
is a partial differential equation (because T= ∂E/∂S), and even if it could
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be integrated, the result would contain an undetermined function of V , N.
Still, it is easier to measure temperature than entropy, so it is convenient to
have a complete formalism with an intensive parameter as an operationally
independent variable and an extensive parameter as a derived quantity.

Any function Y(X)defines the curve on the X, Y plane. We want to describe
the same curve by some function of P= ∂Y/∂X. It is not enough to eliminate
X and consider the function Y = Y[X(P)]= Y(P), because such a function
determines the curve Y = Y(X) only up to a shift along X, which changes
neither Y nor P:

Y Y

X X

For example, the function Y(P)= P2/4 corresponds to the whole family
Y = (X+C)2, which solves the differential equation Y = (dY/dX)2/4. To
pick a single function, we need to nail the curve by fixing the shift along X.
For every P, we specify not Y but the position ψ(P), where the straight line
tangent to the curve intercepts the y axis:ψ = Y − PX:

Y

P

ψ

X

Y = ψ

 + PX

In this way, we consider the curve Y(X) as the envelope of the family of the
tangent lines, each characterized by the slope P and the interceptψ . The rela-
tion between them,ψ(P)= Y[X(P)]− PX(P), completely defines the curve;
here one substitutes X(P) found from P= dY(X)/dX. The function ψ(P)
is called the Legendre transform of Y(X). From dψ =−PdX−XdP+ dY =
−XdP, one gets−X= dψ/dP—the inverse transform is the same up to a sign:
Y =ψ +XP.
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10 c h a p t e r 1

The transform is possible when for every X there is one P, that is, P(X)
is monotonic and dP/dX= d2Y/dX2 �= 0. A sign-definite second derivative
means that the function is either concave or convex. This is the second time we
have met convexity, which we related above to the stability of a homogeneous
state. Convexity and concavity play an important role in our story.

We can now make the Legendre transform of E(S), which replaces the
entropy by the temperature as an independent variable: F= E−TS is called
free energy. Its differential is as follows: dF(T, V , N, . . .)=−SdT− PdV +
μdN+ . . . . The counterpart to (∂E/∂S)VN =T is (∂F/∂T)VN =−S. The
free energy is particularly convenient for describing a system in thermal con-
tact with a heat reservoir because the temperature is fixed, and we have one
variable less to care about. The maximal work that can be done under a con-
stant temperature (equal to that of the reservoir) is minus the differential of
the free energy. Indeed, this is the work done by the system and the thermal
reservoir. Is that work generally larger or smaller than the work done by the
system alone? Let’s see. That work is equal to the change in the total energy:

d(E+ Er)= dE+TrdSr= dE−TrdS= d(E−TrS)= d(E−TS)= dF.

In other words, the free energy, F= E−TS, is that part of the internal energy
that is free to turn into work; the rest of the energy, TS, we must keep to sustain
a constant temperature. The equilibrium state minimizes F—not absolutely,
but over the manifold of states with a temperature equal to that of the reservoir.
Consider, for instance, minimization of F(T, V)= E[S(T, V), V]−TS(T, V)
with respect to volume:

(
∂F
∂V

)
T
=

(
∂E
∂V

)
S
+

(
∂E
∂S
−T

)
∂S
∂V
=

(
∂E
∂V

)
S

.

The derivatives turn into zero, and E and F reach extrema simultaneously. Also,
in the point of an extremum, one gets (∂2E/∂V 2)S= (∂2F/∂V 2)T; i.e., both
E and F have the same type of extremum (minimum in a positive-temperature
equilibrium).

The system can reach the minimum of the free energy by minimizing
energy and maximizing entropy. The former often requires creating some
order in the system—for instance, orienting all spins parallel in a magnet or
arranging all atoms into a regular crystal. On the contrary, increasing entropy
requires disorder. Which of these tendencies wins depends on temperature,
setting their relative importance. In later sections, we shall see repeatedly that
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looking for a minimum of some free energy is a universal approach, from find-
ing an equilibrium state of a physical system to designing the most optimal
algorithm of information processing.

The formal structure of thermodynamics is described in section A.1. Since
the Legendre transform is invertible, all thermodynamic potentials are equiv-
alent and contain the same information. The choice of the potential for a given
physical situation is that of convenience: we usually take what is fixed as a
variable to diminish the number of effective variables.

The next two sections present a brief overview of the classical Boltzmann-
Gibbs statistical approach: We introduce microscopic statistical description
in the phase space and describe two principal ways (microcanonical and
canonical) to derive thermodynamics from statistics.

Example 1.2: Consider a particle in the one-dimensional potential
U(x). The force f one needs to apply to keep the particle in the position
X is apparently f (X)= dU(x)/dx taken at X. Then X(f )= dV(f )/df ,
where V(f ) is minus the Legendre transform of the potential: V(f )=
Xf −U.

1.3 Microcanonical Distribution

Let us consider a closed system with fixed energy E. Boltzmann conjectured
that all microstates with the same energy have equal probability (the ergodic
hypothesis). If the number of such states is 	(E), then the microcanonical
probability distribution is as follows:

wa(E)= 1/	(E). (1.8)

To link statistical physics with thermodynamics, one must define the fun-
damental relation, i.e., a thermodynamic potential as a function of respective
variables. For microcanonical distribution, Boltzmann in 1872 introduced
entropy as

S(E)=− ln wa(E)= ln	(E). (1.9)

This is one of the most important formulas in physics5 (on a par with
f =ma , E=mc2, and E= �ω).

Noninteracting subsystems are statistically independent. That means that
the statistical weight of the composite system is a product—for every state of

5. It is inscribed on Boltzmann’s gravestone.
—-1
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12 c h a p t e r 1

one subsystem, we have all the states of another. If the weight is a product, then
the entropy is a sum. For interacting subsystems, this is true only for short-
range forces in the thermodynamic limit N→∞.

Consider two subsystems, 1 and 2, that can exchange energy. Let’s see
how statistics solves the basic problem of thermodynamics (to define equilib-
rium) that we treated in (1.6). Assume that the indeterminacy in the energy
of any subsystem� is much less than the total energy E. Alternatively, we may
presume that the energy could be exchanged by portions�. Then

	(E)=
E/�∑
i=1

	1(Ei)	2(E− Ei). (1.10)

We denote Ē1, Ē2= E− Ē1 for the values that correspond to the maximal
term in the sum (1.10). To find this maximum, we compute the derivative:

∂	

∂Ei
= ∂	1

∂Ei
	2+ ∂	2

∂Ei
	1= (	1	2)

(
∂S1

∂E1
− ∂S2

∂E2

)
.

The extremum condition, (∂S1/∂E1)Ē1 = (∂S2/∂E2)Ē2 , corresponds to the
thermal equilibrium where the temperatures of the subsystems are equal. The
equilibrium is thus where the maximum of probability is. It is obvious that

	(Ē1)	(Ē2)≤	(E)≤	(Ē1)	(Ē2)E/� ⇒ S(E)

= S1(Ē1)+ S2(Ē2)+O(logN),

where the last term is negligible in the thermodynamic limit.
The same definition of entropy as a logarithm of the number of states is

true for any system with a discrete set of states. For example, consider the
set of N particles (spins, neurons), each with two energy levels, 0 and ε. If
the energy of the set is E, then there are L= E/ε upper levels occupied. The
statistical weight is determined by the number of ways one can choose L out
of N; that number is denoted CL

N . This is our first combinatorial computa-
tion. Since we treat indistinguishable objects, let us first compute the number
of permutations of m things. For each of the m first choices, we have m− 1
second choices, m− 2 third choices, etc. That means that the total number
of permutations is m(m− 1)(m− 2) · · · 2=m!. To compute the number of
ways to choose L out of N, we need to divide the total number of permuta-
tions among N by the total number of permutations among L and N− L:
	(N, L)=CL

N =N!/L!(N− L)!. We can now define the entropy (i.e., find
-1—
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the fundamental relation): S(E, N)= ln	. The entropy is symmetric about
E=Nε/2 and is zero at E= 0, Nε, when either L! = 1 or (N− L)! = 1; that
is, all the particles are in the same state. In the limit, we can use the Stir-
ling formula, limN→∞ ln N! ≈N ln N. At the thermodynamic limit N� 1
and L� 1, it gives S(E, N)≈N ln[N/(N− L)]+ L ln[(N− L)/L], which
coincides with (1.7). The entropy as a function of energy is shown in the
figure:

S

ENε

T = +0

0

T = ∞ T = –∞

T = –0

The equation of state (temperature-energy relation) is indeed T−1=
∂S/∂E≈ ε−1 ln[(N− L)/L]. We see that, when E>Nε/2, the population
of the higher level is larger than that of the lower one (inverse population as in
a laser) and the temperature is negative. The negative temperature may hap-
pen only in systems with the upper limit of energy levels and simply means
that, by adding energy beyond some level, we actually decrease the entropy,
i.e., the number of accessible states. The example of a negative temperature is
to help you disengage from the everyday notion of temperature and get used to
the physicist’s idea of temperature as the derivative of energy with respect to
entropy. Yet it is still worth remembering the unique role played by the partic-
ular notion of temperature as mean kinetic energy of the gas molecules in the
inductive development of thermodynamics.

Available (nonequilibrium) states lie below the S(E) plot. The entropy
maximum corresponds to the energy minimum for positive temperatures and
to the energy maximum for negative temperatures. Imagine now that the sys-
tem with a negative temperature is brought into contact with the thermostat
(having a positive temperature). To equilibrate with the thermostat, the sys-
tem needs to acquire a positive temperature. A glance at the figure shows that
our system must move left, that is, give away energy (a laser generates and
emits light). If this is done adiabatically slow along the equilibrium curve, the
system first decreases the temperature further until it passes through minus
infinity right into plus infinity and then down to positive values until it even-
tually reaches the thermostat’s temperature. That is, negative temperatures are
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14 c h a p t e r 1

actually “hotter” than positive. If you put your hand on a negative tempera-
ture system, you feel heat flowing into you. By itself, though, the system is
stable since ∂2S/∂E2=−N/L(N− L)ε2 < 0 at any temperature. We stress
that there is no volume in S(E, N), which means that we consider only part
of the degrees of freedom. Real particles have kinetic energy unbounded from
above and can correspond only to positive temperatures since negative tem-
perature and infinite energy give an infinite Gibbs factor e−E/T . Assuming
detachment between kinetic and internal (electronic, spin, etc.) degrees of
freedom is possible when their coupling is weak and only for a finite time.

The derivation of the thermodynamic fundamental relation S(E, . . .) in the
microcanonical ensemble is thus via the number of states or phase volume.

Exercise 1.1: Candies and kids.
There are three candies and two systems to distribute them: system 1

contains two boys and system 2 contains three girls. Every boy and girl
can have zero, one, two, or three candies with equal probability. Kids are
distinguishable, but candies aren’t.6 What is the most probable number
of candies in system 1? What is the average number of candies in sys-
tem 1? What are the most probable and average numbers of candies in
system 2?

1.4 Canonical Distribution and Fluctuations

Let us now discuss the statistical description, which corresponds to the ther-
modynamic potential of free energy, F(T). Consider a system exchanging
energy with a thermostat, which can be thought of as consisting of infinitely
many copies of our system—this is the so-called canonical ensemble, char-
acterized by T. Here our system can have any energy, and the question
arises, What is the probability of being in a given microstate a with the
energy E? We derive that probability distribution (called canonical) from
the microcanonical distribution of the whole system. Since all the states of
the thermostat are equally likely to occur, the probability should be directly
proportional to the statistical weight of the thermostat 	0(E0− E). Here we
assume E E0, expand (in the exponent!)	0(E0− E)= exp[S0(E0− E)]≈

6. Exchanging candies between kids leaves the system in the same state; taking candy from
one kid and giving it to another brings the system to quite a different state.
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exp[S0(E0)− E/T)], and obtain

wa(E)=Z−1 exp(−E/T), (1.11)

Z=
∑

a
exp(−Ea/T). (1.12)

Note that there is no trace of the thermostat left except for the temperature.
The normalization factor Z(T, V , N) is a sum over all states accessible to the
system and is called the partition function.

One again relates statistics and thermodynamics by defining entropy
(Gibbs 1878). Recall that, for a closed system, Boltzmann defined entropy as
minus the log of probability, S=− ln wa. There all probabilities were equal.
Now we consider a subsystem at a fixed temperature, so that different states
have different probabilities and both energy and entropy fluctuate. What
should be the thermodynamic entropy: mean entropy, −〈ln wa〉, or entropy
at a mean energy, − ln wa(E)? They are the same! Indeed, ln wa is linear in
Ea for the Gibbs distribution, so the entropy at the mean energy is the mean
entropy, and we recover the standard thermodynamic relation. Comparing the
mean entropy,

〈S〉=−〈ln wa〉=−
∑

wa ln wa=
∑

wa
(

Ea/T+ ln Z
)

(1.13)

= E/T+ ln Z,

with the thermodynamic relation for it, S= (E− F)/T, we identify

F(T)=−T ln Z(T). (1.14)

The log of the probability of the mean energy is indeed the same as the mean
log of probability:

S(E)=− ln wa(E)=− ln
[

exp(−E/T)
Z

]
= E

T
+ ln Z= E− F

T
. (1.15)

Even though the Gibbs entropy, S=−∑
wa ln wa, is derived here for equi-

librium, this definition can be used for any set of probabilities wa, since it
provides a useful measure of our uncertainty about the system, as we shall see
in the next chapter, where entropy is a key unlocking many doors (and locking
some).

The canonical equilibrium distribution corresponds to the maximum of
the Gibbs entropy, S=−∑

wa ln wa, under the condition of the given mean
energy Ē=∑

waEa: Requiring ∂(S+βĒ)/∂wa= 0, we obtain (1.11). For
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an isolated system with a fixed energy, the entropy maximum corresponds to
a uniform microcanonical distribution.

Are canonical and microcanonical statistical descriptions equivalent? Of course
not. The descriptions are equivalent only when fluctuations are neglected and
consideration is restricted to mean values. That takes place in thermodynamics,
where the distributions produce different fundamental relations between the
mean values: S(E) for microcanonical, F(T) for canonical. These functions are
related by the Legendre transforms. Operationally, how does one check, for
instance, the equivalence of canonical and microcanonical energies? One takes
an isolated system at a given energy E, measures the derivative ∂E/∂S, then
puts it into the thermostat with the temperature equal to ∂E/∂S; the energy
now fluctuates, but the mean energy must be equal to E (as long as the system
is macroscopic and all the interactions are short-range).

As far as fluctuations are concerned, there is a natural hierarchy: micro-
canonical distribution neglects, and canonical distribution accounts for fluc-
tuations in E. The choice of description is dictated only by convenience in
thermodynamics because it treats only mean values. But if we want to describe
the whole statistics of the system in a thermostat, we need to use canonical
distribution, not microcanonical.

Our subsystem is macroscopic itself, so it has many ways to redistribute the
energy E among its degrees of freedom. In other words, it has many microscopic
states corresponding to the same total energy of the subsystem. The probability
for the subsystem to have a given energy is the probability of the state (1.11)
times the number of states, i.e., the statistical weight of the subsystem:

W(E)=	(E)wa(E)=	(E)Z−1 exp(−E/T). (1.16)

The weight 	(E) decreases as E→ 0 and grows as E→∞ usually by a power
law, but the exponent exp(−E/T) decays faster than any power. As a result,
W(E) is concentrated in a very narrow peak and the energy fluctuations around
Ē are very small. For example, for an ideal gas, W(E)∝ E3N/2 exp(−E/T).
To conclude, the Gibbs canonical distribution (1.11) tells us that the proba-
bility of a given microstate exponentially decays with the energy of the state,
while (1.16) tells us that the probability of a given energy has a peak.
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Basics of Information Theory

This chapter presents an elementary introduction to information theory
from the viewpoint of a natural scientist. It retells the story of statisti-
cal physics using a different language, which lets us see the Boltzmann
and Gibbs entropies in a new light. The way of thinking here is mostly
combinatoric (counting and classifying). The information viewpoint erases
paradoxes and trivializes the second law of thermodynamics. It also allows
us to see generality and commonality in the approaches (to partially
known systems) of physicists, engineers, computer scientists, biologists,
brain researchers, social scientists, market speculators, spies, and flies. We
shall see how the same tools used in setting limits on thermal engines
are used to set limits on communications, measurements, and learning
(essentially the same phenomena). The primary mathematical tool ex-
ploits universality, which appears upon summing many independent random
numbers.

The central idea developed in this chapter is that information lowers uncer-
tainty. It can be quantified by the number of questions whose answers together
eliminate the uncertainty. Suppose we are uncertain which event happens
among those with a priori equal probabilities. In that case, the number of
such questions is a logarithm of the number n of possible outcomes, which
is the Boltzmann entropy. To locate one out of n equally probable objects,
one needs log2 n yes-no questions. Alternatively, one can say that the infor-
mation quantifies the degree of surprise: the larger the possible number of
outcomes, the more surprising any one of them is. If we know the probabili-
ties pi of the events, then the surprise log2 pi is larger for the less probable ones,
while the average information rate per answer is equal to the Gibbs entropy,
S=−∑

i pi log2 pi bits. —-1
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But what if the answers are not entirely reliable? In other words, we have
an imperfect channel whose output A specifies the event (input) Bj not com-
pletely but with some remaining uncertainty, characterized by the conditional
entropy S(B|A). The information received is then equal to I(A, B)= S(B)−
S(B|A) and is called mutual information.

2.1 Information as a Choice

Information is the resolution of uncertainty.

—cl aude shannon, 1948

We want to know in which of n boxes a piece of candy is hidden. We are thus
faced with a choice among n equal possibilities. How much information do we
need to get the candy? Let us denote the missing information by I(n). Clearly,
I(1)= 0, and we want the information to be a monotonically increasing func-
tion of n.1 If we have several independent problems, then information must be
additive. For example, consider each box as having m compartments. To know
which of the mn compartments the candy is in, we first need to know which
box and then which compartment inside the box: I(nm)= I(n)+ I(m). Now
we can write (Fisher 1925, Hartley 1927, Shannon 1948)

I(n)= I(e) ln n= k ln n. (2.1)

That information counts the number of standard questions we need to ask to
specify the box. Consider yes-no questions like, “Is our candy in the right half
of the set of boxes?” The answer to each question shrinks the number of boxes
of interest by half. One then needs log2 n of such questions and respective one-
bit answers. If we measure information in binary choices or bits (abbreviation
of “binary digits”), then I(n)= log2 n, that is, k−1= ln(2). So the message car-
rying the single number of the lucky box yields the information log2 n bits. To
arrive at a destination via the road with N forks, one needs N= log2 2N bits;
via streets with M intersections, one needs M log2 3 bits since there are three
possible ways at each intersection.

We can easily generalize definition (2.1) for noninteger rational numbers
by I(n/l)= I(n)− I(l) and for all positive real numbers by considering the
limits of the series and using monotonicity.

1. The messages “in box 1 out of 2” and “in box 1 out of 22” yield the same candy but not
the same amount of information.
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We used to think of information as being received through words and sym-
bols. Essentially, it is always about which box the candy is in. If we have an
alphabet with n symbols, then every character we receive is a choice out of n
and gives the information k ln n. That is, n symbols are like n boxes. If charac-
ters are received independently, then a message of length N can potentially be
one of nN possibilities, so that it yields the information kN ln n. With a smaller
alphabet, one needs a longer message to convey the same information. If all
26 letters of the English alphabet were used with the same frequency, then the
word “love” would give information equal to 4 log2 26≈ 4 · 4.7= 18.8 bits.
Here we take it for granted that the receiver has no prior knowledge of the let-
ters (for instance, everyone who knows English can infer that there is only one
four-letter word that starts with “lov,” so the last letter yields zero information).

A

A

A

A

B

E

B

B

B

Z

Z

Z

Z

L

O

V

...

...

...

...

...

...

......

...

N

N

In reality, every letter on average gives even less information than log2 26 since
we know that letters are used with different frequencies. Consider the situa-
tion when the probability pi is assigned to each letter (or box), i= 1, . . . , n. It
is then clear that different letters yield different degrees of surprise and differ-
ent information. Let us evaluate the average information per symbol in a long
message. To average, we consider the limit N→∞; then we know that the
ith letter appears Npi times in a typical sequence: we receive the first alphabet
symbol Np1 times, the second symbol Np2 times, etc. What we don’t know
and what any message of length N gives us the order in which different sym-
bols appear. The total number of ways to place these symbols into positions
(the number of different typical sequences) is equal to N!/�i(Npi)!, and the
information that we obtain from a string of N symbols is the logarithm of that
number:

IN = k ln
N!

�i(Npi)
≈ k

(
N ln N−

∑
i

Npi ln Npi

)
=−Nk

∑
i

pi ln pi.

(2.2)
—-1

—0

—+1



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 17:09 — page 20 — #4
�

�

�

�

�

�

20 c h a p t e r 2

The mean information per symbol coincides with the Gibbs entropy (1.13):

S(p1 . . . pn)= lim
N→∞ IN/N=−k

n∑
i=1

pi ln pi. (2.3)

Alternatively, one can derive (2.3) without any mention of randomness.
Consider again n boxes and denote mi as the number of compartments in box
number i. When each compartment can be chosen independently of the box it
is in, the ith box is selected with the frequency pi=mi/

∑n
i=1 mi=mi/M, so

that a given box is chosen more frequently if it has more compartments. The
information on a specific compartment is a choice out of M, bringing informa-
tion k ln M. That information must be a sum of the information about box In
plus the information about the compartment ln mi, summed over the boxes:
k
∑n

i=1 pi ln mi. That gives the information In about the box (letter) as the
difference:

In= k ln M− k
n∑

i=1
pi ln mi= k

n∑
i=1

pi ln M− k
n∑

i=1
pi ln mi

=−k
n∑

i=1
pi ln pi= S.

A little more formally, one can prove that (2.3) is the only measure of
uncertainty that is a continuous function of pi, symmetric with respect to their
permutations, and that satisfies the inductive relation

S(p1, p2, p3 . . . pn)= S(p1+ p2, p3 . . . pn)+ (p1+ p2)S
(

p1

p1+ p2
,

p2

p1+ p2

)
.

That relation comes from considering a subdivision: first, receive the informa-
tion if one of the first two possibilities appears; second, distinguish between 1
and 2.

You probably noticed that (2.1) corresponds to the microcanonical Boltz-
mann entropy (1.9), giving information/entropy as a logarithm of the number
of states, while (2.3) corresponds to the canonical Gibbs entropy (1.13);
giving it as an average.

Asymptotic equipartition Let us look at a given sequence of symbols
y1, . . . , yN and ask, How probable is it? Can we answer this blatantly self-
referential question without seeing other sequences?

Yes, we can if the sequence is long enough and we know that the sym-
bols are independently chosen. We use the law of large numbers, which
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states that the sum of N random numbers fast approaches N times the
mean value as N grows. To use the law, we need to find numbers to sum.
Since the symbols are independent, the probability of any sequence is the
product of probabilities and the logarithm of the probability is the sum:
N−1 ln P( y1, . . . , yN)=N−1 ∑N

i=1 ln P( yi). For large N, it is the mean loga-
rithm of the distribution, which is the entropy. Of which distribution? The
probabilities of independent symbols depend not on the position i but on
which symbol from our alphabet, y1, y2, . . . , yn, is used. Let us denote the
probabilities of different symbols as p( yj). In the limit of large N, we then
have N−1 ∑N

i=1 ln P( yi)=∑n
j=1 p( yj) ln p( yj). But how do we find p( yj)?

For a sufficiently long sequence, we conjecture that the frequencies of different
symbols in our sequence give the true probabilities of these symbols. In other
words, we treat the sequence as typical. Then the log of probability converges
to minus N times the entropy of y:

1
N

ln P( y1, . . . , yN)→
n∑

j=1
p( yj) ln p( yj)=〈ln p( y)〉=−S( y). (2.4)

We then state that the probability of the typical sequence decreases with N
exponentially: P( y1, . . . , yN)= exp[−NS( y)]. That probability is indepen-
dent of the symbols y1, . . . , yN so that it is the same for all typical sequences.
We thus find that the best approximation for P(y1, . . . , yN) is a uniform
(microcanonical!) distribution. Equivalently, we can state that the number of
typical sequences grows with N exponentially and the entropy sets the growth
rate. That focus on typical sequences, which all have the same (maximal) prob-
ability, is known as asymptotic equipartition and is formulated as “almost all
events are almost equally probable.”

In physics, asymptotic equipartition is used, for instance, when we claim that
the Boltzmann entropy is equivalent to the Gibbs entropy for systems whose
energy is separable into independent parts in the thermodynamic limit (num-
ber of particles is an analog of a string length N). As we argued for equivalence
of energies in section 1.4, we consider the microcanonical distribution taken
at the energy equal to the mean energy of the canonical distribution (the typ-
ical set of the canonical ensemble). Then the Boltzmann N-particle entropy
of such a microcanonical distribution is equal to the entropy of the canonical
distribution in the thermodynamic limit.

Now we recognize in (2.3) the asymptotic equipartition: an N string pro-
vides the information, which is the log of the number of typical strings: I=NS.
Note that when n→∞ then (2.1) diverges while (2.3) may well be finite.
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The mean information (2.3) is zero for delta distribution pi= δij; it is gen-
erally less than the information of (2.1) and coincides with it only for equal
probabilities, pi= 1/n, when the entropy is maximum. Naturally, we ascribe
equal probabilities when there is no extra information, i.e., in a state of max-
imum ignorance. In this state, a message brings maximum information per
symbol; any prior knowledge can reduce the information. Mathematically, the
property

S(1/n, . . . , 1/n)≥ S(p1 . . . pn) (2.5)

is called convexity. It follows from the fact that the function of a single variable,
s(p)=−p ln p, is strictly concave since its second derivative, −1/p, is every-
where negative for positive p. For any concave function, the average over the
set of points pi is less than or equal to the function at the average value (the
so-called Jensen inequality):

1
n

n∑
i=1

s
(

pi
)≤ s

(
1
n

n∑
i=1

pi

)
. (2.6)

–W lnW
S[(A + B)/2] > [S(A) + S(B)]/2

(A + B)/2A B W

From here, one gets the entropy inequality:

S(p1 . . . pn)=
n∑

i=1
s
(

pi
)≤ ns

(
1
n

n∑
i=1

pi

)

= ns
(

1
n

)
= S

(
1
n

, . . . ,
1
n

)
. (2.7)

The relations (2.6–2.7) can be proved for any concave function. The con-
cavity condition states that the linear interpolation between two points
a, b lies everywhere below the function graph: s(λa+ b− λb)≥ λs(a)+
(1− λ)s(b) for any λ∈ [0, 1]; see the figure. For λ= 1/2, it corresponds to-1—
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(2.6) for n= 2. To get from n= 2 to arbitrary n, we use induction. To that
end, we choose λ= (n− 1)/n, a= (n− 1)−1 ∑n−1

i=1 pi, and b= pn to see
that

s

(
1
n

n∑
i=1

pi

)
= s

(
n− 1

n
(n− 1)−1

n−1∑
i=1

pi+ pn

n

)

≥ n− 1
n

s

(
(n− 1)−1

n−1∑
i=1

pi

)
+ 1

n
s
(

pn
)

≥ 1
n

n−1∑
i=1

s
(

pi
)+ 1

n
s
(

pn
)= 1

n

n∑
i=1

s
(

pi
)

. (2.8)

In the last line, we use the truth of (2.6) for n− 1 to prove it for n.

Exercise 2.1: Three squares have an average area of 100 m2. The aver-
age of the lengths of their sides is 10 m. Use the Jensen inequality to
determine the values the areas of the three squares can take.

Exercise 2.2: Information about precipitation.
In New York City, the probability of rain on the Fourth of July is 40%.

On Thanksgiving, the probability of rain is 65%, while the probability of
snow is 15%. When does the message on the presence or absence of pre-
cipitation bring more information—on Thanksgiving or on the Fourth
of July?

Exercise 2.3: Asking the right yes-no questions.
There are two different numbers that do not exceed 100. What is

the minimal number of one-bit questions we need to ask to determine
both of them? How many bits does one need to find m numbers not
exceeding n?

Exercise 2.4: Catching counterfeit coins.
In a pile of 27 coins, there is a counterfeit coin that weighs less than

the others. What is the minimum number of weighings on a balancing
scale we need to isolate that coin? Describe the procedure.
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Exercise 2.5: Deuteronomy.
Estimate the probability of the following sequence:

2.2 Communication Theory

Here we start treating everything as a message. After learning how much
information messages bring on average, we are ready to discuss the best ways
to transmit them. Communication theory is interested in two key
issues—speed and reliability:

(1) How much can a message be compressed; i.e., how redundant is the
information? In other words, what is the maximal transmission rate in
bits per symbol?

(2) At what rate can we communicate reliably over a noisy channel; i.e.,
how much redundancy must be incorporated into a message to protect
against errors?

Both questions concern redundancy—how unexpected is every letter of
the message, on average? Entropy quantifies surprise. Let us consider a binary
channel transmitting ones and zeros. Binary code is natural both for signals
(present-absent) and for logic (true-false). We have seen that a communica-
tion channel transmitting independent letters transmits−∑z

i=a pi log2 pi bits
per letter. In other words, it is the average number of 0 or 1 needed to encode
one letter of an alphabet.

The entropy is the mean rate of the information transfer since it is the mean
growth rate of the number of typical sequences. What about the maximal rate
of information transfer? Following Shannon, we answer that question statisti-
cally, which makes sense in the limit of very long messages when one can focus
on typical sequences, as we did in the previous section deriving (2.2, 2.4).
Consider for simplicity a message of N bits, where 0 comes with probability
1− p and 1 with probability p. To compress the message to a shorter string
of letters that conveys essentially the same information, it suffices to choose
a code that effectively treats the typical strings—those that contain N(1− p)
zeros and Np ones. The number of such strings is given by the binomial CN

Np,
which for large N is 2NS(p), where

S(p)=−p log2 p− (1− p) log2(1− p).
-1—
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The strings differ by the order of appearance of 0 and 1. To distinguish
between these 2NS(p) messages, we encode each one by a binary string with
lengths starting at one and ending at NS(p). For example, we encode by two
one-bit words, 1 and 0, the two messages where all Np ones are either at the
beginning (followed by all N(1− p) zeros) or at the end (preceded by all the
zeros). Then we encode by four two-bit words the messages with one hole,
by eight three-bit words the messages with two holes, etc. The maximal word
length NS(p) is less than N, since 0≤ S(p)≤ 1 for 0≤ p≤ 1. In other words,
to encode all 2N sequences, we need words of N bits, but to encode all typical
sequences, we need only words up to NS(p) bits. We thus achieve compres-
sion with the sole exception of the case of equal probability, where S(1/2)= 1.
True, the code must include a few longer codewords to represent atypical mes-
sages. We then use longer and longer codewords for less and less probable
sequences. In the limit of large N, the chance of their appearance decreases
exponentially with N and contribution to the transmission rate is negligible.
Therefore, entropy sets both the mean and the maximal rate in the limit of long
sequences. It gives the transfer rate of information when all the redundancy
has been squeezed out.

You may find it bizarre that one uses randomness in treating information com-
munications, where one usually transfers nonrandom meaningful messages.
One reason is that the encoding program does not bother to “understand” the
message and treats it as random. Draining the words of meaning is necessary
for devising universal communication systems.

The maximal transmission rate corresponds to the shortest mean code-
word length. If we encode n equally probable objects by an alphabet with
q symbols, the mean codeword cannot be shorter than log n/ log q= logqn.
Indeed, the number of m-letter words is qm, which should not be less than n.
For example, to encode n= 4 bases of the genetic code by bits (q= 2), we
need at least two-letter words. If we know that the objects have the probabil-
ities p(i), i= 1, . . . , n, then we can use this information to shorten the mean
codeword because the entropy is now lower. Shannon proved that the shortest
mean length of the codeword � is bounded by (see also section 2.8)

−
∑

i
p(i) logq p(i)≤ �<−

∑
i

p(i) logq p(i)+ 1. (2.9)

Of course, only carefully chosen encoding guarantees the shortest mean
codeword and the maximal rate of transmission. Designating sequences of
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the same length to objects with different probabilities is apparently subop-
timal. Inequality (2.7) quantifies that. To shorten the mean word length
and achieve signal compression in the limit of long messages, one codes
frequently used objects by short sequences and infrequently used ones by
lengthier combinations—lossless compressions like zip, gz, and gif work
this way.

Consider a fictional creature whose DNA contains four bases, A, T, C, G,
occurring with probabilities pi listed in the table:

Symbol pi Code 1 Code 2

A 1/2 00 0
T 1/4 01 10
C 1/8 10 110
G 1/8 11 111

We want a binary encoding for the four bases. As mentioned above, there
are exactly four two-bit words, so one can suggest code 1, which has exactly
four words and uses two bits for every base. Here the word length is two.
However, it is straightforward to see that the entropy of the distribution
S=−∑4

i=1 pi log2 pi= 7/4 is less than two. One then may suggest a variable-
length code 2. It is built in the following way. We start from the least probable
C and G, which we want to have the longest codewords of the same length dif-
fering by one (last) binary digit that distinguishes between the two of them.
We then can combine C and G into a single source symbol with the probabil-
ity 1/4, which coincides with the probability of T. To distinguish from C, G,
we code T by a two-bit word, placing 0 in the second position. The combined
C, G is now encoded 11, while T is encoded 10. We then can code A by one-bit
word 0 to distinguish it from the combined T, C, G.

It is straightforward now to see that code 2 uses fewer bits per base
on average, namely, that its mean length of the codeword is equal to the
entropy: (1/2) · 1+ (1/4) · 2+ (1/4) · 3= 7/4. The length of each code-
word is exactly equal to minus the log of probability. It is an example of the
so-called Huffman code, which draws a binary tree starting from its leaves:
First, ascribe to the two least probable symbols the two longest codewords
differing in the last digit. Second, combine these two symbols into one and
repeat. The procedure ends after n− 1 steps, where n is the size of the orig-
inal alphabet. One may think that the variable-length code always requires
an extra symbol (space or comma) to distinguish codewords in a continuous
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stream of 0 and 1. Actually, codes do not require a separating symbol if they are
prefix-free, that is, no codeword can be mistaken for the beginning of another
one. Such are, in particular, Huffman codes.

The most efficient code has the length of the mean codeword (the number
of bits per base) equal to the entropy of the distribution, which determines
the fastest mean transmission rate (i.e., the shortest mean codeword length).

To make yourself comfortable with the information brought by fractions
of a bit, consider the decrease in uncertainty. One bit halves the uncertainty.
For a uniform distribution, receiving one bit shrinks the uncertainty interval
by the factor 2−1. Receiving H bits shrinks the interval to a 2−H fraction of its
original length. Receiving a half bit shrinks the interval of possible values by
the factor 2−1/2≈ 0.7.

The inequality (2.5) tells us, in particular, that using an alphabet is not opti-
mal for the speech transmission rate as long as the probabilities of the letters
are different. For example, if we use 26 letters, a space, and five punctuation
marks (,.!?-), one option is to use 32 five-bit words to encode these 32 symbols
(a system actually used for teletype machines). We can use variable codeword
length to make the average codeword shorter than 5. Morse code uses just
three symbols (dot, dash, and space) to encode any language.2 In English, the
probability of “E” is 13% and of “Q” is 0.1%, so Morse encodes “E” by a sin-
gle dot and “Q” by− − ·−. One-letter probabilities for the written English
language give the information per symbol as follows:

−
z∑

i=a
pi log2 pi≈ 4.11 bits,

which is less than log2 26= 4.7 bits. Language uses the same principle at the
level of words: more frequently used words are generally (not always!) shorter.

Exercise 2.6: Encoding by binary digits.
If we need to encode the results of independent throwing of a fair

coin, we can use a one-bit encoding: 0 for heads and 1 for tails.

(a) If we have a fair die, which is either a regular tetrahedron or a
cube, how long must our binary codewords be?

2. Great contributions of Morse were the one-wire system and the simplest possible encod-
ing (opening and closing the circuit), far superior to the multiple wires and magnetic needles
of Ampere, Weber, Gauss, and many others.
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(b) If we have a fair die with six sides (all having the same
probability), which binary encoding could we use to provide
for a transmission rate within approximately 3% of the maximal
rate?

2.3 Redundancy in the Alphabet

Vether it’s worth goin’ through so much, to learn so little, as the charity-boy
said ven he got to the end of the alphabet, is a matter o’ taste.

—ch a r le s dickens, the pickwick pa pe r s

The first British telegraph managed to do without C, J, Q, U, and X, which tells
us that some letters can be guessed from their neighbors and, more generally,
that there is a correlation between letters. Apart from one-letter probabilities,
one can utilize more knowledge about the language by accounting for two-
letter correlation (say, that “Q” is always followed by “U”, “H” often follows
“T,” etc.). That further lowers the entropy.

A simple universal model with one-step correlations is called a Markov
chain. It is specified by the conditional probability p(j|i) that the letter i
is followed by j. For example, p(U|Q )= 1. The probability is normalized
for every i:

∑
j p(j|i)= 1. The matrix pij= p(j|i), whose elements are posi-

tive and in every column sum to unity, is called stochastic. Do the vector of
probabilities p(i) and the transition matrix pij bring independent information?
The answer is no, because the matrix pij and the vector pi are not indepen-
dent but are related by the condition of stationarity: p(i)=∑

p(j)pji, that is,
p={p(a), . . . p(z)} is an eigenvector with the unit eigenvalue of the matrix pij.

The probability of an N-string is then the product of N− 1 transition prob-
abilities times that of the initial letter. As in (2.4), minus the logarithm of the
probability is a sum of uncorrelated numbers (for a Markov chain):

log2 p(i1, . . . , iN)= log2 p(i1)+
N∑

k=2

log2 p(ik+1|ik). (2.10)

At large N, the sum grows linearly with N with the rate, which is the mean
value of the logarithm of conditional probability,−∑

j p(j|i) log2 p(j|i)= Si,
called the conditional entropy, Si. Therefore, the number of typical sequences
starting from i grows with N exponentially, as 2NSi . To get the mean rate
of growth for all sequences, it must be averaged over different i with their
probabilities p(i). That way we express the language entropy via p(i) and p(j|i)
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by averaging over i the entropy of the transition probability distribution:

S=−
∑

i
pi
∑

j
p(j|i) log2 p(j|i). (2.11)

That formula defines the information rate of the Markov source. We discuss
Markov chains further when describing the Google PageRank algorithm in
section 4.1 and index strategies in section A.6. Let us stress that we com-
puted not the average number of strings but the average rate of growth of this
number, that is, the mean logarithm, also called the geometric mean.

One can go beyond two-letter correlations and statistically calculate the
entropy of the next letter when the previous L− 1 letters are known (Shannon
1950). As L increases, the entropy approaches the limit, which can be called
the entropy of the language. Such long-range correlations and the fact that we
cannot make up words bring the entropy of English down to approximately
1.4 bits per letter, if no other information is given. Comparing 1.4 and 4.7, we
conclude that the letters in an English text are about 70% redundant—about
the same value one finds when asking people to guess the letters in a text one
by one, which they do correctly 70% of the time. This redundancy makes data
compression, error correction, and crossword puzzles possible. The famous
New York City subway poster of the 1970s illustrates it:

“If u cn rd ths u cn gt a gd jb w hi pa!”

These days, it is exploited with gusto in texting, using nonstandard spelling
and truncated grammar. Triple redundancy of the alphabet encoding not only
serves the goal of protecting the message against errors of transmission. It
could also correspond to the deeper need of our brain to obtain reinforcing
of the prior guess (see section 3.4): “What I tell you three times is true!”

What is so special about the alphabet? Redundant encodings are numer-
ous. Section A.3 explains the uniqueness of this invention and describes
the frequency distribution of words and their meanings. It also explains the
profound consequences of another great invention: the positional numeral
system.

How redundant is the genetic code? There are four bases, which must
encode 20 amino acids. There are 42 two-letter words, which is not enough.
The designer then must use a triplet code with 43= 64 words so that the
redundancy factor is again about three. The number of ways Nature uses to
encode a given amino acid is approximately proportional to its frequency of
appearance.
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Another example of redundancy for error protection is the NATO phonetic
alphabet used by the military and pilots. To communicate through a noisy
acoustic channel, full words encode letters: alpha is A, bravo is B, Charlie is
C, etc.

To conclude this subsection, recall that by knowing the probability dis-
tribution, one can compute entropy, which determines the most efficient
encoding rate. One can turn the tables and estimate the entropy of the data
stream by looking for its most compact lossless encoding. It can be done
in a one-pass (online) way, not looking at the whole data string but opti-
mizing encoding as one processes the string from beginning to end. Several
such algorithms are called adaptive codes (Lempel-Ziv, deep neural networks,
etc.). These codes are also called universal since they do not require a priori
knowledge of the distribution.

2.4 Mutual Information as a Universal Tool

In answering the first question posed in section 2.2, we have found that the
entropy of the set of objects determines the minimum mean number of bits
per object (word length in the binary code), which is the maximal transfer
rate of the information about the objects. In this section, we turn to question
(2) and find out how this rate is lowered if the transmission channel can make
errors so that one cannot unambiguously restore the input B from the output
A. How much information then is lost on the way?

We continue to view everything as communications and treat measure-
ment results A as messages about the value of the quantity B that we measure.
We can also view storing and retrieving information as sending a message
through time rather than space. We can include forecast and observation into
the same scheme, asking how much information about the experimental data
B is contained in the theoretical predictions A. In all cases, A is what we have
and B is what we want.

When the channel is noisy, the statistics of inputs P(B) and outcomes
P(A) are generally different; we need to deal with two probability distribu-
tions and the relation between them. Treating inputs and outputs as taken
out of distributions works for channels/measurements both with and with-
out noise; in the limiting cases, the distribution can be uniform or peaked
at a single value. Relating two distributions needs conditional probabilities,
which we introduced in the preceding section. They lead us to relative entropy
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Got the message!

Communication by gestures.

and mutual information, presently the most powerful and universal tools of
information theory.

B A
Noisy channel

The relation between the message (measurement) Ai and the event
(quantity) Bj is characterized by the conditional probability (of Bj in
the presence of Ai), denoted P(Bj|Ai). For every Ai, this is a normal-
ized probability distribution, and one can define its entropy as S(B|Ai)=
−∑

j P(Bj|Ai) log2 P(Bj|Ai). Since we are interested in the mean quality of
transmission, we average this entropy over all values of Aj, which defines the
conditional entropy (Shannon called it “equivocation”):

S(B|A)=
∑

i
P(Ai)S(B|Ai)=−

∑
ij

P(Ai)P(Bj|Ai) log2 P(Bj|Ai). (2.12)

We already encountered it in (2.11) when considering correlations between
subsequent terms in the sequence. If our sequence consisted of the related
pairs Ai, Bj, like ik, ik+1 in the previous section, it would yield the information
(2.11, 2.12).
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But we do not receive Bj. How much information about B gives us knowl-
edge of A? The conditional entropy between input and output measures what,
on average, remains unknown about B after the value of A is known. The
missing information was S(B)before the measurement and is equal to the con-
ditional entropy S(B|A) after it. Then what the measurements give on average
is their difference, called mutual information:

I(A, B)= S(B)− S(B|A)=
∑

ij
P(Ai)P(Bj|Ai) log2

[
P(Bj|Ai)

P(Bj)

]
. (2.13)

Information is a decrease in uncertainty, so mutual information must be non-
negative. That means that measurements, on average, lower uncertainty by
increasing the conditional probability relative to the unconditional:〈

log2

[
P(Bj|Ai)

P(Bj)

]〉
≥ 0.

Note that we average the logarithm of the probabilities.
For example, let B be a choice out of n equal possibilities: P(B)= 1/n and

S(B)= log2 n. Assume that for every Ai we can have m different values of B
from disjoint sets, as shown on the left in the figure. Then P(B|A)= 1/m,
S(B|A)= log2 m, and I(A, B)= S(B)− S(B|A)= log2(n/m)≥ 0, since evi-
dently m≤ n. In this case, knowledge of B fixes A, so that S(A|B)= 0 and
I(A, B)= S(A). When there is a one-to-one correspondence, m= 1, then A
tells us all we need to know about B.

B BA

m = 3

n = 9
n/m

l = 3

k = 9

A

Probabilities are multiplied, and entropies are added for independent
events. For correlated events, one uses conditional probabilities and entropies
in what is called the chain rule:

P(Ai, Bj)= P(Bj|Ai)P(Ai)= P(Ai|Bj)P(Bj), (2.14)

S(A, B)= S(A)+ S(B|A)= S(B)+ S(A|B).
-1—
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S(A, B)

I(A, B)S(A | B) S(B | A)

S(A)

S(B)

This gives I(A, B) in a symmetric form:

I(A, B)=
∑

ij
P(Ai, Bj) log2

[
P(Ai, Bj)

P(Ai)P(Bj)

]
= S(B)− S(B|A)

= S(A)+ S(B)− S(A, B)= S(A)− S(A|B). (2.15)

To illustrate the symmetry, consider the case corresponding to the m− n
example above: For every equally probable input B, we have l equally probable
values of A, whose total number is k, as shown on the right in the figure. In this
case, P(A|B)= 1/l and S(A|B)= log2 l, so that I(A, B)= S(A)− S(A|B)=
log2(k/l)= S(B) bits, similar to the m− n case.

To avoid confusion, let us state the obvious: there is no symmetry between
A and B. They could be of a very different nature—one is the position of an
atom and the other is the device’s reading, for instance. Neither their entropies,
S(A) and S(B), nor their conditional entropies, S(B|A) and S(A|B), are gener-
ally equal or even comparable. In spite of that, the degree of their correlation
I(A, B) is a symmetric function. If I(A, B) is one bit, knowledge of the atom
position shrinks by a factor of two the range of possible device readings and
vice versa.

It is important to stress that measuring A decreases the entropy of B only
on average over all values Ai: S(B|A)≤ S(B). That follows from P(Bj)=∑

i P(Bj|Ai)P(Ai) and the convexity of the logarithm. Yet for any particular Ai,
the entropy S(B|Ai) can be either smaller or larger than S(B), depending on
how this measurement changes the probability distribution (see exercise 2.7).
Note that P(Ai, Bj) could be either larger or smaller than P(Ai)P(Bj)when the
pair Ai, Bj are respectively correlated or anticorrelated. On average, however,
the nonnegativity of the mutual information gives the so-called subadditivity
of entropy:

S(A)+ S(B)> S(A, B). (2.16)

When A and B are independent, the joint entropy is a sum, and the mutual
information is zero. When A, B are related deterministically, S(A)= S(B)=
S(A, B)= I(A, B), where S(A)=−∑

i P(Ai) log2 P(Ai), etc. And finally,
—-1
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since P(A|A)= 1, the mutual information of a random variable with itself
is the entropy: I(A, A)= S(A). So one could call entropy self-information.
Another evident remark is that I(A, B) exceeds neither S(A) nor S(B).
Certainly, A cannot contain more information about B than about itself or
than B contains about itself.

We have seen in the previous section that the mutual information between
letters lowered the entropy of the language from the one-letter entropy,
−∑

i p(i) log p(i). That lowering is brought about by the knowledge of the
conditional probabilities p(j|i), p(j|i, k . . .), which is greater than the knowl-
edge of p(i).

2.5 Channel Capacity

If an imperfect channel brings about mutual information, how reliable is it?
It is tempting to suggest that mutual information plays the same role for
noisy channels that entropy plays for ideal channels; in particular, it sets
the maximal rate of reliable communication in the limit of long messages,
thus answering question (2) from section 2.2. Indeed, if there are differ-
ent outputs for the same input, like in the simple k− l example above,
the information transfer rate is lower than for one-to-one correspondence
since we need to divide our k outputs into groups of l, distinguishing only
between the groups. More formally, for each typical N sequence of indepen-
dently chosen Bs, we have [P(A|B)]−N = 2NS(A|B) possible output sequences,
all of them equally likely. To get the rate of the useful information about
distinguishing the inputs, we need to divide the total number of typical
outputs 2NS(A) into sets of size 2NS(A|B) corresponding to different inputs.
Therefore, we can distinguish at most 2NS(A)/2NS(A|B)= 2NI(A,B) sequences
of the length N, which sets I(A, B) as the maximal rate of information
transfer.

That was a rather trivial case in which inputs could be distinguished from
outputs without errors so that the information transfer at that rate is reliable.
But what if a single output can correspond to different inputs, like in the m− n
example above? There is no way now to determine every input exactly. Can we
still use this imperfect channel to convey information in a way where errors
can be made arbitrarily small? Yes, we can if we avoid overlapping inputs or,
in other words, correctly choose the input statistics. Here we switch focus
from B to the communication channel or measurement procedure. Let us
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characterize the channel itself, maximizing I(A, B)over all choices of the input
statistics P(B). That quantity is called Shannon’s channel capacity, which
quantifies the quality of communication systems in bits per symbol:

C=max
P(B)

I(A, B).

0

1 1 1

1

2

3

4

1

2

3

4

5
5

6
6

1

2

3

4

0 0
1/2

1/2

1/4

3/4

C = 1 C = 1 C = S(B) – S(B | A) = log3

A AB B

Simply put, the channel capacity is the log of the maximal number of dis-
tinguishable inputs. For example, if our channel transmits the binary input
exactly (zero to zero, one to one), then the capacity is 1 bit, which is achieved
by choosing P(B= 0)= P(B= 1)= 1/2; see left panel in the figure. Let
us stress that if P(0) 
= P(1), then the average rate is less than the capacity
(one bit per symbol) despite the channel being perfect. Even if the chan-
nel has many outputs for every input out of n, the capacity is still log2 n, if
those outputs are non-overlapping for different inputs so that the input can
be determined without an error and P(B|A)= 1. Such a case is presented
in the middle panel of the figure. In this case, the transfer rate is deter-
mined by the number of B states; from the perspective of A states, the rate is
S(A)− S(A|B)= 2− 1= 1.

Like mutual information, the capacity deviates from S(B) when the same
outputs appear for different inputs, say, different groups of m inputs each give
the same output, so that P(B|A)= 1/m. In this case, one cannot achieve error-
free transition for uniform P(B); one needs to choose only one input symbol
from each of n/m groups, that is, use P(B)=m/n for the symbols chosen and
P(B)= 0 for the rest; the capacity is then indeed C= log2(n/m) bits (right
panel; n= 6, m= 2). Lowered capacity means increased redundancy, that is,
a need to send more symbols to convey the same information.

Let us treat, at last, the most generic case with random errors when one
cannot separate inputs/outputs into completely disjoint groups. Here one
may argue that taking the limit of large N does not help since the channel
continues to make errors all the time. And yet Shannon showed (in the so-
called noisy channel theorem) that one can both keep a finite transmission
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rate and make the probability of error arbitrarily small at the limit N→∞.
The idea is to do error correction: send extra bits containing tests for identi-
fying errors. To get the rate, we need to compute how many bits are devoted
to error correction and how many are used to transfer the information itself.
Shannon showed that it is possible to make the probability of error arbitrarily
small when sending information with a finite rate R, if there is any correlation
between output A and input B, that is, C> 0. Then the probability of an error
becomes 2−N(C−R)—asymptotically small in the limit of N→∞ if the rate is
lower than the channel capacity. The fraction of information lost goes to zero
in the limit. This (arguably most important) result of the communication the-
ory is rather counter-intuitive: if the channel makes errors all the time, how
can one decrease the error probability by treating long messages? Shannon’s
argument is based on typical sequences and average equipartition, that is, on
the law of large numbers (by now familiar to you).

For example, if in a binary channel the probability of every single
bit going wrong is q, then the conditional probabilities are P(1|0)=
P(0|1)= q and P(1|1)= P(0|0)= 1− q, so that S(A|B)= S(B|A)= S(q)
=−q log2 q− (1− q) log2(1− q). The channel capacity, C=maxP(B)
[S(B)− S(B|A)]= 1− S(q), is achieved using the maximal entropy S(B)= 1
corresponding to P(0)= P(1)= 1/2.

C

q

1

Capacity of a binary channel
with error probability q

0 1/2 1

Let us now see how the capacity bounds the transmission rate from above.
To correct an error, we need to specify its place. In a message of length N, there
are qN errors on average, and there are N!/(qN)!(N− qN)! ≈ 2NS(q) ways
to distribute them. We then need to devote some m bits in the message not
to data transmission but to error correction. Apparently, the number of pos-
sibilities provided by these extra bits, 2m, must exceed 2NS(q), which means
that m>NS(q), and the transmission rate R= (N−m)/N< 1− S(q). The
channel capacity is zero for q= 1/2 and equals 0.988 bits per symbol for
q= 10−3. The probability of errors is binomial, with the mean number of
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errors qN and the standard deviation σ =√
Nq(1− q). If we wish to bound

the error probability from above, we must commit to correcting more than
the mean number of errors, making the transmission rate smaller than the
capacity.

The conditional entropy S(B|A) is often independent of the input statis-
tics P(B), as in the example above. Maximal mutual information (capacity)
is then achieved for maximal S(B). If no other restrictions are imposed, that
corresponds to the uniform distribution P(B).

If the measurement/transmission noise ξ is additive, that is, the output is
A= g(B)+ ξ with an invertible function g, then S(A|B)= S(ξ), so that

I(A, B)= S(A)− S(ξ). (2.17)

The more choices of the output that are recognizable despite the noise, the
greater the capacity of the channel is. When the conditional entropy S(A|B)
is given, we need to choose the measurement/coding procedure to maxi-
mize the mutual information, for instance, g(B) above, which maximizes the
entropy of the output S(A).

Mutual information also sets the limit on the data compression from A to
some encoding C such that S(A|C) is nonzero. In this case, the maximal data
compression, that is, the minimal coding length in bits, is min I(A, C).

Compression
limit

min I(A, C )

Transmission
limit

max I(A, B)

Possible
communication

schemes

Take-home lesson: The entropy of the symbol set is the ultimate data
compression rate; channel capacity is the ultimate transmission rate. Since
we cannot compress below the entropy of the alphabet and cannot transfer
faster than the capacity, transmission is possible only if the latter exceeds the
former.

Exercise 2.7: Conditional entropy of criminality.
In our town, 2% of the people are criminals, and they all carry guns.

In the rest of the population, only half of the people carry a gun.

(a) How much information yields a result about whether a given
person is a criminal or not?

(b) How much information yields such a result if we also know in
advance that the person does not carry a gun? How much
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information does the result yield if we see that the person
carries a gun?

(c) How much information about a person’s criminality yields
knowledge of whether he/she carries a gun?

Exercise 2.8: Cascade of binary channels.
Find the capacity of a cascade of n consequent binary channels each

with the probability of error q. How does the capacity decay at large n?

Exercise 2.9: Capacity of a noisy channel.
Consider a noisy channel X→ Y , where both input and output can

take four values. After making 128 transmissions, the frequencies were
as follows:

Y\X x1 x2 x3 x4 Sum
y1 12 15 2 0 29
y2 4 21 10 0 35
y3 0 10 21 4 35
y4 0 2 15 12 29

Sum 16 48 48 16 128

Compute the mutual information between the input and the output.
What fraction of the output Y is a signal? What would be the capacity
of the channel if it were error-free?

2.6 Continuous Case and the Gaussian Channel

Information theory is essentially discrete since it is ultimately about count-
ing. Moreover, the world of natural phenomena is described by digitized data
both on a practical level because of finite resolution and on a fundamental level
because of quantum bounds on maximal entropy in a given volume. Yet the
analysis presents such a convenient mathematical tool with all the derivatives
and integrals that we generalize here the definition of the Gibbs entropy (2.3)
for a continuous distribution.

In a continuous case, an indeterminacy is infinite, as for the position of a
point on an interval L. If we agree to know the position with an accuracy ε,
then the entropy of the uniform distribution is S(B)= log2(L/ε). How much
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information does a measurement A of the point position with a precision
	 yield? The indeterminacy in the point position after the measurement is
S(B|A)= log2(	/ε), so that the measurement gives the information inde-
pendent of ε:

I(A, B)= S(B)− S(B|A)= log
L
	

. (2.18)

We see that, even though the entropies go to infinity in the continuous limit
ε→ 0, the mutual information stays finite. That property makes the mutual
information and its quantum cousin, entanglement entropy, so important
in physics since they are insensitive to microscopic details and free from
ultraviolet divergencies.

More generally, we define the entropy of a continuous distribution ρ(x)
by dividing the space of x into ε intervals and denoting pi= ρ(xi)ε. Such
entropy in the limit ε→ 0 consists of two parts:

−
∑

i
pi log2 pi→−

∫
dxρ(x) log2 ρ(x)+ log2(1/ε). (2.19)

The second term on the right is an additive constant depending on the reso-
lution. When we are interested in the functional form of the distribution, we
usually focus on the first term, which is called differential entropy:

S(X)=−
∫

dxρ(x) log2 ρ(x). (2.20)

It is not sign definite. For example, the differential entropy of the uniform dis-
tribution on the interval L is S(u, L)= L−1 log2 L. It changes sign at L= 1 and
dS(u, L)/dL changes sign at L= 2 so that it does not characterize uncertainty,
which we expect to grow monotonically with L. Yet it sheds light on the inho-
mogeneity of the distribution inside the interval. On a unit interval, S(X) is
the difference between the entropies of the coarse-grained distribution and
the uniform distribution; when ε→ 0, both diverge but their difference may
stay finite. In another distinction from a discrete case, S(X) is invariant with
respect to shifts but not rescaling of the variables: S(aX+ b)= S(X)+ log a.

For example, the differential entropy of the Gaussian distribution
P(ξ)= (2πN )−1/2 exp[−ξ 2/2N ] is as follows:

S(ξ)=−
∫ ∞
−∞

dξP(ξ) log2 P(ξ)= 1
2

log2 2πeN .

Consider a linear noisy channel A=B+ ξ , such that the noise is inde-
pendent of B and Gaussian with 〈ξ〉= 0 and 〈ξ 2〉=N . Then P(A|B)= —-1
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(2πN )−1/2 exp[−(A−B)2/2N ]. If in addition we have a Gaussian input
signal with P(B)= (2πS)−1/2 exp(−B2/2S), then

P(A)=
∫

dBdξP(B)P(ξ)δ(A−B− ξ)

=[2π(N +S)]−1/2 exp[−A2/2(N +S)] .
Now, using the chain rule, we can write

P(B|A)= P(A|B)P(B)/P(A)=
√
N +S

2N exp

[
−S +N

2N
(

B− A
S +N

)2
]

.

If we measure the value A= a, what is the best estimate for the value B(a)=
b? It is computed using the conditional probability

b=
∫

BP(B|a) dB= aS
S +N = a

SNR
1+ SNR

, (2.21)

where the signal-to-noise ratio is SNR=S/N . The rule (2.21) makes sense:
to “decode” the output of a linear detector, we use the unity factor at high SNR.
We scale down the output at low SNR since most of what we see must be noise.
Note that the estimate of b is linearly related to the measurement a, which
requires linearity of the input-output relation and Gaussianity of the statistics.
Let us now find the mutual information (2.17):

I(A, B)=S(A)−S(A|B)=S(A)−S(B+ξ |B)=S(A)−S(ξ |B)=S(A)−S(ξ)

= 1
2
[

log2 2πe(S +N )− log2 2πeN ]= 1
2

log2(1+ SNR). (2.22)

The capacity of such a channel depends on the input statistics. One increases
capacity by increasing the input signal variance, that is, the dynamic range rel-
ative to the noise. For a given input variance, the maximal mutual information
(channel capacity) is achieved by a Gaussian input because the Gaussian dis-
tribution has maximal entropy for a given variance: Varying

∫
dxρ(x)

(
λx2−

ln ρ
)

with respect to ρ, we obtain ρ(x)∝ exp(−λx2). Therefore, (2.22) also
determines the capacity of the Gaussian channel in bits per transmission:
C= log2

√
(N +S)/N . That means that receiving a value A allows us to

distinguish between 2C values. Noise effectively makes a continuous chan-
nel discrete. We elaborate on this in section 3.5. Note that the differential
entropies S(A) and S(A|B) depend on the units used for variances and can
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be of either sign, while their difference and the channel capacity are positive
and independent of the units.

Exercise 2.10: Efficient coding of correlated Gaussian signals.
Consider two correlated signals with Gaussian statistics determined

by 〈x1〉= 〈x2〉= 0, 〈x2
1〉= 〈x2

2〉= 1, and 〈x1x2〉= r. Find the most effi-
cient encoding, y1(x1, x2) and y2(x1, x2). Remember that such encoding
must maximize the data transmission rate, that is, entropy.

2.7 Hypothesis Testing and Bayes’ Formula

. . . nothing but common sense reduced to calculus

—pier r e- si m on l a pl ace

All empirical sciences need a quantitative tool for confronting hypotheses
with data. One (rational) way to do that is statistical: update prior beliefs in
light of the evidence. This is done using conditional probability. For any e and
h, we have P(e, h)= P(e|h)P(h)= P(h|e)P(e). If we now call h the hypothe-
sis and e the evidence, we obtain the rule for updating the probability that the
hypothesis is true:

P(h|e)= P(h)
P(e|h)
P(e)

. (2.23)

This form of the chain rule is so important that it is named after Thomas Bayes,
who first introduced it in 1763. That common-sense statement specifies how
to update the probability that the hypothesis h is correct after we receive the
data e: the new (posterior) probability, P(h|e), is the prior probability P(h)
times the quotient P(e|h)/P(e), which presents the support e provides for h.
Without exaggeration, one can say that most errors made by data analysis in
science and most conspiracy theories are connected to neglect or abuse of this
simple formula. For example, suppose your hypothesis is the existence of a
massive international conspiracy to increase the power of governments and
the evidence is the COVID pandemic. In this case, P(e|h) is high: a pandemic-
provoking increase of state power is highly likely given such a conspiracy exists.
Some people stop thinking right there and accept the hypothesis. They thus
commit the error called inversion of the conditional since we need to evaluate
not P(e|h), but P(h|e). Even when the former is not small, the latter could be.
Indeed, absent such an event, the prior probability P(h) could be vanishingly
small. To overcome that smallness by a large quotient support factor, we need
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to evaluate total P(e), that is, the probability that a pandemic happens with or
without conspiracy.

If we choose between two mutually exclusive hypotheses, h1 and h2, the
total probability of the evidence consists of two terms: P(e)= P(e, h1)+
P(e, h2)= P(h1)P(e|h1)+ P(h2)P(e|h2). Then the posterior probability of
the hypothesis being true is as follows:

P(h1|e)= P(h1)
P(e|h1)

P(e)
= P(h1)

P(e|h1)

P(h1)P(e|h1)+ P(h2)P(e|h2)
. (2.24)

For example, when we want to check an improbable hypothesis, P(h1)
P(h2), any data changing the probability of this hypothesis won’t matter much
because P(e|h1) in (2.24) is multiplied by a small number, P(h1). It is better
then to design an experiment or look for the data that could minimize P(e|h2)

rather than maximize P(e|h1), that is, to rule out alternatives rather than sup-
port the hypothesis. This is why even good tests, with P(e|h1) close to unity
and P(e|h2) small, are not very reliable at the beginning of a pandemic when
P(h1) is small. The same is true for drug tests in a mostly drug-free popula-
tion. Suppose that a drug test is 99% sensitive and 99% specific. That means
that the test produces 99% true positive results for drug users (hypothesis
h1) and 99% true negative results for other people (hypothesis h2). If e is
the positive test result, then P(e|h1)= 0.99 and P(e|h2)= 1− 0.99= 0.01.
Suppose that 0.5% of people are drug users, that is, P(h1)= 0.005. The prob-
ability that a randomly selected individual with a positive test is a drug user
is 0.005 · 0.99/(0.99 · 0.005+ 0.01 · 0.995)≈ 0.332, which is less than half.
The result is more sensitive to specificity approaching unity when P(e|h2)→
0 than to sensitivity. For example, taking P(e|h2)= 0.001, we obtain the
probability 0.83.

The choice between two (not necessarily exclusive) hypotheses is deter-
mined by the ratio of their probabilities conditioned on the data:

P(h1|e)
P(h2|e) =

P(h1)

P(h2)

P(e|h1)

P(e|h2)
. (2.25)

Both factors on the right quantify Occam’s razor, which is a preference for a
simpler hypothesis. The second factor is applied to data and is mostly used
by experimentalists. A more complex hypothesis, say, h2, is capable of a wider
variety of predictions, so it spreads its probability over the data space more
thinly. If the evidence is compatible with both hypotheses (the data range
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is around their probability maxima, as in the figure), the simpler hypothesis
generally assigns more probability to the evidence.

P

e
data

P (e|h1)

P (e|h2)

Contrary to experimentalists, theoreticians apply Occam’s razor to the first
factor on the right side in (2.25), choosing prior beliefs on aesthetic grounds
of mathematical beauty and simplicity.

Alternatively, one can interpret higher probability as lower surprise and
less information brought by the choice. That interpretation of (2.25) is some-
times called minimum description length: one should prefer the hypothesis
communicating the data in fewer bits. Two subsequent messages are commu-
nicated: first, we choose the model and then communicate the data within
this model. The length of the message is then − log2 P(h)− log2 P(e|h)=
− log2 P(e, h). This way, the choice of a simpler model is communicated in
fewer bits, and such a model also communicates data prediction in fewer bits
since a more narrow distribution has lower entropy. Technically, P(e|h) is also
evaluated in a two-step process, so the respective message has two parts: first,
we specify the choice parameters, then communicate the data in these terms.
Increasing the number of parameters, we are able to fit the data better, which
shortens the error list in the data message; optimization of the respective
trade-off is briefly described at the end of section 3.6.

Note the shift in the interpretation of probability brought by (2.23–2.25).
The traditional sampling approach by mathematicians and gamblers treats
probability as the frequency of outcomes in repeating trials. The Bayesian
approach defines probability as a degree of belief; that definition allows wider
applications, particularly when we cannot have repeating identical trials nor
an ensemble of identical objects. For example, we have only one Earth and
cannot yet restart it from the same or different initial conditions. Therefore,
any estimate of the statistical significance of a global warming prediction must
be based on the Bayesian approach. The approach may seem unscientific since
it is dependent on prior beliefs, which can be subjective. However, by repeat-
edly subjecting our hypothesis to variable testing, we hope that the resulting
flow in the space of probabilities will eventually come close to a fixed point
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independent of the starting position. Normally, only a data sequence with a
clear trend of increasing probability can lead us to accept the hypothesis.

Making prior assumptions explicit is important, both computationally and
conceptually. There are neither inferences nor predictions without assump-
tions, however uncomfortable some may feel about that (those claiming to
be unbiased are usually most misleading). For example, given 5, 8, . . . as two
numbers of the sequence, one may put forward two hypotheses: h1 predicts
an arithmetic sequence 5, 8, 11, . . . , while h2 predicts the Fibonacci sequence
5, 8, 13, . . . , where any number is the sum of two preceding ones. If the
next number comes through the noisy channel as 12± 1, then P(e|h1)=
P(e|h2) and the choice in (2.25) is due to priors. Engineers and accountants
argue that arithmetic sequences are more frequently encountered, while nat-
ural scientists point to pinecones, floral petals, and seed heads to argue for
Fibonacci.

Observing our own mental processes gives us the idea of both logic and statis-
tical inference. A Bayesian approach is used in brain research on multiple levels,
from an interpretation of neural spikes and functional brain imaging to model-
ing sensory processing and belief propagation. One such approach is described
in section 3.4.

One also uses Bayes’ formula for design. For example, experimentalists
measure the sensory response A of an animal to the stimulus B, which gives
P(A|B)/P(A), or build a robot with the prescribed response. Then they go to
the natural habitat of that animal/robot and measure the distribution of stimuli
P(B) (see the example at the beginning of section 3.3). After that, one obtains
the conditional probability

P(B|A)= P(B)
P(A|B)

P(A)
, (2.26)

which allows the animal/robot to perceive the environment and function
effectively in that habitat.

2.8 Relative Entropy

The mutual information I(A, B)measures the degree of correlation, which is
essentially the difference between the true joint distribution P(A, B) and the
product distribution P(A)P(B) of two independent quantities. As such, it is a
particular case of a more general measure of difference between distributions.
Let us ask the following question: How fast can a data sequence invalidate an
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incorrect hypothesis? If the true distribution is p but our hypothetical distri-
bution is q, what number N of trials is sufficient to decrease the probability
P(h|e) by some a priori set factor? For that, we need to estimate how fast the
factor P = P(e|h)/P(e) decreases with N, that is, to compute the probability
of the stream of data observed given the distribution q. The result i is observed
piN times. We judge the probability of that happening as qpiN

i = epiN ln qi times
the number of sequences with those frequencies:

P =
∏

i
epiN ln qi

N!∏
j(pjN)! . (2.27)

This is how fast the probability of our hypothetical distribution being true
changes with N, given the data set. Considering the limit of large N, we obtain

P ≈ exp
{

N
[

ln N+
∑

i
pi(ln qi− ln piN)

]}

= exp
[
−N

∑
i

pi ln(pi/qi)
]

. (2.28)

This is a large-deviation-type relation, like (A.7) in section A.2. The probabil-
ity exponentially changes with the rate, called the relative entropy (Kullback-
Liebler divergence):

D(p|q)=
∑

i
pi ln(pi/qi)=

〈
ln(p/q)

〉
. (2.29)

We need this quantity to always be nonnegative so that the probability of a not-
exactly-correct hypothesis to approximate the data decreases with the number
of trials. That can be shown using the simple inequality ln x≤ x− 1 (turning
into equality only for x= 1):

−D(p|q)=
∑

i
pi ln(qi/pi)≤

∑
i
(qi− pi)= 0.

To prove our hypothesis wrong, the number N of trials must be large enough
for ND(p|q) to exceed a threshold. The closer our hypothesis is to the true
distribution, the larger the number of trials needed. On the other hand, when
ND(p|q) is below the threshold, our hypothetical distribution is just fine.

The relative entropy measures how different the hypothetical distribution
q is from the true distribution p. Note that D(p|q) is not the difference between
entropies (which measures the difference in uncertainties). Nor is the rela-
tive entropy a geometrical distance in the space of distributions since it does
not satisfy the triangle inequality and is asymmetric: D(p|q) 
=D(q|p). There

—-1

—0

—+1



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 17:09 — page 46 — #30
�

�

�

�

�

�

46 c h a p t e r 2

is no symmetry between reality and a hypothesis. Yet D(p|q) has important
properties of a distance: it is nonnegative and turns into zero only when dis-
tributions coincide, that is, pi= qi for all i. One possible distance between
distributions is defined in exercise 2.13.

Nonnegativity and asymmetry are related for the relative entropy. If I
believe that the distribution is pi, then the entropy −∑

i pi ln pi quantifies
my average degree of surprise upon receiving the series of outcomes. But if
somebody believes that the distribution is q, then her surprise upon the out-
come i is− ln qi. I judge her average degree of surprise to be−∑

i pi ln qi. That
must be larger than my own degree since I naturally believe that I use the best
distribution; otherwise, I’d replace it by a better option.

In particular, relative entropy quantifies how close to reality is the asymp-
totic equipartition estimate (2.4) of the probability of a given sequence.
Assume that we have an N sequence where the values/letters appear
with the frequencies qk, where k= 1, . . . , K. Then the asymptotic equipar-
tition (the law of large numbers) suggests that the probability of that
sequence is

∏
k qNqk

k = exp(N
∑

k qk ln qk)= exp[−NS(q)]. But the fre-
quencies we observe in a finite sequence are generally somewhat differ-
ent from the true probabilities {pk}. That difference has a price so that
the true probability is actually lower, which follows from the positivity of
the relative entropy:

∏
k pNqk

k = exp
(

N
∑

k qk ln pk
)= exp[N

∑
k
(

qk ln qk+
qk ln(pk/qk)

)
]= exp

{−N[S(q)+D(q|p)]}.
Asymptotic equipartition, on average, overestimates the probability of a given
sequence because it disregards atypical sequences, assuming that the ensem-
ble is smaller than it really is.

If our guess is the Gibbs distribution with a given temperature, qi=
Z−1e−Ei/T , then the relative entropy is the difference of the free energies
divided by that temperature:

D(p|q)= ln Z+
∑

i
piEi/T− S(p)=−F(q)

T
+ E

T
− S(p)= F(p)− F(q)

T
.

(2.30)

The positivity of D(p|q) corresponds to the known fact that the Gibbs dis-
tribution has the lowest free energy (which does not necessarily mean that it
is a true distribution in every case). Therefore, one can also think of the rela-
tive entropy as a generalization of a free energy difference for a non-Gibbs q
distribution.
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Mutual information is that particular case of the relative entropy when we
compare the true joint probability p(xi, yj) with the distribution made out of
their separate measurements q(xi, yj)= p(xi)p(yj), where p(xi)=∑

j p(xi, yj)

and p(yj)=∑
i p(xi, yj):

D(p|q)= S(X)+ S(Y)− S(X, Y)= I(X, Y)≥ 0.

If i in pi runs from 1 to d, we can introduce D(p|u)= log2 d− S(p), where u
is a uniform distribution. That allows us to show that both relative entropy
and mutual information inherit from entropy convexity properties. You are
welcome to prove that D(p|q) is convex with respect to both p and q, while
I(X, Y) is a concave function of p(x) for fixed p(y|x) and a convex function of
p(y|x) for fixed p(x). In particular, convexity is important for ensuring that the
extremum we seek is unique and lies at the boundary of allowed states.

How many different probability distributions {qi} (called types in informa-
tion theory) exist for an N sequence made out of an alphabet with d symbols?
The distribution {qi} is a d vector. Since qi can take any of N+ 1 values,
0, 1/N, . . . , 1, then the number of possible d vectors is at most (N+ 1)d, which
grows with N only polynomially, where the alphabet size d sets the power. The
number of sequences grows exponentially with N, so that there is an exponen-
tial number of possible sequences for each type. The probability of observing
a given type (empirical distribution) is determined by the relative entropy,
P{qi}∝ exp[−ND(q|p)].

Relative entropy also measures the price of nonoptimal coding. As we dis-
cussed before, a natural way to achieve optimal coding would be to assign the
length to the codeword according to the probability of the object encoded:
li=− log2 pi. Indeed, the information in bits about the object, log2(1/pi),
must be exactly equal to the length of its binary encoding. This is the case
with code 2 in section 2.2. For an alphabet with d letters, li=− logd pi. Shorter
words then code the more frequently used objects, and the mean length is the
entropy. The problem is that li must all be integers, while− logd pi are gener-
ally not. A set of integer li effectively corresponds to another distribution with
the probabilities qi= d−li/

∑
i d−li . Assume for simplicity that we find encod-

ing with
∑

i d−li = 1 (unity can be proved to be an upper bound for the sum).
Then li=− logd qi and the mean length is l̄=∑

i pili=−∑
i pi logd qi=

−∑
i pi

(
logd pi− logd pi/qi

)= S(p)+D(p|q), that is, larger than the optimal
value S(p), so that the transmission rate is lower. In particular, if one takes
li=�logd(1/pi)� (i.e., the integer part), then one can show that S(p)≤ l̄≤
S(p)+ 1; that is, nonoptimality is at most one bit.
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Monotonicity and irreducible correlations If we observe fewer variables, then
the relative entropy is less, a property called monotonicity:

D[p(xi, yj)|q(xi, yj)] ≥D[p(xi)|q(xj)],
where as usual p(xi)=∑

j p(xi, yj) and q(xi)=∑
j q(xi, yj). With fewer vari-

ables, we need larger N to have the same confidence. In other words, informa-
tion does not hurt (but only on average!). For three variables, one can define
q(xi, yj, zk)= p(xi)p(yj, zk), which neglects correlations between X and the
rest. What happens to D[p(xi, yj, zk)|q(xi, yj, zk)] if we do not observe Z at all?
Integrating Z out turns q into a product. Monotonicity gives

D[p(xi, yj, zk)|q(xi, yj, zk)]=
〈

p(X, Y , Z) log
p(X, Y , Z)

p(X)p(Y , Z)

〉
= S(X)+ S(Y , Z)

− S(X, Y , Z)≥D[p(xi, yj)|q(xi, yj)]= S(X)+ S(Y)− S(X, Y),

which can be presented as the positivity of the conditional mutual information:

I(X, Z|Y)= S(X|Y)+ S(Z|Y)− S(X, Z|Y)= S(X, Y)− S(Y)+ S(Z, Y)

− S(Y)− S(X, Y , Z)+ S(Y)= S(X, Y)+ S(Y , Z)− S(Y)− S(X, Y , Z)≥ 0.

(2.31)

That allows one to make the next step in disentangling information encod-
ing. The straightforward generalization of the mutual information for many
objects, I(X1, . . . , Xk)=∑

S(Xi)− S(X1, . . . , Xk), simply measures the total
correlation. We can introduce a more sophisticated measure of correlations
called the interaction (or multivariate) information, which measures the
irreducible information in a set of variables beyond that which is present in
any subset of those variables. For three variables, it measures the difference
between the total correlation and that encoded in all pairs and is defined as
follows (McGill 1954):

II= I(X, Z)− I(X, Z|Y)= S(X)+ S(Y)+ S(Z)− S(X, Y)− S(X, Z)

+ S(X, Y , Z)− S(Y , Z)= I(X, Y)+ I(X, Z)+ I(Y , Z)− I(X, Y , Z).

(2.32)

Interaction information measures the influence of a third variable on the
amount of information shared between the other two and can be of either
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sign. When positive, it indicates that the third variable accounts for some of
the correlation between the other two, so its knowledge diminishes the cor-
relation. When negative, it indicates that the knowledge of the third variable
facilitates the correlation between the other two. Alternatively, one may say
that a positive II(X, Y , Z)measures redundancy in the information about the
third variable contained in the other two separately, while a negative one mea-
sures synergy, which is the extra information about Y received by knowing X
and Z together, instead of separately.

For example, a channel with input X, noise Z, and output Y corresponds
to I(X, Z)= 0 and I(X, Z|Y)> 0, that is, II(X, Y , Z)< 0. Indeed, once you
know the output, the unknown noise and input are related. Love triangles can
be either redundant or synergetic (information-wise). If Y dates either X, both
X, and Z, or none, then the dating states of X and Z are correlated. Knowing
one tells us more about another (chooses from more possibilities) when the
state of Y is not known than when it is: I(X, Z)> I(X, Z|Y). On the contrary,
if Y can date with equal probability one, another, both, or none, the states of X
and Z are uncorrelated, but the knowledge of Y induces correlation between
X, and Z: if we know that Y presently dates, then it is enough to know that X
does not to conclude that Z does. Note that II(X, Y , Z) is symmetric.

Capturing dependencies by using structured groupings can be generalized
for an arbitrary number of variables as follows:

In=
n∑

i=1
S(Xi)−

∑
ij

S(Xi, Xj)+
∑

ijk

S(Xi, Xj, Xk)

−
∑
ijkl

S(Xi, Xj, Xk, Xl)+ . . .+ (−1)n+1S(X1, . . . , Xn). (2.33)

Entropy, mutual information, and interaction information are the first three
members of that hierarchy.

An important property of both relative entropy and all In for n> 1 is
that they are independent of the additive constants in the entropies, that
is, of the choice of units or bin sizes. One can also define differential rela-
tive entropy,

∫
dx ρ(x) log[ρ(x)/ρ′(x)], which is invariant with respect to

arbitrary (differentiable) coordinate transformations, x→ y(x).
Relative entropy also allows us to generalize the second law for nonequi-

librium processes. Entropy itself can either increase upon evolution toward
thermal equilibrium or decrease upon evolution toward a nonequilibrium
state, as demonstrated in sections 5.3 and 5.4, respectively. However, the
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relative entropy between the distribution and the steady-state distribution
monotonously decreases with time.

Exercise 2.11: Interaction information.
Consider a love triangle in which Y can date X and Z. Consider

the statistics of dating-not dating. Compute the entropies of the joint
distribution and all the marginal distributions and the interaction infor-
mation, II= S(X)+ S(Y)+ S(Z)+ S(X, Y , Z)− S(X, Y)− S(X, Z)−
S(Y , Z), in the two cases.

(a) Assume that Y with equal 1/3 probabilities can be in these
three states: not dating anyone, dating X, dating Z. That is, Y is
dating with probability 2/3.

(b) Assume that Y with equal 1/4 probabilities can be in these four
states: not dating anyone, dating X, dating Z, dating both X and
Z.

Exercise 2.12: Correlations between three events.
What sign is the interaction information between i) clouds, rain, and

darkness, and ii) a dead car battery, a broken fuel pump, and failure to
start the engine?

Exercise 2.13: Distance between distributions.
Consider two random quantities X and Y and define ρ(X, Y)=

S(X|Y)+ S(Y |X). Apparently, ρ(X, Y) is nonnegative and turns into
zero if and only if X and Y are perfectly correlated.

(a) Prove the triangle inequality ρ(X, Z)≤ ρ(X, Y)+ ρ(Y , Z).
(b) Recall that a Markov chain is an ordered set of probability

distributions where the next one depends only on the one
immediately preceding it. In particular, the three random
quantities X→ Y→Z constitute a Markov triplet if Y is
completely determined by X, Z, while X, Z are independent,
conditional on Y ; that is, I(X, Z|Y)= 0. Find the relation
between ρ(X, Z) and ρ(X, Y), ρ(Y , Z).
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Applications of
Information Theory

My brothers are protons, my sisters are neurons

—gogol bor dello, “supertheory of super every thing”

This chapter gives some content to the general notions introduced thus far.
Choosing from an enormous variety of applications, I tried to balance the
desire to show beautiful original works and touch diverse subjects to let you
recognize the same ideas in different contexts. The chapter is concerned with
practicality no less than with optimality; we often sacrifice the latter for the
former. The simplest and probably the most important lesson we learn here is
that looking for a conditional entropy maximum is a universal approach.

3.1 The Whole Truth and Nothing But the Truth

So far, we have defined entropy and information via distribution. In practi-
cal applications, however, the distribution ρ(x, t) is usually unknown and we
need to guess it from some data. Information theory supplies a systematic way
of guessing, making use of partial information, which is assumed to be given as
〈Rj(x, t)〉= ∫ ρ(x, t)Rj(x, t) dx= rj(t), i.e., as the ensemble averages of some
dynamical quantities including normalization,

∫
ρ(x, t) dx= 1=−r0. How

to get the best guess for ρ(x, t), based on that information? Before, we used
to find thermal equilibrium distribution looking for an entropy maximum
under some condition. Now we want to treat any distribution; among the
parameters that we measure could be currents, gradients, or other signs of
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nonequilibrium. Nevertheless, the approach is essentially the same. There are
infinitely many distributions that contain the whole truth (i.e., are compatible
with all the given information). Our distribution must also contain nothing
but the truth; that is, it must maximize the missing information, which is the
entropy S=−〈ln ρ〉. This provides for the widest set of possibilities for future
use, compatible with the existing information ( Jaynes 1957). Looking for the
extremum of

S+
∑

j
λj〈Rj(x, t)〉=

∫
ρ(x, t)

{
− ln[ρ(x, t)]+

∑
j
λjRj(x, t)

}
dx,

we differentiate it with respect toρ(x, t) and obtain the equation ln[ρ(x, t)]=
−1+∑j λjRj(x, t), which gives the distribution

ρ(x, t)= exp
[∑

j
λjRj(x, t)− 1

]
=Z−1 exp

[∑
j≥1
λjRj(x, t)

]
. (3.1)

The normalization factor,

Z(λi)= e1−λ0 =
∫

exp
[∑

j≥1
λjRj(x, t)

]
dx,

and the parameters λi can be expressed via the measured quantities by using

∂ ln Z
∂λi
= ri. (3.2)

The distribution (3.1) corresponds to the entropy extremum, but how do we
know that it is the maximum? The positivity of relative entropy proves it. Con-
sider any other normalized distribution g(x), which satisfies the constraints∫

dx g(x)Rj(x)= rj. Then∫
dx g ln ρ=

∑
j
λirj− ln Z=

∫
dx ρ ln ρ=−S(ρ),

so that

S(ρ)− S(g)=−
∫

dx
(

g ln ρ− g ln g
)=

∫
dx g ln(g/ρ)=D(g|ρ)≥ 0.

The Gibbs distribution is (3.1), with R1 being energy. When it is the kinetic
energy of molecules, we have a Maxwell distribution; when it is potential
energy in an external field, we have a Boltzmann distribution.

Example 3.1: Let us return to our “candy-in-the-box” problem (think
of an impurity atom in a lattice, if you prefer physics to candy) and
find the probability distribution of it being in box j. Different attempts
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give different j, but after many attempts we find the mean value, 〈j〉= r.
The distribution giving maximal entropy for a fixed mean is exponen-
tial: ρ(j)=Z−1e−λj. Using Z=∑j e−λj= (1− e−λ)−1 and (3.2), we
find e−λ= r/(1+ r)≡ p, so that we have the geometric distribution
ρ(j)= (1− p)pj.

Another approach is to scatter on the lattice an X-ray with wavenum-
ber k. This time we find 〈cos(kj)〉= 0.3, which gives the probability
distribution

ρ(j)=Z−1(λ) exp[−λ cos(kj)]
Z(λ)=

n∑
j=1

exp[λ cos(kj)] , 〈cos(kj)〉= d log Z/dλ= 0.3.

We can explicitly solve this for k� 1� kn when one can approximate
the sum by the integral so that Z(λ)≈ nI0(λ), where I0 is the modified
Bessel function. Equation I′0(λ)= 0.3I0(λ)has an approximate solution
of λ≈ 0.63.

The set of equations (3.2) may be self-contradictory or insufficient so that
the data do not allow us to define the distribution or allow it nonuniquely.
For example, consider Ri=

∫
xiρ(x) dx for i= 0, 1, 2, 3. Then (3.1) cannot

be normalized if λ3 	= 0; but having only three constants, λ0, λ1, λ2, one gen-
erally cannot satisfy the four conditions. That means that we cannot reach the
entropy maximum, yet one can prove that we can come arbitrarily close to the
entropy of the Gaussian distribution ln[2πe(r2− r2

1)]1/2.
If, however, the extremum is attainable, then the information still miss-

ing after the measurements can be computed from (3.1): S{ri}=−∑j ρ(j)
ln ρ(j). It is analogous to thermodynamic entropy as a function of (measur-
able) macroscopic parameters. It is clear that S has a tendency to decrease
whenever we add a constraint by measuring more quantities Ri. On the
contrary, removing a constraint generally leads to entropy increase.

If we know the given information at some time t1 and want to make guesses
about some other time t2, then our information generally gets less relevant
as the distance |t1− t2| increases. In the particular case of guessing the dis-
tribution in the phase space, the mechanism of losing information is due
to the separation of trajectories described in section 5.3. If we know that
at t1 the system was in some region of the phase space, the set of trajecto-
ries started at t1 from this region generally fills larger and larger regions as
|t1− t2| increases. Therefore, missing information (i.e., entropy) increases
with |t1− t2|. It works both into the future and into the past. The information
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approach allows one to see clearly that there is really no contradiction between
the reversibility of equations of motion and the growth of entropy.

Yet there is one class of quantities where information does not age. These
quantities are integrals of motion. The situation in which only integrals of
motion are known is called equilibrium. When we leave the system alone, all
currents dissipate and gradients diffuse. The distribution (3.1) then takes the
equilibrium form, either canonical (5.3) if environment temperature is known
or microcanonical if only total energy is known.

From the information point of view, the statement that systems approach
thermal equilibrium is equivalent to saying that all information is forgotten
except the integrals of motion. If, however, we possess the information about
averages of quantities that are not integrals of motion and those averages
do not coincide with their equilibrium values, then the distribution (3.1)
deviates from equilibrium. Examples are fluxes and gradients.

The traditional way of thinking is operational: if we leave the system alone,
it is in equilibrium; we need to act for it to deviate from equilibrium. Informa-
tional interpretation lets us see it in a new light: if we leave the system alone,
our ignorance about it is maximal and so is the entropy, so that the system
is in thermal equilibrium. When we act on a system in a way that gives us
more knowledge of it, the entropy is lowered, and the system deviates from
equilibrium.

We see that looking for the distribution that realizes the entropy extremum
under given constraints is a universal, powerful tool whose applicability goes
far beyond equilibrium statistical physics. It is essentially common sense
expressed via simple mathematics. A beautiful example of using this approach
is obtaining the statistical distribution of the ensemble of neurons. In a
small window of time, a single neuron either generates an action potential
or remains silent, and thus the states of a network of neurons are described
naturally by binary vectors, σi=±1. The most fundamental results of mea-
surements are the mean spike probability for each cell, 〈σi〉, and the matrix of
pairwise correlations among cells, 〈σiσj〉. One can successfully approximate
the probability distribution of σi by maximum entropy distribution (3.1)
that is consistent with the two results of the measurement. The probability
distribution of the neuron signals that maximizes entropy is as follows:

ρ({σ })=Z−1 exp

⎡
⎣∑

i
hiσi+ 1

2

∑
i<j

Jijσiσj

⎤
⎦, (3.3)-1—
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where the Lagrange multipliers hi, Jij have to be chosen so that the averages,
〈σi〉, 〈σiσj〉 in this distribution, agree with the experiment. Such models bear
the name Ising in physics, where they were first used for describing systems of
spins (the model was formulated by Lenz in 1920 and solved in one dimen-
sion by his student Ising in 1925). The distribution (3.3) corresponds to the
thermal equilibrium in the respective Ising model, yet it describes the brain
activity, which is apparently far from thermal equilibrium (unless the person
is brain dead). More in section A.4.

Looking for a conditional entropy maximum is a great way to process data.
Unfortunately, we lack any guidance from first principles on which conditions
to impose theoretically for describing the statistics far from thermal equilib-
rium. Very close to equilibrium, such a condition is often the minimum of the
entropy production, but for nonequilibrium states like turbulence, we don’t
have any idea which or how many conditions to impose.

Exercise 3.1: Distribution from information.
Consider particles having coordinates x on a line: −∞< x<∞.

Find the probability distribution p(x) in two cases.

(a) The only information established by measurement is that the
mean distance from zero is 〈|x|〉 =X.

(b) The only information established by measurement is that the
variance is given by 〈x2〉=X2.

Which measurement provides more information on the
coordinate distribution? Quantify the difference in bits.

3.2 Exorcising Maxwell’s Demon

The demon died when a paper by Szilárd appeared, but it continues to haunt
the castles of physics as a restless and lovable poltergeist.

—peter l a ndsberg, quoted from ja me s gleick’s
the information

Making a measurement R, one changes the distribution from ρ(x) to ρ(x|R),
which has its own conditional entropy:

S(x|R)=−
∫

dxdR ρ(R)ρ(x|R) ln ρ(x|R)=−
∫

dxdR ρ(x, R) ln ρ(x|R). —-1
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The conditional entropy quantifies our remaining ignorance about x once we
know R. Measurement decreases the entropy of the system by the mutual
information (2.13, 2.15)—that is, how much information about x one gains:

S(x)− S(x|R)=
∫
ρ(x, R) ln ρ(x|R) dxdR−

∫
ρ(x) ln ρ(x) dx

=
∫
ρ(x, R) ln

ρ(x, R)
ρ(x)ρ(R)

dxdR= S(x)+ S(R)− S(x, R)=�I. (3.4)

But all our measurements happen in the real world at a finite temperature.
Does it matter? Yes, it determines the energy cost of measurements. Assume
that our system is in contact with a thermostat having temperature T, which by
itself does not mean that our system is in thermal equilibrium (as, for instance,
a current-carrying conductor). We then can define free energy as F(ρ)= E−
TS(ρ). The Gibbs-Shannon entropy (2.3) and the mutual information (2.13,
3.4) can be defined for arbitrary distributions. If the measurement does not
change energy (like the knowledge of which half of the box the particles are
in), then the entropy decrease (3.4) increases the free energy, that is, the total
work we are able to do. The first law of thermodynamics then requires that
the minimal work to perform such a measurement is F(ρ(x|R))− F(ρ(x))=
T[S(x)− S(x|R)]=T�I.

Thermodynamics interprets F as the energy we are free to use while keeping
the temperature constant. Information theory reinterprets that in the follow-
ing way: If we know everything, we can possibly use all the energy (to do
work); the less we know about the system, the greater is the missing infor-
mation S and the less work we are able to extract. In other words, the decrease
of F= E−TS with the growth of S measures how available energy decreases
with the loss of information about the system. Maxwell had this epiphany in
1878: “Suppose our senses sharpened to such a degree that we could trace
molecules as we now trace large bodies, the distinction between work and heat
would vanish.”

The concept of entropy as missing information allows one to understand
that Maxwell’s demon or any other information-processing devices do not
really decrease entropy. If at the beginning one has information on the posi-
tion or velocity of any molecule, then the entropy is less by this amount from
the start; the entropy can only increase after using and processing the infor-
mation. Consider, for instance, a particle in the box at a temperature T. If we-1—
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know which half it is in, then the entropy (the logarithm of available states)
is ln(V/2). That teaches us that information has thermodynamic (energetic)
value at a finite temperature: by placing a piston at the midpoint of the box and
allowing the particle to hit and move it, we can get the work T�S=T ln 2 out
of the thermal energy of the particle:

(a) (b) (c) (d)

Energy conservation tells us that, to get such information, one must make
a measurement whose minimum energetic cost at a fixed temperature is
Wmeas=T�S=T ln 2 (that was realized in 1929 by Szilard, who also intro-
duced “bit” as a unit of information). Such work needs to be done for any
entropy change by a measurement (3.4).

That guarantees that we cannot break the first law of thermodynamics.
What about the second law? Our work of lifting the weight was done at the
expense of the thermal energy of the system, that is, we just turned heat into
work. Indeed, by hitting the moving piston, the particle loses momentum
and energy, which it replenishes to T by hitting the walls with that temper-
ature provided by the environment. We can then do the measurement using
this work extracted from heat. Can we break the second law by construct-
ing a perpetuum mobile of the second kind, regularly using the thermal energy
of the environment to do work and measuring particle position? To answer
this question, we need to account for the fact that our demonic engine now
includes both the working system A and the measuring device M. For the ideal
(or demonic) observer, which does not change its state upon measurements,
the entropy change is the difference between the entropy of the system S(A)
and the entropy of the system interacting with the measuring device S(A|M);
that is, the mutual information defined inWhen there is also a change in the free
energy−�FM of the measuring device, the measurement work could be less
than the mutual information:

Wmeas≥T�S−�FM=T[S(A)− S(A|M)]−�FM . (3.5) —-1
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However, to make a full thermodynamic cycle, we need to return the demon’s
memory to the initial state. What is the energy price of erasing information?
Such erasure involves compression of the phase space and is irreversible. For
example, to erase information about which half of the box the particle is in, we
may compress the box to move the particle to one half irrespective of where
it was. That compression decreases entropy and is accompanied by the heat
T ln 2 released from the system to the environment. If we want to keep the
temperature of the system constant, we need to do exactly that amount of work
compressing the box (Landauer 1961). In other words, the demon cannot get
more work from using the information than we must spend erasing it to return
the system to the initial state (to make a full cycle):

Weras≥�FM . (3.6)

Together, the energy price of the cycle is again the mutual information:

Weras+Wmeas≥T[S(A)− S(A|M)]=TI(A, M). (3.7)

The thermodynamic energy cost of measurement and information erasure
depends neither on the information content nor on the free energy differ-
ence; rather, the bound depends only on the mutual correlation between the
measured system and the memory. Inequality (3.7) expresses the trade-off
between the work required for erasure and that required for measurement:
when one is smaller, the other one must be larger. Let us stress that informa-
tion acquisition and processing have no intrinsic, irreducible thermodynamic
cost, whereas the seemingly trivial act of information destruction does have
a cost. The relations (3.5, 3.6, 3.7) are versions of the second law of ther-
modynamics, in which information content and thermodynamic variables are
treated on an equal footing.

Similarly, in the original Maxwell scheme, the demon observes the
molecules as they approach the shutter, allowing fast ones to pass from A to
B and slow ones from B to A. This is one way to use information to transfer
heat from cold to hot; see also (5.13). The creation of the temperature dif-
ference with a negligible expenditure of work lowers the entropy precisely by
the amount of information that the demon collected. Erasing this information
also requires work.

Landauer’s principle not only exorcises Maxwell’s demon but also imposes
the fundamental physical limit on computations. Performing standard opera-
tions independent of their history requires irreversible acts (which do not have
a single-valued inverse). Any Boolean function that maps several input states

-1—
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onto the same output state, such as AND, NAND, OR, and XOR, is logically
irreversible. When a computer performs logically irreversible operations at a
finite temperature, the information is erased and heat must be generated. It is
worth stressing that one cannot make this heat arbitrarily small, making the
process adiabatically slow: T ln 2 per bit is the minimal amount of dissipation
to erase a bit at a fixed temperature.1

Take-home lesson: Information is physical. We can get extra work out of it,
for instance, improving the efficiency of thermal engines beyond the Carnot
limit. Processing information without storing an ever-increasing amount of it
must be accompanied by a finite heat release at a finite temperature. Of course,
any real device dissipates heat just because it works at a finite rate. Lowering
that rate lowers the dissipation rate too. The message is that, no matter how
slowly we process information, we cannot make the dissipation rate lower than
T ln 2 per bit. This is in contrast to usual thermodynamic processes where
there is no information processing involved and we can make the heat release
arbitrarily small, making the process slower.

3.3 Information Is Life

What lies at the heart of every living thing is not a fire, not warm breath, not a
“spark of life.” It is information.

—r ich a r d dawkins

One may be excused for thinking that living beings consume energy and mat-
ter to survive, unless one knows that energy and matter are conserved and
cannot be consumed. All the energy, absorbed by plants from sunlight and
by us from food, is emitted as heat. The life-sustaining substance is entropy:
we consume information and generate entropy by intercepting flows from
low-entropy energy sources to high-entropy body heat. Just think how much
information is processed to squeeze 500 kcal of chemical energy into 100
grams of chocolate, and you enjoy it even more. For plants, the sun is a low-
entropy energy source due to its high temperature. The same is true for the
whole earth, which exports into space much more entropy than it receives
from the sun. Nor do we consume matter; we only make it more disordered.

1. In principle, any computation can be done using only reversible steps, thus eliminating
the need to do work (Bennett 1973). That requires the computer to reverse all the steps after
printing the answer.
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What we consume has much lower entropy than what comes out of our
excretory system. In other words, we decrease entropy inside and increase
it outside of our bodies. Consuming information is our way to resist (tem-
porarily) the second law of thermodynamics and survive. Atoms of our bodies
are in the equilibrium state of maximal entropy and minimal free energy only
postmortem.

Genome and brain We have two separate systems for processing information:
the genome and the brain. The genome’s way of staying out of the (most prob-
able) state of thermal equilibrium is to use replication to generate ordered
(highly improbable) structures. The instructions for replication are encoded
in genes. The gene is both the DNA molecule that replicates and the infor-
mation that is translated to produce proteins. What are the error rates in the
transmission of the genetic code? The typical energy cost of a mismatched
DNA base pair is that of a hydrogen bond, which is about ten times the room
temperature: E/T� 10. If DNA molecules were in thermal equilibrium with
the environment, thermal noise would cause errors, with the probability esti-
mated from the Gibbs distribution: e−E/T � e−10� 10−4 per base. This is
deadly. A typical protein has about 300 amino acids that are encoded by
about 1000 bases; we cannot have mutations in every tenth protein. More-
over, the synthesis of RNA from the DNA template and of proteins on the
ribosome involves comparable energies and could cause comparable errors.
That means that Nature operates in a highly nonequilibrium state, where
bonding involves extra irreversible steps of removing incorrect products. This
is done by molecular ratchets spending extra free energy �F at every step,
which then fails to discriminate with the probability e−�F/T . After making
n steps, we lower the probability of error by the factor e−n�F/T . This way of
sorting molecules is called kinetic proofreading (Hopfield 1974, Ninio 1975)
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and is conceptually similar to Maxwell’s demon discussed in the preceding
section.

Such an effective information-processing system is the result of evolution
through natural selection. The selection is not survival of the fittest. No one
survives. Evolution is an increasingly efficient encoding of information about
the environment in the gene pool of its inhabitants. The ultimate survivor is
the information in the genes, which continues to exist long after its former
carriers, individuals, and even species have gone extinct.

On another level, the nervous system maintains the body’s integrity, con-
suming information by active inference, as described in section 3.4. The
genome’s method of information processing is clearly digital; what about the
brain? Since neurons often either do or do not fire a standard pulse, it may
seem that information is encoded in binary digits. Indeed, written language
and many similar tasks are clearly handled by processing digital information.
However, there are reasons to believe that the brain is also an analog device;
for instance, encoding information in the frequency of pulses, which could be
varied continually.

Genetic code and human language are the only known natural digital mech-
anisms of information storage and transmission with potentially unlimited
heredity; i.e., they comprise an indefinitely large number of structures that can
replicate. The genome uses a homologous pairing of four bases; just a million
bases (typical for any bacteria) provide 4106

possible structures to replicate,
exceeding the number of atoms in the universe. The modular character of the
genome means that all those structures are potentially different. Similarly, in
language, just adding a comma changes the meaning of the whole message:
from “eats shoots and leaves” to “eats, shoots, and leaves.” At the level of gram-
mar, the language uses recursion for generating new meanings: “This is the cat
that killed the rat that ate the malt that lay in the house that Jack built.” Another
similarity is that memes replicate like genes.2 The combination of an infinite
range of messages with a high-fidelity transmission mechanism is unique for
genetic code and language.

If such an elementary act of life as information processing (say, thought)
generates �S, we can now ask about its energy price. Similar to our treat-
ment of thermal engine efficiency (1.1), we take Q from the reservoir with
T1 and deliver Q −W to the environment with T2. Then �S= S2− S1=

2. Meme is defined as a unit of cultural inheritance.
—-1
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(Q −W)/T2−Q/T1 and the energy price is as follows:

Q = T2�S+W
1−T2/T1

. T1

S1 = Q /T1

S2 = (Q – W )/T2 Q – W

Q
W

T2

When T1→T2, the information processing is getting prohibitively ineffec-
tive, just like the thermal engine. In the other limit, T1T2, one can neglect
the entropy change on the source, and we have Q =T2�S+W . Hot sun is
an energy source of a very low entropy.

How many bits do we consume per second? Let us estimate our rate of
information processing and entropy production. An average lazy human being
dissipates about W = 200 watts of power at T= 300 K. Since the Boltzmann
constant is k= 1.38× 10−23, that gives about W/kT� 1023 bits per sec-
ond. The amount of information processed per unit of subjective time (per
thought) is about the same, assuming that each moment of consciousness lasts
about a second (Dyson 1979).

We thus conclude that living beings obtain information from the sources
of energy, matter, and, last but not least, sensors.

Processing sensory information Do the Gibbs entropy and the mutual infor-
mation have any quantitative relation to the way we react to signals? Yes, they
do! When one must react differently to different stimuli, the average choice
reaction time T is linearly proportional to the entropy of the distribution of
stimuli (Hick 1952, Hyman 1953). The greater the uncertainty, the longer
it takes to recognize the event. For example, when one needs to name the
number that appears randomly on a screen, the average response time grows
logarithmically with the size of the set. Logarithmic dependence on the set
size means that the decision is made by a subdividing strategy. Similarly, the
time to find an item in an ordered menu grows logarithmically with the menu
length; the time grows linearly when the menu is disordered.

When the number of elements stays constant but the frequencies of their
appearances are made unequal, thus lowering entropy, the average response
time decreases proportionally. Even more remarkably, when experimental-
ists introduce a correlation between subsequent stimuli, the response time
goes down in proportion to the conditional entropy, which is less than
unconditional.
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One can turn the tables and prescribe the reaction time. As this time
gets shorter, we make more and more errors in naming the objects. How
to quantify that? We need to compute the mutual information between
the input (the number i on a screen) and the output (our name j for it).
Making more errors means lower mutual information. Experimentally, one
measures the joint probability p(i, j) from which one obtains the marginal
probabilities p(i)=∑j p(i, j), p(j)=∑i p(i, j) and conditional probability
p(j|i)= p(i, j)/p(i). One then computes S(j)=−∑i p(j) log p(j), S(j|i)=
−∑ij p(i)p(j|i) log p(j|i) and I(i, j)= S(j)− S(j|i). The mutual information
is found to be linearly proportional to the reaction time prescribed. Is the
invention (or discovery?) of the Boltzmann and Gibbs entropies and the
mutual information related to the fact that our brain actually employs them?

Since the time of processing is proportional to the amount of information,
one can conclude that what characterizes the system is the average amount
of information processed per unit time, that is, the rate. The next example
presents a strategy for processing stimuli, where the system maximizes the
information transfer rate by keeping it uniform through the dynamic range
of the signal (such strategies are sometimes called the infomax principle).

Maximizing capacity Imagine yourself on day five of Creation designing the
response function for the sensory system of a living being. Technically, the
problem is to choose thresholds for switching to the next level of response, or
equivalently, to choose the function of the input for which we take equidistant
thresholds. Suppose that we divide the whole perceivable (finite) interval of
signals into three regions, encoding them as weak (1, 2), medium (2, 3), and
strong (3, 4):

Response
state

Input

4

3

2

1

For given value intervals of input and response, should we take the solid
line of linear proportionality between response and stimulus? Or choose the
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lowest curve that treats even medium-intensity inputs as weak and amplifies
the difference in high-intensity signals? The choice may depend on the sig-
nificance of different intervals for survival. For example, the upper curve was
actually chosen (on day six) for the auditory system of animals and humans:
our ear senses loudness as the logarithm of the intensity, which amplifies dif-
ferences between weak sounds and damps strong ones. That way we better
hear the whisper of someone close or the sound of a distant creek and aren’t
that frightened by thunder.

If, however, all the input amplitudes are of comparable significance, then
the goal could be to maximize the mean information transfer rate (capacity)
at the level of a single neuron/channel. In such a case, the response curve
(encoding) must be designed by the Creator together with the probability
distribution of stimuli. That was demonstrated in one of the first applications
of information theory to real data in biology, namely, to processing of visual
signals (Laughlin 1981). It was conjectured that maximal-capacity encoding
must use all response levels with the same frequency, which requires that the
response function is the integral of the probability distribution of the input
signals (see figure). First-order interneurons of the insect eye were found to
code contrast rather than absolute light intensity. Subjecting the fly in the lab
to different contrasts x, the response function y= g(x) was measured from
the fly neurons; the probability density of inputs, ρ(x), was measured across
its natural habitat (woodlands and lakeside) using a detector that scanned
horizontally, like a turning fly.

Intensity

Cumulative
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We can now explain the relation between the response and the cumulative
probability by noting that the representation with the maximal capacity corre-
sponds to the maximum of the mutual information between input and output:
I(x, y)= S(y)− S(y|x). Since we consider a one-to-one relation y= g(x), that
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is, an error-free transmission, then the conditional entropy S(y|x) is zero.
Therefore, according to section 2.4, we need to maximize the entropy of the
output, assuming that the input statistics ρ(x) are given. Absent any extra
constraints except normalization, the entropy for a distribution on a finite
interval is maximal when ρ(y) is constant. Indeed, since ρ(y)dy= ρ(x)dx=
ρ(x)dydx/dy= ρ(x)dy/g′(x), then

S(y)=−
∫
ρ(y) ln[ρ(y)] dy=−

∫
ρ(x) ln[ρ(x)/g′(x)] dx , (3.8)

δS(y)
δg
= ∂

∂x
ρ

g′(x)
= 0 ⇒ g′(x)=Cρ(x),

as in the figure. In other words, we choose equal bins for the variable whose
probability is flat. Since the probabilityρ(x) is positive, the response function
y= g(x) is always monotonic, i.e., invertible. Note that our choice of response
function is an exact analog of efficient encoding, using longer codewords for
less frequently used letters. Analogous to code 2 in section 2.2, we combine
signals into intervals with the same probability. In that way, we utilize only the
probability distribution of different signal levels, similar to language encod-
ing based on frequency of letters (and not, say, their mutual correlations). We
have also applied quasi-static approximation, neglecting dynamics and relat-
ing instantaneous values of x and y. Allow yourself to be impressed by the
agreement of theory and experiment—there are no fitting parameters. The
same approach also works well for biochemical and genetic input-output rela-
tions. For example, the dependence of a gene expression on the level of a
transcription factor is dictated by the statistics of the latter. That also works
when the conditional entropy S(y|x) is nonzero but independent of the form
of the response function y= g(x). See more details in section A.5.

For particular types of signals, practicality may favor nonoptimal but simple
schemes like amplitude and frequency modulation (both are generally non-
optimal but computationally feasible and practical). Even in such cases, the
choice is dictated by the information-theory analysis of the efficiency. For
example, a neuron either fires a standard pulse (action potential) or stays silent,
which makes it natural to assume that the information is encoded as binary dig-
its (zero or one) in discrete equal time intervals. One can also imagine that
the information is encoded by the time delays between subsequent pulses.
Since time is continuous, this is more of an analog computation. In the engi-
neer’s language, the former method of encoding is a limiting case of amplitude

—-1

—0

—+1



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 17:26 — page 66 — #16
�

�

�

�

�

�

66 c h a p t e r 3

modulation, while the latter case is one of frequency modulation. The maximal
rate of information transmission in the former case is dependent only on the
minimal time delay between the pulses determined by the neuron recovery
time. On the other hand, in the latter case, the rate depends on both the mini-
mal error of timing measurement and admissible maximal time between pulses.
In reality, brain activity “depends in one way or another on all the information-
bearing parameters of an impulse—both on its presence or absence as a binary
digit and on its precise timing” (MacKay and McCulloch 1952).

3.4 Whom to Believe: My Eyes or Myself?

How is sensory information processed and how does it determine behavior?
An ambitious application of information theory is an attempt to understand
and quantify sentient behavior. One idea going back to Helmholtz is to view
“perception as an unconscious inference.” There is evidence that the percep-
tion of our brain is inferential, that is, based on prediction and hypothesis test-
ing. Among other things, this is manifested by the long-known phenomenon
of binocular rivalry, which occurs when different pictures are presented to our
two eyes. Rather than perceiving a stable, single amalgam of the two stimuli,
we experience alternations as the two stimuli compete for perceptual domi-
nance, which can be influenced by priming. Another piece of evidence is the
recently established fact that signals between the brain and sensory organs
travel in both directions simultaneously.

Perception is thus treated not as a bottom-up encoding of sensory states
Y into internal neuronal representations of the environmental states X, but
as a combination of top-down prior expectations with bottom-up sensory
signals. The combined bottom-up-top-down approach makes sense from evo-
lutional and developmental perspectives. The bottom-up approach, taken
alone, premises some entity that processes the sensory inputs Y into a pic-
ture of the world P(X|Y). Yet where did that entity come from? Imagine the
brain as a bunch of neurons in a black box receiving electrical signals, which
do not carry with them labels “from the retina,” “from the liver,” “from your
grandmother,” etc. The best we can do is to send out signals that help us sur-
vive. Since we have managed to survive up to this point, then the right survival
strategy is a continuation, in which we try to receive more or less the same
signals as before.

In this spirit, we might describe perception as hypothesis testing within
the Bayes approach, introduced in section 2.7. The mechanics of the sensory
system determine P(Y |X), which is the conditional probability of sensory
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input for a given state of the environment. In the example of the fly eye
from section 3.3, x is a contrast in light intensity and y is the neuron sig-
nal. Upon receiving the particular input y, the simplest inference about the
environment is that of maximal likelihood: taking the value x that maxi-
mizes P(y|x). However, to make a decision or action based on inference, we
need a measure of confidence in the result. That means that our inference
must be probabilistic, obtaining the whole posterior probability distribution
P(X|Y)—sharp distribution gives a high and flat distribution low confidence.
To obtain the posterior distribution, we need a prior distribution P(X) and
Bayes’ formula (2.23):

P(X|Y)= P(Y |X)P(X)/P(Y). (3.9)

Leaving aside for a while the normalizing factor P(Y), we thus presume that
the mind has a so-called generative model, represented by the joint distribu-
tion P(X, Y)= P(Y |X)P(X). Exact computation by (3.9) can be impossible
or impractical, for instance, due to the necessity of having to average over many
hidden states and variables. It is natural to assume that the brain uses a varia-
tional approach based on optimizing some tractable proxy. The first thing to
account for is the degree of surprise or necessary change, characterized by the
relative entropy between prior and posterior distributions. Averaged over all
X and Y , it is simply the mutual information, that is, the average information
brought by sensory inputs:

D[P(X|Y)|P(X)]=
∑

Y
P(Y)

∑
X

P(X|Y) log[P(X|Y)/P(X)]= I(X, Y).

For perception, however, we need to evaluate the change at a given y. Chang-
ing beliefs and updating expectations entails a cognitive metabolic cost, as we
know all too well. More important and probably related, expected states are
preferred for survival (fish expect to stay in the water), while surprises are
to be avoided. A generative model must be strongly biased toward a narrow
interval of parameters guaranteeing survival. This natural tendency to min-
imize change conflicts with the necessity to accommodate data. Whenever
we encounter a trade-off, free energy negotiates it. The working hypothesis
is that, for a given y, the brain looks for the posterior distribution Q (X) that
minimizes the following free energy, which is a function of y and a functional
of Q (X):3

3. A function gives a value for every value; a functional gives a value for every function.
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F[Q (x), y]=
∑

x
Q (x) log

Q (x)
P(x, y)

=−
∑

x
Q (x) log P(x, y)− S(Q )

=D[Q (x)|P(x)]−
∑

x
Q log P(y|x)=

∑
x

Q (x)
[

log
Q (x)
P(x)
− log P(y|x)

]

=D[Q (x)|P(x|y)]− log P(y). (3.10)

As is clear from the beginning of the first line, it measures the mismatch
between the internal generative model P(x, y) and the current observation.
The three lines suggest three different operational strategies according to the
three different interpretations of the same quantity.

Minimization of the first line thus requires the trade-off between the data-
imposed “truth” and “nothing but the truth” maximization of the entropy
S(Q ). Indeed, the logarithm of probability, as we have seen in section 3.1, is
essentially the set of our prior data. Therefore, the first term on the right repre-
sents the “truth” imposed by the data—both the prior data that formed P(x, y)
and the given input value of y.

The second line describes the trade-off between inertia and the force of
data: the first term on the right is the degree of change, while the second
term quantifies the accuracy of data representation—Q (x) must give more
weight to that x, which provides for higher probability to observe y according
to P(y|x), which is given.

The third line in (3.10) does not describe any trade-off but shows that the
free energy is bounded from below by the sensory surprise− log P(y). Only
when our variational Q (x) is equal to the exact P(x|y), does the free energy
reach its global minimum. That suggests that perceptual inference, that is,
computing Q (x), is not the only way to minimize F(Q , y); another way is to
change the sensory data y. Changing input requires action: one can switch the
channel or look the other way rather than change beliefs.

That brings us to the active inference approach, which puts action into per-
ception (Parr, Pezzulo, Friston 2022). The assumption is that living beings sur-
vive by adapting action-perception loops to their environment. That means
that every sensory input is not obtained passively, but is predicted by the brain
and is solicited by an action intended for the predicted input. A mismatch
between predicted and actually received sensory input leads to updating the
predictive (generative) model, which then triggers new action leading to
new sensory observations better corresponding to expectations. Perception
and action are complementary ways to diminish the mismatch. Perception
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changes your mind, replacing prior beliefs with posterior ones, while action
changes the world to make it more compatible with the beliefs. Surprise
minimization by active inference is our way to survive.

Who are you gonna believe,
me or your own eyes?

In particular, our perception of objects is very much determined by the
generative model with its prediction of how actions change sensory input
(encoded in the conditional probability of what could have happened). Even
with one eye closed, we distinguish a three-dimensional object from its two-
dimensional picture despite receiving identical visual signals. The reason is
that our brain knows that moving our head will reveal the new parts of the
image in the former case but not in the latter.

While still highly hypothetical, this theory finds some empirical support in
measurements of the connectivity and activity of neural networks. For exam-
ple, some connectivity patterns in a motor cortex support the idea of a motor
command as a prediction, such that the prediction errors related to body posi-
tion and motion can be resolved by reflexes without belief updating. Simply
speaking, the brain can infer the positions of body parts without receiving
outside signals. The analysis of the experimental data on brain activity is facili-
tated by the asymmetry between descending signals carrying expectations and
ascending signals bringing prediction errors—the latter involves nonlinear
operations generating higher frequencies, which is measurable. Last but not
least—playing tennis would be impossible if our brain just reacted to visual
stimuli, since the time between light hitting the retina and the brain receiv-
ing a signal is in excess of 150 msec. The active inference approach is also
useful in building models for analyzing data from behavioral experiments and
disease processes and drawing inferences about inferences. When top-down
signals totally dominate, one has hallucinations; what is considered normal
perception could then be called “controlled hallucination.”
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The internal generative model encodes the world from the perspective of the
body’s needs, not in some “objective” way, which would be a waste of metabolic
resources. Physiological state changes constantly, shifting the focus to different
sensory inputs. The neurons then are not expected to lie dormant waiting for
sensory input. In particular, emotions must play an important role in choosing
the focus. Within the active inference approach, emotions are treated not solely
as fixed universal patterns of brain and body inherited from animal ancestors
and triggered by sensory inputs. One may consider emotions as constructed
and learned patterns of prediction and reaction amenable to significant vari-
ability and plasticity. I find it inspiring that our work with averaging logarithms
and finding conditional optima could one day have direct moral implications.

I mention in passing the suggestions to use relative information and mutual
entropy for the more ambitious task of quantifying consciousness, understood
as processing information from different channels in an integrated way, irre-
ducible to processing information in the channels separately. Such an approach
is known as integrated information theory (Tononi 2008).

I think that poetry and music appeal to our ever-predicting mind by creating
expectations (using rhythm or melody) and then partially fulfilling and partially
breaking them. An optimal mixture of expected and surprising is what makes
for great art, which still waits for its free energy analysis.

3.5 Rate Distortion and the Information Bottleneck

There’s no sense in being precise when you don’t even know what you are
talking about.

—john von neuma nn

When we transfer information, we look for the maximal transfer rate and thus
define channel capacity as the maximal mutual information between input
and output. But when we encode information, we may be looking for the
opposite: What is the minimal number of bits, sufficient to encode the data
with a given accuracy?

For example, encoding a real number requires an infinite number of bits.
Representation of a continuous input B by a finite discrete output encoding
A generally leads to some distortion, which we characterize by the real func-
tion d(A, B). How large is the mean distortion, D=∑ij P(Ai, Bj)d(Ai, Bj),
for given statistics of B and the encoding A with R bits and 2R values?
It depends on the choice of the distortion function, which specifies the
most important properties of the signal B. For Gaussian statistics (which
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is completely determined by the variance), one chooses the squared error
function, d(A, B)= (A−B)2. We first learn to use it in the standard least
squares approximations—now we can understand why squares and not other
powers—because minimizing variance minimizes the entropy of a Gaussian
distribution and thus the amount of information needed to characterize it.

Consider a Gaussian B with 〈B〉= 0 and 〈B2〉= σ 2. If we have one bit
to represent it, apparently, the only information we can convey is the sign
of B. The simplest approach is to encode positive/negative regions by num-
bers ±A. To minimize the squared error, we need to choose A=±〈|B|〉 =
±σ√2/π , which corresponds to

D(1)= 2(2π)−1/2
∫ ∞

0

(
B− σ√2/π

)2
exp[−B2/2σ 2]dB

σ

= σ 2(1− 2/π). (3.11)

Let us now turn the tables and ask what minimal rate R is sufficient to pro-
vide for distortion not exceeding D. This is called the rate-distortion function,
R(D). We know that the rate is the mutual information I(A, B), but now we
are looking not for its maximum (as in channel capacity) but for the minimum
over all the encodings defined by the conditional probabilities P(B|A), such
that the distortion does not exceed D. Since I(A, B)= S(B)− S(B|A), then
minima of I(A, B) are maxima of S(B|A). It is helpful to think of distortion as
produced by the added noise ξ with the varianceD. For a fixed variance, max-
imal entropy S(B|A) corresponds to the Gaussian distribution so that we have
an (imaginary) Gaussian channel with the variance 〈(B−A)2〉=D. Together
with the Gaussian input having 〈B2〉= σ 2, they provide for the minimal rate
given by (2.22):

R(D)= I(A, B)= S(B)− S(B|A)= S(B)− S(B−A|A)

≥ S(B)− S(B−A)= 1
2

log2
(

2πeσ 2)− 1
2

log2
(

2πeD)= 1
2

log2
σ 2

D .

(3.12)

This goes to infinity for D→ 0 and turns into zero for D= σ 2. For D≥ σ 2,
we can take A= 0 with probability 1, making the mutual information zero—
an absolute minimum! Note that stochastic encoding provides D(1)= σ 2/4
in (3.12), which is less than (3.11).
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Often we need to represent by R bits m independent Gaussian signals with
different variances σi, i= 1, . . . , m—for instance, signals from different spec-
tral intervals. How to divide these bits between signals to minimize the total
distortion? We look for the distortionsDi and minimize

∑
i Di=D under the

condition that
∑

i R(Di)=R. Differentiating
∑

i[Di+ λ log2 σ
2
i /Di] with

respect to Di, we find out that the total distortion is minimal when Di are all
equal, Di=D/m, as long as this constant is less than all σi. Taking smaller R,
we increase D and reach the moment when D/m exceeds some σj—then we
need to take Rj= 0, that is, allocate zero bites to this component. Alternatively,
if we manage to decrease enough of the variance of some component, it is not
treated as fluctuating and does not deserve to be represented (except one bit
for its mean if it is nonzero)—such is the logic of rate-distortion theory.

One can show that the rate-distortion function R(D) is monotonous and
convex for all systems. When the distortion is not a quadratic function, the
conditional probability of encoding P(A|B)) is not Gaussian. In solving prac-
tical problems, it must be found by solving the variational problem, where
one finds a normalized P(A|B)), which minimizes the mutual information
under the condition of a given mean distortion. For that, one minimizes the
functional

F= I+βD=
∑

ij
P(Ai|Bj)P(Bj)

[
ln

P(Ai|Bj)

P(Ai)
+βd(Ai, Bj)

]
.

After variation with respect to P(Ai|Bj) and enforcing normalization, we
obtain

P(Ai|Bj)= P(Ai)

Z(Bj,β)
e−βd(Ai,Bj), (3.13)

where the partition function Z(Bj,β)=∑i P(Aj)e−βd(Ai,Bj) is the normaliza-
tion factor. Recall that what is given is P(B), not P(A). The latter must be
expressed via the same conditional probability:

P(Ai)=
∑

j
P(Ai|Bj)P(Bj). (3.14)

The system of linear equations (3.13, 3.14) is usually solved by iterations.
An immediate physical analogy is that (3.13) is a Gibbs distribution with

the “energy” equal to the distortion function. Maximizing entropy for a given
energy (Gibbs) is equivalent to minimizing mutual information for a given
distortion function. As usual, what is given is in the exponent. The choice of
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the value of the inverse temperature β reflects our priorities: at small β , the
conditional probability is close to the unconditional one; that is, we minimize
information without much regard to the distortion. On the contrary, large β
requires our conditional probability to be sharply peaked at the minima of the
distortion function.

Similar but more sophisticated optimization procedures are applied, in
particular, in image processing. Images contain an enormous amount of infor-
mation. The rate at which visual data are collected by the photoreceptor
mosaic of animals and humans is known to exceed 106 bits/sec. On the other
hand, studies on the speed of visual perception and reading speeds give num-
bers around 40–50 bits/sec for the perceptual capacity of the visual pathway in
humans. The brain then has to perform huge data compressions. This is possi-
ble because visual information is highly redundant due to strong correlations
between pixels.

Event Measurement Encoding

CAB

The measured quantity A thus contains too much data of low information
value. We wish to compress A to C while keeping as much information as
possible about B. Understanding the given signal A requires more than just
predicting/inferring B; it also requires specifying which features of the set of
possible signals {A}play a role in the prediction. Here meaning seeps back into
information theory. Indeed, information is not knowledge (and knowledge is
not wisdom). Not surprisingly, the main tool in automated and AI-assisted
pattern recognition in images and other data is mutual information. We for-
malize this problem as one of finding a short code for {A} that preserves the
maximum information about the set {B}. That is, we squeeze the information
that A provides about B through a “bottleneck” formed by a limited set of
codewords {C}. This is reached via the method called the information bot-
tleneck (Tishby at al. 2000), targeted at characterizing the trade-off between
information preservation (accuracy of relevant predictions) and compression.
Here one looks for the minimum of the functional

I(C, A)−βI(C, B). (3.15)

The coding A→C is also generally stochastic, characterized by P(C|A). The
quality of the coding is determined by the rate, that is, by the average num-
ber of bits per message needed to specify an element in the codebook without
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confusion. This number per element A of the source space {A} is bounded
from below by the mutual information I(C, A), which we thus want to min-
imize. Effective coding utilizes the fact that mutual information is usually
subextensive, in contrast to entropy, which is extensive. In section 2.4, we
maximized I(A, B) over all choices of the source space {B} to find the chan-
nel capacity (upper bound for the error-free rate), while now we minimize
I(C, A) over all choices of coding. To put it differently: Before, we wanted
to maximize the information transmitted, and now we want to minimize the
information processed. This minimization, however, must be restricted by the
need to retain in C the relevant information about B, which we denote as
I(C, B).

Having chosen what properties of B we wish to stay correlated with the
encoded signal C, we add the mutual information I(C, B) with the Lagrange
multiplier to the functional (3.15). The sign ofβ (inverse temperature) is pos-
itive to have minimal coding I(A, B) preserving maximal information I(C, B);
that is, I(C, B) is treated similarly to the channel capacity. The single parameter
β again represents the trade-off between the complexity of the representation,
measured by I(C, A), and the accuracy of this representation, measured by
I(C, B). At β = 0, our quantization is the most sketchy possible—everything
in A is assigned to a single codeword in C and I(C, A)= 0. As β grows, we are
pushed toward detailed quantization. By varyingβ , one can explore the trade-
off between preservation of the meaningful information and compression
at various resolutions. Comparing with the rate-distortion theory functional
(3.13), we recognize that we are looking for the conditional probability of the
mapping P(C|A); that is, we explicitly want to treat some pixels Ai as more
relevant than others.

However, the constraint on the meaningful information is now nonlinear in
P(C|A), so this is a much harder variational problem. Indeed, (3.15) can be
written as follows:

I(C, A)−βI(C, B)=
∑

ij
P(Cj|Ai)P(Ai) ln

P(Cj|Ai)

P(Cj)

−β
∑

jk

P(Bk|Cj)P(Cj)

{
ln

P(Bk|Cj)

P(Bk)

}
. (3.16)

The conditional probabilities of A, B under a given C are related by the Bayes
rule
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P(Bk|Cj)= 1
P(Cj)

∑
i

P(Ai)P(Bk|Ai)P(Cj|Ai), (3.17)

where the conditional probability of the measurements, P(Bk|Ai), is presumed
to be known. The variation of (3.16) with respect to the encoding condi-
tional probability, P(Cj|Ai), now gives the equation (rather than an explicit
expression):

P(Cj|Ai)= P(Cj)

Z(Ai,β)
exp

[
−β

∑
k

P(Bk|Ai) log
P(Bk|Ai)

P(Bk|Cj)

]

= P(Cj)

Z(Ai,β)
exp {−βD[P(B|A)||P(B|C)]}. (3.18)

We see that the relative entropy D between the two conditional probability dis-
tributions emerges as the effective distortion measure D. Here P(B|A) is the
true (data-given) distribution and P(B|C) is our compressed encoded version.
The system of equations (3.17, 3.18) is also solved by iterations. For exam-
ple, one minimizes I(A, C) + βD[P(B|A)||P(B|C)] in alternating iterations
first over P(C|A), then over P(C), then over P(B|C), then repeating the cycle.
Doing the compression procedure many times, A→C1→C2 . . . is used in
multilayered deep learning algorithms. Statistical physics helps in identifying
phase transitions (with respect toβ) and suggests the relation between process-
ing from layer to layer and the renormalization group: features along the layers
become more statistically decoupled as the layers get closer to the fixed point.

Practical problems of iterations and machine learning are closely related
to fundamental problems in understanding and describing biological evolu-
tion. Here an important task is to identify classes of functions and mechanisms
that are provably evolvable—they can logically evolve into existence over
realistic time periods and within realistic populations, without any need for
combinatorially unlikely events to occur. Quantitative theories of evolution
in particular aim to quantify the complexity of the mechanisms that evolved,
which is done using information theory.

Exercise 3.2: Rate-distortion function of a binary source.
Consider a binary source, which generates B= 1 with probability

p< 1/2 and B= 0 with probability 1− p. Define the distortion func-
tion d(A, B)= δAB− 1, that is, zero when A=B and unity otherwise
(the so-called Hamming function). Find the rate-distortion function
R(D).
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3.6 Information Is Money

This section is for those brave souls who decided to leave science or engineer-
ing for gambling. If you have read till this point, you must be well prepared for
that.

Let us start with the simplest game: you can bet on a coin, doubling your bet
if you are right or losing it if you are wrong. Surely, an intelligent person would
not bet money hard saved during graduate studies on a totally random process
with zero gain. You bet only when you have information that one side has the
probability p> 1/2. To have an average growth, you want to play the game
many times. Shall we look then for the maximal average return? The maxi-
mal mean arithmetic growth rate is (2p)N and corresponds to betting all your
money every time on the more probable side. Such a mean, however, comes
from a single all-win realization; the probability of that winning streak goes to
zero with growing N as pN . To avoid losing it all with probability fast approach-
ing unity, you bet only a fraction f of your money on the more probable p side.
What to do with the remaining money—keep it as insurance or bet on a less
probable side? The first option just diminishes the effective amount of money
that works. Moreover, the other side also wins sometimes, so we put 1− f on
the side with 1− p chance. If after N such bets the p side wins n times, then
your money is multiplied by the factor (2f )n[2(1− f )]N−n= 2N�, where the
rate is

�( f )= 1+ n
N

log2 f +
(

1− n
N

)
log2(1− f ). (3.19)

As N→∞, we approach the mean geometric rate, which isλ= 1+ p log f +
(1− p) log(1− f ). Note the similarity with the Lyapunov exponents that are
introduced in section 5.3—we consider the logarithm of the exponentially
growing factor since we know limN→∞(n/N)= p (it is called a self-averaging
quantity because it is again a sum of random numbers). Differentiating�(f )
with respect to f , you find that the maximal growth rate corresponds to f = p
(proportional gambling) and equals

λ(p)= 1+ p log2 p+ (1− p) log2(1− p)= S(u)− S(p), (3.20)

where we denote the entropy of the uniform distribution S(u)= 1 bit. We
thus see that the maximal rate of money growth equals the entropy decrease,
that is, the information you have (Kelly 1950). What is beautiful here is that
the proof of optimality is constructive and gives us the best betting strategy.
An important lesson is that we maximize not the mean return but its mean
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logarithm, which is a geometric mean. Since it is a self-averaging quantity, the
probability to grow with this rate approaches unity as N→∞. Note, how-
ever, that the geometric mean is less than the arithmetic mean because the
logarithm is a convex function. Therefore, we may have a situation when the
arithmetic growth rate is larger than unity while the geometric mean is smaller
than unity. Don’t play such games, since no matter the strategy, the probability
of losing it all tends to unity as N→∞, even though the mean returns grow
unbounded.

It is straightforward to generalize (3.20) for gambling on horse races or
investing, where many outcomes have different probabilities pi and payoffs
gi. To maximize

∑
pi log(figi), we look for the maximum of

∑
pi log fi. Since∑

fi= 1, we can treat it as a distribution. The relative entropy
∑

pi log(pi/fi)

is nonnegative so that
∑

pi log fi reaches its maximum when all fi= pi inde-
pendent of gi; that is, our distribution coincides with the true distribution,
which is proportional gambling. The rate is then

λ(p, g)=
∑

i
pi ln(pigi). (3.21)

Here you have a formidable opponent—the track operator, who actually sets
the payoffs. Knowing the probabilities, a perfect (idealistic) operator would
set the payoffs, gi= 1/pi, to make the game fair and your rate zero. Nobody’s
perfect, so it is more likely that a realistic operator has the business sense to
make the racecourse profitable by setting the payoffs a bit lower. That will
make your λ negative. For example, the European roulette wheel has 18 red
and 18 black pockets and a single green, so that even the highest-odds bets, on
red or black, have a slightly less than half chance of success.

Your only hope then is that your information is better. If the operator
assumes that the probabilities are qi and sets payoffs as gi= 1/Zqi with Z> 1,
then

λ(p, q)=− ln Z+
∑

i
pi ln(pi/qi)=− ln Z+D(p|q). (3.22)

That is, if you know the true distribution but the operator uses the approx-
imate one, the relative entropy D(p|q) determines the rate with which your
winnings can grow. Since you aren’t perfect either, then it is likely that you
use the distribution q′, which is not the true one. In this case, you still have
a chance if your distribution is closer to the true one: λ(p, q, q′)=− ln Z+
D(p|q)−D(p|q′). Recall that the entropy determines the optimal rate of
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coding. Using an incorrect distribution incurs the cost of nonoptimal cod-
ing. Amazingly, (3.22) tells us that if you can encode the data describing the
sequence of track winners so that it is shorter than the operator’s, you get paid
in proportion to that shortening.

That beautiful theory, of course, has nothing to do with how people bet
and bookmakers operate. In reality, people bet according to their whims rather
than by playing a long game, while bookmakers set the rewards according to
the statistics of betting rather than horse winnings. Average gambler losses and
bookmaker income are independent of the outcome of racing, which is thus a
pure sport (most of the time).

The theory, however, has found numerous applications in engineering and
biology. It turns out that bacteria follow the proportional gambling strategy
without ever taking this or another course on information theory. Like in coin
flipping, bacteria face the choice, for instance, between growing fast but being
vulnerable to antibiotics or growing slow but being resistant. They use pro-
portional gambling to allocate respective fractions of populations to different
choices. There could be several lifestyle choices, analogous to horse racing,
called phenotype switching in this case. The same strategy is used by many
plants, where a fraction of the seeds do not germinate in the same year they
were dispersed; the fraction increases with environmental variability.

More generally, the environment can be characterized by a set of parame-
ters A, while the internal state of a gambler, plant, or bacteria can be character-
ized by another set of parameters B. In the proportional gambling setting, A is
the vector of probabilities {pi} and B is the vector of fractions { fi}. In another
setting, A could include the concentration of a nutrient and B the amount of
an enzyme needed to metabolize the nutrient. The logarithmic growth rate
is then the function of these two parameters, r(A, B), and the mean rate is as
follows:

λ=
∫

dA dB P(A, B)r(A, B)=
∫

dA P(A)
∫

dB P(B|A)r(A, B). (3.23)

To maximize growth, bacteria, plants, and gamblers need to coordinate their
internal state with that of the environment. That coordination is governed by
the conditional probability P(B|A), which determines the mutual information
between the external world and the internal state:

I(A, B)=
∫

dA P(A)
∫

dBP(B|A) log2
P(B|A)

P(B)
. (3.24)
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But acquiring that information has its own cost, aI. One then looks for a trade-
off between maximizing growth and minimizing information cost. Therefore,
we look for the maximum of the functional F= λ− aI, which gives similarly
to (3.13)

P(B|A)= P(B)
Z(A,β)

eβr(A,B), (3.25)

where β = a−1 ln 2 and the partition function Z(A,β)= ∫ dBP(B)eβr(A,B) is
the normalization factor. We now recognize the rate-distortion theory from
the previous section; the only difference is that the energy now is minus the
growth rate. The choice of β reflects the relative costs of the information and
the metabolism. If information is hard to get, one chooses small β , which
makes P(B|A)weakly dependent on r(A, B) and close to unconditional prob-
ability P(B). If information is cheaper, (3.25) tells us that we need to peak our
conditional probability around the maxima of the growth rate. All the pos-
sible states in the plane r, I are below some monotonic convex curve, much
like in the energy-entropy plane in section 1.1. One can reach the optimal
(Gibbs) state on the boundary either by increasing the growth rate at a fixed
information or by decreasing the information at a fixed growth rate.

Section A.6 describes a remarkable class of strategies to find an optimal
balance between exploration for new information on the environment and
exploitation of the existing information to maximize growth.

Financial activity is not completely reducible to gambling and its essence is
understood much less. When you earn enough money (or no money at all),
it may be a good time to start thinking about the nature of money itself. Money
appeared first as a measure of value and acquired a probabilistic aspect with
the development of credit. These days, when most of it is in bits, it is clear
that money is less matter (coins, banknotes) and more information. The total
amount of money grows on average but could experience sudden drops when
a crisis arrives. Yet in payments money behaves as energy and matter, satisfy-
ing the conservation law. It seems that we need a new concept for describing
money, which has properties of both entropy and energy. Free energy com-
bines energy and entropy additively, describing, in particular, how an entropy
increase (loss of information) diminishes the amount of work one can do.
Similarly, free energy can describe a decrease in purchasing power due to infor-
mation loss. However, to describe money as a universal medium of exchange,
we probably need a more sophisticated notion. Since money is essentially a
social construct, the degree of universality varies. For example, cold hard cash
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is guaranteed by governments, but credit card payments are guaranteed by pri-
vate banks, so these two kinds of money are not identical. Add to this nonbank
money like cryptocurrencies, and we see that the value of money depends
essentially on how many people agree to use it. It is a challenge to devise a
conceptual framework able to handle both the material and ephemeral sides
of money, but it seems that information theory is the right place to start.

Exercise 3.3: Bookmaker’s sure bet.
In a series of two-horse races, the first horse wins three times more

often than the second one. Yet public sentiment is such that it bets on the
first horse only twice as many times. A bookmaker has two choices to set
the rewards: i) according to race probabilities, pay respectively 4/3Z and
4/Z times the amount of the bet on the first/second horse, ii) according
to public preferences, pay respectively 3/2Z and 3/Z times the amount
of the bet on the first/second horse. Here Z> 1 to guarantee a profit.
Which strategy is preferable?
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New Second Law of
Thermodynamics

So far, we have quantified uncertainty mostly by combinatorics. Classifying
and keeping count are among the most difficult mental processes (possibly
because they require impartiality and memory). It is best to hire somebody
else to do the job. That tireless somebody, who never stops, is a random walker.
In this chapter, we exploit the walker and explore random walks in different
environments. We first use a random walk on a graph to describe Google’s
PageRank algorithm, designed to quantify not the amount of information but
its perceived importance. We then consider a random walk on a lattice biased
by an externally imposed time-dependent drift. That leads us to fluctuation-
dissipation relations and the modern generalizations of the second law of
thermodynamics. This is important both for the fundamentals of science and
for numerous modern applications related to fluctuations in nanoparticles,
macromolecules, stock market prices, etc.

4.1 Stochastic Web Surfing and Google’s PageRank

When it was proclaimed that the Library contained all books, the first
impression was one of extravagant happiness . . . followed by an excessive
depression. The certitude that some precious books were inaccessible seemed
almost intolerable.

—jorge luis borge s, “the libr a ry of babel”

To know which are the most precious books in the library, we need an
objective and quantitative measure of information importance. For efficient
information retrieval from the web library, web pages need to be ranked by
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their importance to order search results. By this time, it should come as no
surprise for the reader that such ranks can be found by a statistical approach:
performing a random walk on the web.

For an internet with n pages, we organize their ranks into a vector
p={p1, . . . , pn}, which we normalize:

∑n
i=1 pi= 1. The idea is to equate the

rank pi with the probability to arrive at this page by randomly clicking on links.
A reasonable way to measure the probability of arriving at a page is to count
the number of links that refer to it. Not all links are equal, though—those from
a more probable page must bring more probability. On the other hand, a link
from a page with many outgoing links must bring to each link less probability.
One then comes to the two rules: i) every page relays its rank to the pages it
links to, dividing it equally between them, and ii) the rank of a page is the sum
of all ranks obtained by links. According to these rules, pi=∑

j pj/nj, where nj
is the number of outgoing links on page j, which links to page i. In other words,
we are looking for the eigenvector of the hyperlink matrix, pÂ= p, where the
matrix elements aij= 1/nj if j links to i and aij= 0 otherwise. Does a unique
eigenvector with all non-negative entries and a unit eigenvalue always exist?
If yes, how to find it?

The iterative algorithm to find the rank eigenvector pi is called PageRank
(Brin and Page 1998).1 It starts by ascribing equal probability to all pages,
pi(0)= 1/n, and generates the new probability distribution by applying the
above rules of the rank relay:

p(t+ 1)= p(t)Â . (4.1)

We recognize that this stochastic process is a Markov chain, mentioned in
sections 2.3 and 3.6, which means that the future is determined by the present
state, but not by the past. We thus interpret Â as the matrix of transition prob-
abilities between pages for our random surfer. In later modifications, rather
than fill the elements of Â uniformly as 1/nj, one uses information about actual
frequencies of linking that can be obtained from access logs. Could our self-
referential rules lead to a vicious circle or the iterations converge at t→∞? It
is clear that if the largest eigenvalue λ1 of Â is larger than unity, then the iter-
ations would diverge; if λ1 < 1, then the iterations would converge to zero.
Both contradict normalization,

∑
pi= 1. We need the largest eigenvalue to

be unity and correspond to a single eigenvector so that the iterations converge.

1. “Page” relates both to web pages and to Larry Page, who with Sergei Brin invented the
algorithm and created Google.
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How fast it converges is then determined by the second largest eigenvalue λ2
(which must be less than unity).

A moment’s reflection is enough to identify the problem: some pages do
not link to any other page, which corresponds to rows of zeros in Â. Such pages
accumulate the score without sharing it. Another problem is caused by loops.
The figure presents a simple example illustrating both problems:

1 2

3

If all transition probabilities are nonzero, the probability vector with time
tends to (0, 0, 1), that is, the surfer is stuck at page 3. When the probabilities
a13, a23 are very small, the surfer tends to be caught for long times in the loop
1←→ 2.

To release our random surfer from being stuck at a sink or caught in a loop,
the original PageRank algorithm allowed it to jump randomly to any other
page with equal probability. To be fair with pages that are not sinks, these ran-
dom teleportations are added to all nodes in the web: the surfer either clicks on
a link on the current page with probability d or opens up a random page with
probability 1− d. To quote the original: “We assume there is a ‘random surfer’
who is given a web page at random and keeps clicking on links, never hitting
‘back’ but eventually gets bored and starts on another random page. The prob-
ability that the random surfer visits a page is its PageRank. The damping factor
is the probability that the ‘random surfer’ will get bored and request another
random page.” This is equivalent to replacing Â by Ĝ= dÂ+ (1− d)Ê. Here
the teleportation matrix Ê has all entries 1/n, that is, Ê= eeT/n, where e is the
column vector with ei= 1 for i= 1, . . . , n. After that, all matrix entries gij are
strictly positive and the graph is fully connected.

It is important that our matrix now has positive elements in every column
whose sum is unity. Such matrices are called stochastic since every column
can be thought of as a probability distribution. Every stochastic matrix has
unity as the largest eigenvalue. Indeed, since

∑
j gij= 1, then e is an eigenvec-

tor of the transposed matrix: ĜTe= e. Therefore, 1 is an eigenvalue for ĜT ,
and also for Ĝ, which has the same eigenvalues. We can now use convexity to
prove that this is the largest eigenvalue. For any vector p, every element of pĜ
is a convex combination of the elements,

∑
j pjgij, which cannot exceed the

largest element of p since
∑

j gij= 1. For an eigenvector with an eigenvalue
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exceeding unity, at least one element of pĜ must exceed the largest element of
p; therefore, such an eigenvector cannot exist. This is a particular case of the
following theorem: The eigenvalue with the largest absolute value of a positive
square matrix is positive and belongs to a positive eigenvector, where all of the
vector’s elements are positive. All other eigenvectors are smaller in absolute
value (Markov 1906, Perron 1907).

The great achievement of the PageRank algorithm is that it replaces the
process (4.1) by

p(t+ 1)= p(t)Ĝ . (4.2)

That iterative process cannot be caught into a loop and converges, which fol-
lows from the fact that Gii �= 0 for all i; that is, there is always a probability of
staying on the page, breaking any loop. The eigenvalues of Ĝ are 1, dλ2 . . . dλn,
where {λi} are eigenvalues of Â (prove it), so the choice of d affects conver-
gence, the smaller the faster. On the other hand, it is somewhat artificial to
use teleportation to an arbitrary page, so larger values of d give more weight
to the true link structure of the web. As in other optimization problems we
have encountered in this book, a workable compromise is needed. The stan-
dard Google choice, d= 0.85, comes from estimating how often an average
surfer uses bookmarks. As a result, the process usually converges after about
50 iterations.

One can design a personalized ranking by replacing the teleportation
matrix by Ê= evT , where the probability vector v has all nonzero entries
and allows for personalization; that is, it can be chosen according to the indi-
vidual user’s history of searches and visits. That means that it is possible in
principle to have our personal rankings of the web pages and make searches
customized.

As mentioned, the sequence of the probability vectors defined by the
relations of the type (4.1, 4.2) is a Markov chain. In particular, the three ran-
dom quantities X→ Y→Z constitute a Markov triplet if Y is completely
determined by X, Z, while X, Z are independent, conditional on Y ; that is,
I(X, Z|Y)= 0. Such chains have an extremely wide domain of applications.

Exercise 4.1: PageRank of the two-page internet.
Consider the simplest version of the internet, which has two pages:

page 1 has one link to page 2, which has no links. Rank these pages
according to the PageRank algorithm with arbitrary d< 1 (the proba-
bility of following a link).
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Exercise 4.2: Eigenvalues of the Google matrix.
Assume that the matrix Â with the spectrum (1, λ2, . . . , λn) is

stochastic, that is,
∑

j aij= 1 for every i. Prove that the spectrum of the
Google matrix Ĝ= dÂ+ (1− d)evT is (1, dλ2, . . . , dλn), where v is an
arbitrary probability vector, that is,

∑
i vi= 1.

Exercise 4.3: Solus Rex. A king randomly moves to any of the adjacent
squares with equal probability on an otherwise empty 3× 3 chessboard.

(a) How much information brings a message specifying his
position?

(b) If we wish to encode the whole game (the random walk of the
king), we need to know how the number of typical sequences
N(n) grows asymptotically with the number n of the moves:
limn→∞ N(n)= 2nS. Find S, which is called the information
rate of the source. Is it the same as the entropy that determined
the answer to the previous question?

4.2 Random Walk and Diffusion

Let us now consider a particular yet fundamental stochastic process of a ran-
dom walk on a lattice, where the transition probability is nonzero only for
neighboring sites. Our walker can hop randomly to any of the 2d neighbor-
ing sites in the d-dimensional cubic lattice, starting from the origin at t= 0.
We denote a as the lattice spacing, τ as the time between hops, and ei as the
orthogonal lattice vectors that satisfy ei · ej= a2δij. The probability of being
in a given site x evolves according to the equation

P(x, t+ τ)= 1
2d

d∑
i=1

[P(x+ ei, t)+ P(x− ei, t)] . (4.3)

That can be rewritten in the form convenient for taking the continuous limit:

P(x, t+ τ)− P(x, t)
τ

= a2

2dτ

d∑
i=1

P(x+ ei, t)+ P(x− ei, t)− 2P(x, t)
a2 .

(4.4)

This is a finite difference approximation to the diffusion equation, which app-
ears when we take the continuous limit a→ 0, τ→ 0, keeping finite the ratio
κ = a2/2dτ : (∂t − κ�)P(x, t)= 0. The space density ρ(x, t)= P(x, t)a−d
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satisfies the same equation:

∂tρ= κ�ρ. (4.5)

The solution with the initial condition ρ(x, 0)= δ(x) is the Gaussian distri-
bution:

ρ(x, t)= (4πκt)−d/2exp
(−x2/4κt

)
. (4.6)

Along with (4.3) and (4.4), the diffusion equation conserves the total
probability,

∫
ρ(x, t) dx, because it has the form of a continuity equation,

∂tρ(x, t)=−div j with the current j=−κ∇ρ.2Note that (4.5) and (4.6)
are isotropic and translation invariant, while the discrete version respects only
cubic symmetries. The phase volume increases as td/2, and the entropy grows
with time logarithmically.

Another way to describe a random walk is to treat ei as a random variable
with 〈ei〉= 0 and 〈eiej〉= a2δij, so that x=∑t/τ

i=1 ei. The probability of the
sum is (4.6), that is, the product of Gaussian distributions of the components,
with the variance growing linearly with t.

A path of a random walker behaves more like a surface than a line. The two-
dimensionality of the random walk is a reflection of the square-root diffusion
law: 〈x〉∝√t. The dimensionality of a set defines the relation between its size
x and the number N∝ xd of standard-size elements needed to cover it. For a
random walk, the number of elements is on the order of the number of steps,
N∝ t∝ x2. One can also look at how the number of boxes N(a) needed to
cover a geometric object grows as the box size a decreases; see the definition of
the box-counting dimension (5.20) in section 5.4. For a line N∝ 1/a, generally
N∝ a−d. As we discussed above, diffusion requires the time step to shrink with
the lattice spacing according to τ ∝ a2. The number of elements is the number
of steps and grows for a given t as N(a)= t/τ ∝ a−2 so that d= 2. Surfaces
generally intersect along curves in 3D; they meet at isolated points in 4D and do
not meet at d> 4. That is reflected in special properties of the random walk in
2D (where it fills the surface) and 4D (where random walkers do not meet and
hence do not interact). The mean time spent on a given site,

∑∞
t=0 P(x, t)→∫

ρ(x, t) dt∝ ∫∞ t−d/2dt, diverges for d≤ 2. In other words, the walker in 1D
and 2D returns to any point an infinite number of times.

Exercise 4.4: Random walk on a circle.
Consider a one-dimensional random walk over a circle with N sites as

a Markov chain and write the one-step transformation of the probability

2. The continuity equation is derived in detail at the beginning of section 5.1.
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distribution over the sites i= 1, . . . , N. Find the transition probabil-
ity matrix Â and show that its eigenvectors are eıjk if kn= 2πn/N for
n= 0, 1, . . . , N− 1. Show that the only stationary distribution is the
eigenvector with the highest eigenvalue and the rate of relaxation to it
is determined by the second largest eigenvalue.

4.3 Detailed Balance

A significant generalization of equilibrium statistical physics can be achieved
for systems with one or few degrees of freedom deviated arbitrarily far from
equilibrium. That can be done under the assumption that the rest of the
degrees of freedom are in equilibrium and can be represented by a thermo-
stat generating thermal noise. This new approach also allows one to treat
nonthermodynamic fluctuations, such as a negative entropy change.

We illustrate these developments using the simplest example of a one-
dimensional random walk, to which we add a drift with velocity v(x)=
−∂V(x)/∂x; that is, down the gradient of the potential V(x). According
to the continuity equation, the drift adds ρv to the current j and −∂x(ρv)
to ∂ρ(x, t)/∂t. Combining this with (4.5), which describes diffusion from
the random walk, we obtain the so-called Fokker-Planck equation for the
probability ρ(x, t) (see section A.10 for the detailed derivation):

∂tρ=T∂2
xρ+ ∂x(ρ∂xV)=−∂xj. (4.7)

Here we denote diffusivity as T for reasons that will be clear in a moment. Let
us denote ρ(x′, t; x, 0) as the conditional probability to come from x at 0 to x′
at t. Without the coordinate-dependent field V(x), the transition probability
is symmetric:

ρ(x′, t; x, 0)= ρ(x, t; x′, 0) . (4.8)

That property is called the detailed balance.
How is it modified in an external field? If the potential V is time-

independent, then the stationary solution of (4.7) is the zero-current Gibbs
state: requiring j=−T∂xρ− ρ∂xV = 0, we obtain

ρ(x)=Z−1
0 exp[−βV(x)] , Z0=

∫
exp[−βV(x, 0)] dx. (4.9)

From the perspective of information theory, if the only condition we impose
is that a particle at x has the mean energy V(x), then the probability distribu-
tion is an exponent of the energy. The Gibbs state (4.9) satisfies a modified
detailed balance: the probability current is the (Gibbs) probability density
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at the starting point times the transition probability; forward and backward
currents must be equal in equilibrium:

ρ(x′, t; x, 0)e−V(x)/T = ρ(x, t; x′, 0)e−V(x′)/T . (4.10)

We can exploit an analogy between quantum mechanics and statistical physics
by introducing the Fokker-Planck operator,

HFP=− ∂
∂x

(
∂V
∂x
+T

∂

∂x

)
.

This operator governs the evolution of the probability density the same way the
Hamiltonian governs the evolution of the quantum wave function. The proba-
bility density is then treated as aψ function in the x representation, ρ(x, t)=
〈x|ψ(t)〉, using notations from chapter 6. We then rewrite (4.7) as d|ψ〉/dt=
−ĤFP|ψ〉, which has the formal solution |ψ(t)〉= exp(−tHFP)|ψ(0)〉. The
only difference with quantum mechanics is that their time is imaginary (of
course, they think that our time is imaginary). In other words, the Schrodinger
equation,

ı�
d
dt
|ψ〉=

(
− h2

2m
�+V

)
|ψ〉,

corresponds to imaginary diffusivity. The transitional probability is given by
the matrix element:

ρ(x′, t′; x, t)=〈x′| exp[(t− t′)HFP)|x〉. (4.11)

The quantum-mechanical notations allow us to translate the detailed bal-
ance from the property of transition probabilities to that of the evolution
operator. The field-free symmetry (4.8) formally corresponds to the fact that
the respective Fokker-Planck operator ∂2

x is Hermitian. The relation (4.10) can
be written as follows:

〈x′|e−tHFP e−V/T|x〉= 〈x|e−tHFP e−V/T|x′〉 = 〈x′|e−V/Te−tH†
FP |x〉.

Since this must be true for any x, x′, then e−tH†
FP = eV/Te−tHFP e−V/T and

H†
FP≡

(
∂V
∂x
−T

∂

∂x

)
∂

∂x
= eV/THFPe−V/T , (4.12)

i.e., eV/2THFPe−V/2T is Hermitian, which can be checked directly (more on
the analogy between thermal and quantum fluctuations can be found in
section A.12).
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4.4 Fluctuation Relation and the New Second Law

Two hundred years after Carnot, one might expect the second law of thermo-
dynamics to be a bronze monument, yet it is very much alive, growing, and
changing shape.

To see it, let us allow the potential V in (4.7) to change in time; then the sys-
tem goes away from equilibrium. Consider an ensemble of trajectories starting
from the initial positions taken with the probabilities determined by the equi-
librium Gibbs distribution corresponding to the initial potential: ρ(x, 0)=
Z−1

0 exp[−βV(x, 0)], where β = 1/T. As time proceeds and the potential
continuously changes, the system is never in equilibrium, so that ρ(x, t)
does not generally have a Gibbs form. Even though one can define a time-
dependent Gibbs state, Z−1

t exp[−βV(x, t)], with Zt =
∫

exp[−βV(x, t)]dx,
one can directly check that it is not a solution of the Fokker-Planck equa-
tion (4.7) because of the extra term: ∂tρ=−βρ∂tV . The distribution needs
some time to adjust to the potential changes and is generally dependent on
the history of these. For example, if we suddenly broaden the potential well to
the width L, it will take diffusion (with diffusivity T) a time of order L2/T
to broaden the distribution. Can we find some quantity that accounts for
this history and lets us generalize the detailed balance relation (4.10) we had
in equilibrium? Such a relation was found surprisingly recently despite its
generality and relative technical simplicity of derivation.

To find the quantity that has a Gibbs form (i.e., that has its probability
determined by the instantaneous potential), we need to find an equation that
generalizes (4.7) by having an extra term that will cancel the time derivative of
the potential. This is achieved by considering, apart from a position x, another
random quantity, defined as the potential energy change (or the external work
done) along the particle trajectory during time t:

Wt =
∫ t

0
dt′ ∂V(x(t′), t′)

∂t′
. (4.13)

The time derivative is partial, i.e., taken only with respect to the second argu-
ment, so that the integral is not equal to the difference between the start and
the finish, but is determined by the whole history. The work is a fluctuating
and even sign-changing quantity depending on the trajectory x(t′), which
itself depends on the initial point and random walk realization.

Let us now run our random walker many times, choosing different starting
points x(0) according to the Gibbs probability ρ(x)=Z−1

0 exp[−βV(x, 0)].
—-1
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This gives us many trajectories having different endpoints x(t) and accu-
mulating different energy changes W along the way. Now consider the joint
probabilityρ(x, W , t)of reaching x and acquiring energy change W . This two-
dimensional probability distribution satisfies the generalized Fokker-Planck
equation, which can be derived as follows: similar to the argument preceding
(4.7), we note that the flow along W in x−W space proceeds with the veloc-
ity dW/dt= ∂tV , so that the respective component of the current isρ∂tV and
the equation takes the form

∂tρ=β−1∂2
xρ+ ∂x(ρ∂xV)− ∂Wρ∂tV . (4.14)

Since W0= 0, the initial condition for (4.14) is

ρ(x, W , 0)=Z−1
0 exp[−βV(x, 0)]δ(W). (4.15)

While we cannot find ρ(x, W , t) for arbitrary V(t), we can multiply (4.14) by
exp(−βW) and integrate over dW . Since V(x, t) does not depend on W , we
get the closed equation for f (x, t)= ∫

dWρ(x, W , t) exp(−βW):

∂t f =β−1∂2
x f + ∂x( f∂xV)−βf∂tV . (4.16)

Now, this equation does have an exact time-dependent solution,

f (x, t)=Z−1
0 exp[−βV(x, t)] ,

where the factor Z−1
0 is chosen to satisfy the initial condition (4.15). Note

that f (x, t) is instantaneously defined by V(x, t) without any history depen-
dence, in contrast to ρ(x, t). In other words, the distribution weighted by
exp(−βWt) looks like the Gibbs state, adjusted to the time-dependent poten-
tial at every moment of time. Even though the phase volume defines probabil-
ity only in equilibrium, the work divided by temperature is an analog of the
entropy change (production), and the exponent of it is an analog of the phase
volume change. Let us stress that f (x, t) is not a probability distribution. In
particular, its integral over x is not unity but the mean phase volume change,
which remarkably is expressed via equilibrium partition functions at the ends
( Jarzynski 1997):

∫
f (x, t)dx=

∫
ρ(x, W , t)e−βWdxdW =〈

e−βW 〉= Zt

Z0
=

∫
e−βV(x,t)dx∫
e−βV(x,0)dx

.

(4.17)
-1—
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Here the bracket means double averaging: over the initial distribution ρ(x, 0)
and over the different random walks during the time interval (0, t). We can also
obtain all weighted moments of x, like 〈xn exp(−βWt)〉.3 One can introduce
the free energy Ft =−T ln Zt , so that Zt/Z0= exp[β(F0− Ft)].

Let us reflect on where we have arrived following our random walker. We
started from a Gibbs distribution but considered arbitrary temporal evolution
of the potential. Therefore, our distribution was arbitrarily far from equilib-
rium during the evolution. Despite that, we expressed the mean exponent of
the work done via the partition functions of the equilibrium distributions, cor-
responding to the potential at the beginning and at the end. Even though the
system is not in equilibrium at the end, the use of the Gibbs distribution is not
that surprising, because the further relaxation to equilibrium at the end value
of the potential is not accompanied by doing any work W . What is surprising
is that there is no dependence on the intermediate times. One can also look at
it from the opposite perspective: no less remarkable is that one can determine
a truly equilibrium property, the free energy difference, from nonequilibrium
measurements (which could be arbitrarily fast rather than adiabatically slow,
as we used to do in traditional thermodynamics).

The total heat release is the work minus the free energy change: Q =
W − Ft + F0. Divided by the temperature, this is minus the entropy change
during the evolution. That allows us to rewrite (4.17) as the following identity:

〈e−Q/T〉= 〈e−�S〉= 1, (4.18)

which is a generalization of the second law of thermodynamics. Note that the
entropy change�S is treated here as a fluctuating quantity, which could have
either sign. Using the Jensen inequality 〈eA〉≥ e〈A〉, one can obtain the usual
second law of thermodynamics for the positivity of the mean entropy change:

〈�S〉≥ 0.

When information processing is involved, it must be treated on an equal
footing, which allows one to decrease the work and the dissipation below the
free energy difference (Sagawa and Uedo, 2012; Sagawa 2012):〈

e−βQ−I〉= 〈
e−�S〉= 1. (4.19)

We considered such a case in section 3.2, where we used〈Q 〉≥−IT=−T�S.
The exponential equality (4.19) is a generalization of this inequality and (3.7).

3. I thank R. Chetrite for this derivation.
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So the modern form of the second law of thermodynamics is equality rather
than inequality. The latter is just a partial consequence of the former. Compare
it with the reformulation of the second law in section 5.2 as a conservation law
rather than a law of increase.

And yet (4.19) is not the most general form. The further generalization is
achieved by relating the entropy production to irreversibility, stating that the
probability of having a change −�S in a time-reversed process (marked by a
dagger) is as follows (Crooks 1999):

P†(−�S)= P(�S)e−�S. (4.20)

Integrating (4.20), one obtains (4.19). That remarkable relation also allows
one to express the mean entropy production via the relative entropy (2.29)
between probabilities of the forward and backward evolution:

〈�S〉=
〈
ln[P(�S)/P†(−�S)]

〉
. (4.21)

The positivity of the mean entropy change is thus related (as is almost every-
thing) to the positivity of the relative entropy.

One can find the derivation of the relation (4.20) for the toy model of
the generalized baker’s map in section A.8 and multidimensional versions in
section A.11.

Exercise 4.5: Random walk in an inverted potential.
Consider a particle in an inverted quadratic potential V(x)=
−αx2/2 under the action of a random noise η(t) with 〈η(0)η(t)〉=
δ(t). This is described by the Langevin equation with α > 0:

ẋ=αx+ η. (4.22)

Assume that the particle is at x0 at t= 0.

(a) Find the probability distribution ρ(x, t) by directly solving
(4.22). Find the longtime decay of probability at a finite
distance.

(b) Write the Fokker-Planck Hamiltonian HFP. Find the spectrum
of the Hamiltonian and compare it with the cases of negative
and zero α. In our case of positive α, relate the longtime
asymptotic of ρ(x, t) to the lowest eigenvalue of the
Fokker-Planck Hamiltonian.-1—
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Inevitability of Irreversibility

Time is greater than space. Space is a thing.
Time, in essence, is the thought of a thing.

—joseph brodsky

Let us understand how entropy actually grows in the physical world. A
random walk increases entropy because it adds uncertainty at every step. But
for a physical system, every step is prescribed by physical laws. The puzzle here
is how irreversible entropy growth appears out of reversible laws of mechan-
ics, electromagnetism, etc. If we screen the movie of any evolution backward, it
will be a legitimate solution to the equations of motion. Will it have its entropy
decreasing?

This question was already posed in the nineteenth century. It took the bet-
ter part of the twentieth century to answer it, resolve the puzzles, and make
statistical physics conceptually trivial (and technically much more powerful).
The general idea is that only full knowledge can persist; any partial knowl-
edge dissipates. Knowledge can be partial due to the inability to observe all
the degrees of freedom or due to a finite precision requiring us to consider
regions in phase space. The former case corresponds to Boltzmann kinetics
described in section 5.2. The latter relates to the mechanism of randomiza-
tion called dynamical chaos: initially small regions spread over the whole
phase space under reversible Hamiltonian dynamics, very much like flows of
an incompressible liquid mixing. Such spreading and mixing in phase space
correspond to the approach to equilibrium, as described in section 5.3. On
the contrary, to deviate a system from equilibrium, one adds external forc-
ing and dissipation, which makes its phase flow compressible and distribution
nonuniform, as described in section 5.4. In the last section, we design our
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own way to irreversibly forget what we consider irrelevant and learn what is
relevant.

5.1 Evolution in the Phase Space

So far, we have said precious little about how physical systems actually evolve
to arrive at equilibrium. Let us start with a broad class of energy-conserving
systems that Hamiltonian dynamics can describe. Every such system is char-
acterized by its momenta p and coordinates q, together comprising the phase
space. Any state of a system is a point in the space. Coordinates and momenta
change as time progresses, and the point moves in the phase space. We should
consider finite regions since we cannot measure p, q exactly. We define the
probability for a system to be in some�p�q region of the phase space as the
fraction�t of the total observation time T it spends there: w=�t/T. Assum-
ing that the probability of finding it within the volume dpdq is proportional
to this volume, we introduce the statistical distribution in the phase space
as a density: dw= ρ(p, q)dpdq. By definition, the average with the statistical
distribution is equivalent to the time average:

f̄ =
∫

f (p, q)ρ(p, q)dpdq= 1
T

∫ T

0
f (t)dt. (5.1)

We can now consider the evolution of the density ρ(p, q) on timescales larger
than the T used to define it.

Here we start considering flows, which are determined by the velocity
v. Our focus is on density changes. They are brought by the flow nonuni-
formity, which we characterize by the velocity spatial derivatives. Consider
for illustration a square with small sides, δx, δy, in a two-dimensional flow,
v(x, y)= (vx, vy). The sides change according to dδx/dt= δvx= δx∂vx/∂x
and dδy/dt= δvy= δy∂vy/∂y. The area time derivative is as follows:

d
dt
δxδy= δx

dδy
dt
+ δy

dδx
dt
= δxδy

(
∂vx

∂x
+ ∂vy

∂y

)
= δxδy div v.

We see that div v gives the local rate of the volume change. Similarly, the diver-
gence of the mass current, j= ρv= (jx, jy), determines the density change.
Indeed, the differences between mass flows through the opposite y sides is
δyδjx= δyδx∂ jx/∂x. Adding the difference for x sides, we obtain the rate of
mass change as δxδy div j. That means that the density changes according to

-1—
0—

+1—



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 17:47 — page 95 — #3
�

�

�

�

�

�

i n e v i ta b i l i t y o f i r r e v e r s i b i l i t y 95

the continuity equation
∂ρ

∂t
=−div j=−div (ρv).

The phase-space flow has the velocity v= (ṗ, q̇). Hamiltonian dynamics
of the momenta and coordinates describe the motion: q̇i= ∂H/∂pi and ṗi=
−∂H/∂qi. The resulting continuity equation for the probability density is
called the Liouville equation:

∂ρ

∂t
=−div (ρv)=

∑
i

∂H
∂pi

∂ρ

∂qi
− ∂H
∂qi

∂ρ

∂pi
≡{ρ,H}. (5.2)

Here the Hamiltonian generally depends on the momenta and coordinates of
the given subsystem and its neighbors.

The equation (5.2) describes the density evolution at a given point of the
phase space since the time derivative at the left is partial, that is, taken at fixed
pi, qi. Any given physical system changes its momenta and coordinates mov-
ing in the phase space. The density change for a system is then described by
the full derivative taken along the flow: dρ/dt= ∂ρ/∂t+ (v∇)ρ. What is
most important for us now is that any Hamiltonian flow in the phase space
is incompressible: it conserves area in each plane pi, qi and the total volume:
div v= ∂ q̇i/∂qi+ ∂ ṗi/∂pi= 0. That gives the Liouville theorem: dρ/dt=
∂ρ/∂t+ (v∇)ρ=−ρdiv v= 0. The statistical distribution is thus conserved
along the phase trajectories of any system. As a result, ρ is an integral of
motion.

We define statistical equilibrium as a state whereρmust be expressed solely
via the integrals of motion. When forces are short-range, macroscopic subsys-
tems interact weakly and are statistically independent so that the distribution
for a composite system ρ12 is factorized: ρ12= ρ1ρ2. Since ln ρ12= ln ρ1+
ln ρ2 is an additive quantity, then in equilibrium it must be expressed linearly
via the additive integrals of motion (which replace the enormous microscopic
information). Considering a subsystem that has zero total momentum and
angular momentum, the only such integral is energy E(p, q), which is addi-
tive, neglecting interaction energy between subsystems. That corresponds to
the familiar Gibbs canonical distribution:

ρ(p, q)=A exp[−E(p, q)/T]. (5.3)

Note one subtlety: On the one hand, we consider weakly interacting sub-
systems to have their energies additive and distributions independent. On
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the other hand, it is precisely this weak interaction that is expected to drive
a complicated evolution visiting all regions of the phase space, thus mak-
ing statistical description possible. A particular case of (5.3) is a distribution
constant over all the phase space (kind of microcanonical), which is evi-
dently invariant under the Hamiltonian evolution of an isolated system due
to the Liouville theorem. That distribution formally corresponds to an infi-
nite temperature when canonical and microcanonical distributions coincide
since energy differences between different regions of the phase space do not
matter.

It is time for reflection. How can the Hamiltonian dynamics preserving
distribution bring a system to the equilibrium distribution?

5.2 Kinetic Equation and H-Theorem

Any Hamiltonian evolution is an incompressible flow in the phase space,
div v= 0, so it conserves the total Gibbs entropy:

dS
dt
=−

∫
dx
∂ρ

∂t
ln ρ=

∫
dx ln ρ div ρv=−

∫
dx (v∇)ρ

=
∫

dx ρ div v= 0.

Which entropy then can grow? Boltzmann answered this question by deriving
the equation on the one-particle momentum probability distribution. Such an
equation must follow from integrating the N-particle Liouville equation (5.2)
over all N coordinates and N− 1 momenta.

Consider the probability density ρ(x, t) in the phase space x= (P,Q ),
where P={p1 . . . pN} and Q ={q1 . . . qN}. The Hamiltonian of parti-
cles with pair interaction is the sum of kinetic and potential energies:
H=∑i

p2
i

2m +
∑

i<j U(qi− qj). The evolution of the density is described by
the following Liouville equation:

∂ρ(P,Q , t)
∂t

={ρ(P,Q , t),H}=
⎡
⎣−

N∑
i

pi

m
∂

∂qi
+
∑
i<j
θij

⎤
⎦ ρ(P,Q , t),

(5.4)

where

θij= θ(qi, pi, qj, pj)= ∂U(qi− qj)

∂qi

(
∂

∂pi
− ∂

∂pj

)
-1—
0—

+1—



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 17:47 — page 97 — #5
�

�

�

�

�

�

i n e v i ta b i l i t y o f i r r e v e r s i b i l i t y 97

is the rate of the momentum change due to interaction. For a reduced
description of the single-particle distribution over momenta, ρ(p, t)=∫
ρ(P,Q , t)δ(p1− p) dp1 . . . dpNdq1 . . . dqN , we integrate (5.4). The terms

with ∂/∂qi do not contribute, and we get

∂ρ(p, t)
∂t

=
∫
δ(p1− p)θ(q1, p1; q2, p2)ρ(q1, p1; q2, p2) dq1dp1dq2dp2.

(5.5)

This equation is apparently not closed since the rhs contains two-particle
probability distribution. If we write the equation on that two-particle distribu-
tion integrating the Liouville equation over N− 2 coordinates and momenta,
the interaction θ term gives three-particle distribution, etc. The consistent
procedure is to consider a short-range interaction and a low density so that
the mean distance between particles greatly exceeds the radius of interaction.
In this case, we may assume that particles come from large distances and their
momenta are not correlated for every binary collision. Statistical indepen-
dence then allows us to replace the two-particle momenta distribution with
the product of one-particle distributions.

It is easy to write the general form that such a closed equation must have.
For a dilute gas, only two-particle collisions need to be considered in describ-
ing the evolution of the single-particle distribution over moments ρ(p, t).
Consider the collision of two particles having momenta p, p1:

p

p1́

pʹ

p1

For that, they must come to the same place, yet we shall assume that the par-
ticle velocity is independent of the position and that the momenta of two
particles are statistically independent so that the probability is the product
of single-particle probabilities: ρ(p, p1)= ρ(p)ρ(p1). These strong assump-
tions constitute what is called the hypothesis of molecular chaos. Under such
assumptions, the number of collisions (per unit time per unit volume) is pro-
portional to the probabilitiesρ(p)ρ(p1) and depends on the initial momenta,
p, p1, and the final ones, p′, p′1:

w(p, p1; p′, p′1)ρ(p)ρ(p1) dpdp1dp′dp′1. (5.6)
—-1
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One may believe that (5.6) must work well when the one-particle distribution
function evolves on a timescale much longer than that of a single collision.

We can now write the rate of the probability change as the difference
between the number of particles arriving and leaving the given region of phase
space around p by integrating over all p1p′p′1:

∂ρ

∂t
=
∫
(w′ρ′ρ′1−wρρ1) dp1dp′dp′1. (5.7)

The scattering probabilities w≡w(p, p1; p′, p′1) and w′ ≡w(p′, p′1; p, p1)

are nonzero only for quartets satisfying the conservation of energy and
momentum. We assume that the probabilities are invariant under time
reversal, which changes p→−p and interchanges incoming and outgoing
particles:

w(p, p1; p′, p′1)=w(−p′,−p′1;−p,−p1). (5.8)

If the medium is also invariant with respect to inversion, r, p→−r,−p,
then w(p, p1; p′, p′1)=w(−p,−p1;−p′,−p′1). Translation invariance makes
scattering the same at r and−r. All three symmetries combined give

w≡w(p, p1; p′, p′1)=w(p′, p′1; p, p1)≡w′. (5.9)

Using (5.9), we transform the second term in (5.7) and obtain the famous
Boltzmann kinetic equation (1872):

∂ρ

∂t
=
∫

w′
(
ρ′ρ′1− ρρ1

)
dp1dp′dp′1≡ I. (5.10)

Actual derivation relating w′ in (5.10) to the interparticle potential U is
cumbersome; fortunately, we need only the positivity of w′ for what follows.

H-theorem Let us now look at the evolution of the entropy of the one-
particle distribution satisfying (5.10):

dS
dt
=−

∫
∂ρ

∂t
ln ρ dp=−

∫
I ln ρ dp. (5.11)

The integral (5.11) contains the integrations over all momenta so that we may
exploit two interchanges, p1↔ p and p, p1↔ p′, p′1:

dS
dt
=
∫

w′
(
ρρ1− ρ′ρ′1

)
ln ρ dpdp1dp′dp′1-1—
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= 1
2

∫
w′
(
ρρ1− ρ′ρ′1

)
ln(ρρ1) dpdp1dp′dp′1

= 1
2

∫
w′ρρ1 ln

ρρ1

ρ′ρ′1
dpdp1dp′dp′1≥ 0. (5.12)

Here we subtract the integral
∫

w′
(
ρρ1− ρ′ρ′1

)
dpdp1dp′dp1/2= 0 and use

the inequality x ln x− x+ 1≥ 0 with x= ρρ1/ρ
′ρ′1. Even though the scat-

tering probabilities are reversible in time, according to (5.8), our use of the
molecular chaos hypothesis makes the kinetic equation irreversible.

Equilibrium realizes the entropy maximum, so the distribution must be
a steady solution of the Boltzmann equation. Indeed, the collision integral
turns into zero by virtue of ρ0(p)ρ0(p1)= ρ0(p′)ρ0(p′1), since ln ρ0 is the
linear function of the integrals of motion, as explained in section 5.1. All this
is also true for an inhomogeneous equilibrium in an external potential (see
section 4.4).

One can look at the transition from (5.4) to (5.10) from a temporal view-
point. N-particle distribution changes during every collision when particles
exchange momenta. On the other hand, the single-particle distribution is the
average over N− 1 particles, so changing it requires many collisions. Even
though some of these collisions occur in parallel, in a dilute system with short-
range interaction, the time between collisions is much longer than the colli-
sion time, so the single-particle distribution changes on a much longer scale.
In other words, the transition from (5.4) to (5.10) is from a fast-changing
function to a slow-changing one.

Let us summarize the present state of confusion. The full entropy of the
N-particle distribution is conserved. The one-particle entropy grows. Is there
a contradiction here? Isn’t the full entropy a sum of one-particle entropies?
The answer (no to both questions) follows from our consideration of mutual
information in section 2.8. What was defined as the entropy of the gas in ther-
modynamics is indeed the sum of entropies of different particles

∑
S(pi, qi).

In the thermodynamic limit, we neglect interparticle correlations. However,
the total entropy of the gas includes correlations, which are measured by
generalized (multiparticle) mutual information:

S(p1 . . . pn, q1, . . . qn)=
∑

i
S(pi, qi)− I(p1, q1; . . . ; pn, qn).

We broke time reversibility and set the arrow of time when we assumed par-
ticles were uncorrelated before the collision and not after. If one starts from a
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set of uncorrelated particles and lets them interact, then the interaction will
build correlations, and the total distribution will change, but the total entropy
will not. This is because lowering entropy by correlations compensates the
growth of the single-particle entropies. That growth is described by the
Boltzmann equation, which is valid for an uncorrelated initial state (and for
some time after). The motivation for choosing such an initial state for comput-
ing one-particle evolution is that it is most likely in any generic ensemble. Yet
it would make no sense to run the Boltzmann equation backward from a cor-
related state, which is statistically a very unlikely initial state, since it requires
momenta to be correlated in such a way that a definite state is produced after
time t. In other words, the Boltzmann equation describes at a macroscopic
level (of one-particle distribution) not all but typical microscopic (N-particle)
evolutions.

We can replace the usual second law of thermodynamics by the law of
conservation of the total entropy (or information): the increase in the ther-
modynamic (uncorrelated) entropy is exactly compensated by the increase
in correlations between particles expressed by the mutual information. The
usual second law results from our renunciation of all correlation knowledge
and not from any intrinsic behavior of dynamical systems. One way to dis-
regard correlations is to consider only one-particle distribution as we do
here. Another version of such renunciation is presented in section 5.3: the
full N-particle entropy grows because of phase-space mixing and continuous
coarse-graining.

But mutual information can work in the opposite direction, too. Imagine
that two systems are at respectively T1 and T2, heat dE1 passes from 2 to 1, and
the degree of their correlation changes by�I. The second law then generalizes
(1.6) to (

1
T1
− 1

T2

)
dE1−�I≥ 0. (5.13)

If correlations were absent before and appeared when the systems were
brought into contact, then�I> 0 and we still have heat flowing from hot to
cold, its amount bounded from below: dE1(T2−T1)≥T1T2�I> 0. How-
ever, one can create a situation where there is an initial correlation between the
systems that is destroyed during the heat exchange, i.e., �I< 0. In this case,
the heat could flow from the cold to the hot system. An information-theoretic
resource can be used to perform refrigeration using, for instance, Maxwell’s
demon, who opens a window for fast particles from the right and slow particles
from the left.
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Neglecting interparticle correlations by factorizing the two-particle distri-
bution ρ12= ρ(q1, p1; q2, p2)= ρ1ρ2 means using incomplete information.
This naturally leads to a further increase of uncertainty, that is, of entropy. For
dilute gases, such a factorization is just the first term of an expansion over the
powers of density:

ρ12= ρ1ρ2+
∫

dq3dp3J123ρ1ρ2ρ3+ . . . .

In section A.7, we explain that this (so-called cluster) expansion is regular only
for equilibrium distributions. For nonequilibrium distributions, the expansion
generally contains nonanalytic terms with log ρ. The Boltzmann equation is
nice, but corrections to it are ugly when one deviates from equilibrium. The
corrections also violate the H-theorem—indeed, dropping all the terms is part
of passing from the Liouville equation to the Boltzmann equation, which leads
to the loss of information and entropy growth.

5.3 Phase-Space Mixing and Entropy Growth

We have seen that one-particle entropy can grow even when the full N-particle
entropy is conserved. To show how the full entropy can grow, let us return to
the full N-particle distribution and recall that we always measure coordinates
and momenta within some intervals; i.e., we characterize the system not by
a point but by a finite region in phase space. We now show that quite gen-
eral dynamics stretches this finite domain into a thin, convoluted strip whose
parts can be found everywhere in the available phase space, say, on a fixed-
energy surface. The dynamics thus provide a stochastic-like mixing in phase
space responsible for the approach to equilibrium (uniform microcanonical
distribution). By itself, this stretching and mixing does not change the phase
volume and entropy. Another necessary ingredient is to continually treat our
system with finite precision. Such a consideration is called coarse-graining, and
together with mixing, it is responsible for the irreversibility of statistical laws
and for entropy growth.

The dynamical mechanism of entropy growth is the separation of trajecto-
ries in phase space: trajectories started from a small neighborhood are found
farther and farther away from each other as time proceeds. Denote again by
x= (P,Q ) the 6N-dimensional vector of the position and by v= (Ṗ, Q̇ ) the
velocity in the phase space. The relative motion of two close points, sepa-
rated by r, is determined by their velocity difference: δvi≈ rj∂vi/∂xj= rjσij.
We have seen in section 5.1 that the trace of the tensor of velocity deriva-
tives, div v=∑i σii, determines the volume change rate. We now consider
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the whole tensor and decompose it into an antisymmetric part (describ-
ing rotation) and a symmetric part, Sij= (∂vi/∂xj+ ∂vj/∂xi)/2 (describing
deformation). Separation of trajectories is due to deformation, so we focus on
Sij. The vector initially parallel to the axis j turns toward the axis i with the
angular speed ∂vi/∂xj, so that 2Sij is the rate of change of the angle between
two mutually perpendicular vectors along i and j axes. To put it simply, 2Sij is
the rate at which a rectangle deforms into a parallelogram. Arrows in the figure
show the velocities of the endpoints:

δy

Sxyδy

Sxyδx

δx

The symmetric tensor Sij can be always transformed into a diagonal form by an
orthogonal transformation (i.e., by the rotation of the axes) so that Sij= Siδij.
According to the Liouville theorem, Hamiltonian dynamics is an incompress-
ible flow in the phase space, so the trace must be zero: Tr σij=∑i Si= div
v= 0. That means that some components are positive and some are neg-
ative. Positive diagonal components are the stretching rates, and negative
components are the contraction rates in respective directions. The equation
for the distance between two points along a principal direction has the form
ṙi= δvi= riSi. The solution is as follows:

ri(t)= ri(0) exp
[∫ t

0
Si(t′) dt′

]
. (5.14)

For a time-independent strain, the growth/decay is exponential over time.
A purely straining motion converts a spherical element into an ellipsoid

with the principal diameters that grow or decay. As an example, consider
a two-dimensional projection of the initial spherical element, i.e., a circle
of the radius R at t= 0, as shown in figure 5.1. The point that starts at
x0, y0=

√
R2− x2

0 becomes

x(t)= eS11tx0 ,

y(t)= eS22ty0= eS22t
√

R2− x2
0= eS22t

√
R2− x2(t)e−2S11t ,

x2(t)e−2S11t + y2(t)e−2S22t =R2. (5.15)
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t
exp (Sxxt)

exp (Syyt)

figure 5.1. Deformation of a phase-space
element by a permanent strain.

The equation (5.15) describes how the initial circle turns into the ellipse
whose eccentricity increases exponentially with the rate |S11− S22|. In a
multidimensional space, any sphere of initial conditions turns into the ellip-
soid defined by

6N∑
i=1

x2
i (0)=

6N∑
i=1

x2
i (t)e

−2Sit = const.

If our uncertainty about the initial state is confined within a sphere, then
the uncertainty about the evolved state is within the ellipsoid. As the system
moves in the phase space, both the strain values and the orientation of the
principal directions change so that an expanding direction may turn into a
contracting one and vice versa. Since we do not want to go into the details of
dynamics, we consider such evolution as a kind of random process. The ques-
tion is whether averaging over all values and orientations gives a zero net sepa-
ration of trajectories. It may seem counterintuitive, but exponential stretching
generally persists on average, and the majority of trajectories separate. There
are two ways to understand that: one in space and another in time.1

Let us first go with the flow and see the separation of trajectories with time.
Denote the rate of separation along a given direction as�i(t)=

∫ t
0 Si(t′)dt′/t.

Even when the time average is zero, limt→∞
∫ t

0 Si(t′)dt′ = 0, its average expo-
nent is larger than unity (and generally grows with time):

〈
ri(t)
ri(0)

〉
= lim

T→∞
1
T

∫ T

0
dte�i(t)≥ 1. (5.16)

This is because the time intervals with positive �(t) contribute more to the
exponent than the intervals with negative �(t). That follows from the con-
vexity of the exponential function. In the simplest case, when� is uniformly
distributed over the interval −a<�< a, the average � is zero, while the
average exponent exceeds unity: (1/2a)

∫ −a
a e�d�= (ea− e−a)/2a> 1.

1. “Time and space are modes by which we think and not conditions in which we live”
(A. Einstein).
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y y

x

x

y(T )

ϕ0

x(0)

y(0)

x(T )

figure 5.2. Left: Streamlines of a saddle-point flow. Right:
Motion down a streamline. For ϕ=ϕ0= arccos[1+ exp
(2λT)]−1/2>π/4, the initial and final points are symmetric
relative to the diagonal: x(0)= y(T) and y(0)= x(T). If
ϕ <ϕ0 (majority of starting points), the distance from the
origin increases.

From a spatial perspective, let us look at figure 5.2, presenting the simplest
case of a pure strain, which corresponds to an incompressible saddle-point
flow in a plane: vx= λx, vy=−λy. We are in the reference frame of the trajec-
tory corresponding to the center, so that r= (x, y) represents the separation
between that trajectory and one nearby. Two-dimensional phase-space flow is
of great illustrative value, all the more because the Liouville theorem is true
in every pi− qi plane projection. Here we have one expanding direction and
one contracting direction, their rates being equal. The evolution of the vector
components satisfies the equations ẋ= vx and ẏ= vy. The solutions, x(t)=
x0 exp(λt) and y(t)= y0 exp(−λt)= x0y0/x(t), show that every trajectory is
a hyperbole. Whether the separation vector is stretched or contracted after
some time T depends on its orientation and on T. The vector r= (x, y) can
initially have any angle ϕ with the x axis. After time T, the length is multi-
plied by [cos2 ϕ exp(2λT)+ sin2 ϕ exp(−2λT)]1/2. The vector is stretched
if cosϕ≥ [1+ exp(2λT)]−1/2 < 1/

√
2, i.e., the fraction of stretched direc-

tions is larger than half. When all orientations are equally probable along the
motion, the net effect is stretching, increasing with the persistence time T.

The net stretching and separation of trajectories is formally proved in math-
ematics by considering a random strain matrix σ̂ (t) and the transfer matrix
Ŵ defined by r(t)= Ŵ(t, t1)r(t1). It satisfies the equation dŴ/dt= σ̂ Ŵ . The
Liouville theorem tr σ̂ = 0 means that det Ŵ = 1. The modulus r(t) of the
separation vector may be expressed via the positive symmetric matrix Ŵ TŴ .
The main result (Furstenberg and Kesten 1960; Oseledec 1968) states that
in almost every realization σ̂ (t), the matrix 1

t ln Ŵ T(t, 0)Ŵ(t, 0) tends to a
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finite limit as t→∞. In particular, its eigenvectors tend to d fixed orthonormal
eigenvectors fi. Geometrically, that means that an initial sphere evolves into an
elongated ellipsoid over time. The limiting eigenvalues

λi= lim
t→∞ t−1 ln |Ŵfi| (5.17)

define the so-called Lyapunov exponents, which can be thought of as the mean
stretching rates. The sum of the exponents is the mean volume growth rate,
which is zero due to the Liouville theorem. As long as there is no special degen-
eracy, which makes all the exponents identically zero, at least one positive
exponent gives stretching. Therefore, as time increases, the ellipsoid becomes
more and more elongated, and it is less and less likely that the hierarchy of the
ellipsoid axes will change.

The mathematical lesson to learn is that by multiplying N random matrices
with a unit determinant (recall that the determinant is the product of eigen-
values), one generally gets some eigenvalues growing and some decreasing
exponentially with N. It is also worth remembering that there is always a prob-
ability for two trajectories to come closer in a random flow. That probability
decreases with time, but it is finite for any finite time. In other words, the
majority of trajectories separate, but some approach. The separating ones pro-
vide for the exponential growth of positive moments of the distance: E(a)=
limt→∞ t−1 ln [〈ra(t)/ra(0)〉]> 0 for a> 0. However, approaching trajecto-
ries have r(t) decreasing, guaranteeing that the moments with sufficiently
negative a also grow. We mention without proof that E(a) is a concave func-
tion that passes through zero, E(0)= 0. It must then have another zero, which
can be shown to be a=−d for isotropic random flow in d-dimensional space.

The probability of finding a ball turning into an exponentially stretching
ellipse thus goes to unity as time increases. The physical reason for this is that
substantial deformation appears sooner or later. To reverse it, one needs to
contract the long axis of the ellipse. The direction of contraction then must be
inside the narrow angle defined by the ellipse eccentricity, which is less likely
than being outside the angle:

To transform ellipse to circle, 
contracting direction

must be within the angle.

This is similar to the argument about the irreversibility of the Boltzmann equa-
tion in the previous section. Randomly oriented deformations continue to
increase the eccentricity on average.
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t = –T

q q q

p p p

t = +Tt = 0

figure 5.3. Increase of the phase volume upon stretching-
contraction and coarse-graining. The central panel shows the initial
state and the velocity field.

Armed with the understanding of exponential stretching, we now return
to the dynamical foundation of the second law of thermodynamics. Our finite
resolution does not allow us to distinguish between the states within some
square in the phase space. That square is our “grain” in coarse-graining. In
figure 5.3, one can see how such a black square of initial conditions (at the cen-
tral panel) is stretched in one (unstable) direction and contracted in another
(stable) direction so that it turns into a long, narrow strip (left and right pan-
els). Later in time, our resolution is still restricted—the rectangles in the right
panel show finite resolution (this is coarse-graining). Viewed with such res-
olution, our set of points occupies a larger phase volume at t=±T than at
t= 0. A larger phase volume corresponds to larger entropy.

The time reversibility of any trajectory does not contradict the time-
irreversible filling of the space by the set of trajectories considered with a
finite resolution. By reversing time, we exchange stable and unstable directions
(i.e., those of contraction and expansion), but the fact of space filling persists.
We see from figure 5.3 that the volume and entropy increase both forward and
backward in time. And yet our consideration does provide for a time arrow: if
we observe an evolution that produces a narrow strip, then its time reversal
is the contraction into a ball; but if we consider a narrow strip as an initial
condition, it is unlikely to observe a contraction because of the narrow angle
mentioned above. Therefore, being shown two (sufficiently long) movies, one
with stretching into a strip and another with contraction into a ball, we con-
clude that with probability close (but not exactly equal!) to unity, the first
movie shows the true sequence of events from the past to the future.

When the possible occupied region expands, the entropy grows as the log-
arithms of the volume. If initially our system is within the phase-space volume
v0, then its density is ρ0= 1/v0 inside and zero outside. After stretching to
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some larger volume eλtv0, the entropy S=− ∫ ρ ln ρdx has increased by λt.
If there are k stretching and d− k contracting directions in a d-dimensional
space, then contractions eventually stabilize at the resolution scale while
expansions continue. Therefore, the long-term entropy growth rate is deter-
mined by the sum of the positive Lyapunov exponents, λ=∑k

i=1 λi.
Let us briefly discuss our flow from the information perspective. Consider

an ensemble of systems having close initial positions within our finite resolu-
tion. In a flow with positive Lyapunov exponents, we lose our ability to predict
where it goes with time. This loss of information is determined by the growth
of the available phase volume, that is, of the entropy. But we can look back-
ward in time and ask where the points come from. If we consider two points
along a stretching direction, we can with confidence predict that they were
closer before. During some time in the past, they were hidden inside the reso-
lution circle, but they separate with time beyond the resolution and can now
be distinguished:

As time proceeds, we learn more and more about the initial locations of
the points. The acquisition rate of such information about the past is again
the sum of the positive Lyapunov exponents and is called the Kolmogorov-
Sinai entropy. As time lag from the present moment increases, we can say less
and less where we shall be and more and more where we came from. It illus-
trates Kierkegaard’s remark that the irony of life is that it is lived forward but
understood backward.

After the strip length reaches the scale of the velocity change (when one
already cannot approximate the phase-space flow by a linear profile σ̂ r), the
strip starts to fold because rotation (which we can neglect for a ball but not
for a long strip) is different at different parts of the strip. Still, however long
and folded, the strip continues the exponential stretching locally. Eventually,
one can find the points from the initial ball everywhere, which means that the
flow is mixing, or ergodic. A formal definition is that the flow is called ergodic
in the domain if the trajectory of almost every point (except possibly a set of
zero volume) passes arbitrarily close to every other point. An equivalent def-
inition is that there are no finite-volume subsets of the domain invariant with
respect to the flow except the domain itself. Ergodic flow on an energy surface
in the phase space provides for a microcanonical distribution (i.e., constant)
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since time averages are equivalent to the average over the surface. While we can
prove ergodicity only for relatively simple systems, like the gas of hard spheres,
we believe that it holds for most systems of a sufficiently general nature. (That
vague notion can be made more precise by saying that the qualitative behavior
is insensitive to small variations of the system’s microscopic parameters.)

One can think of Hamiltonian dynamics as a phase space mapped onto
itself. Section A.8 describes a toy model of such a map, which is of great
illustrative value for the applications of chaos theory to statistical mechanics.

Two concluding remarks are in order. First, the notion of an exponential
separation of trajectories put an end to the old dream of Laplace to be able
to predict the future if only all coordinates and momenta are given. Even if
we were able to measure all relevant phase-space initial data, we could do it
only with a finite precision ε. However small the indeterminacy in the data,
it is amplified exponentially with time so that eventually ε exp(λT) is large,
and we cannot predict the outcome. Mathematically speaking, limits ε→ 0
and T→∞ do not commute. Second, the above arguments do not use the
usual mantra of the thermodynamic limit, which means that even the systems
with a small number of degrees of freedom need statistics for their description
at long times if their dynamics have a positive Lyapunov exponent (which is
generic). This is sometimes called dynamical chaos.

A common lesson from the last two sections is that full knowledge persists
while partial knowledge dissipates. If you know everything, this knowledge
stays with you (the Liouville theorem). But if your knowledge is incomplete—
either because you study only part of your degrees of freedom (Boltzmann)
or because of finite precision (coarse-graining)—then your degree of uncer-
tainty generally increases with time.

5.4 Entropy Decrease and

Nonequilibrium Fractal Measures

As we have seen in the previous section, if we have indeterminacy in the data
or consider an ensemble of systems, then an incompressible flow of Hamil-
tonian dynamics effectively mixes and makes the distribution uniform in the
phase space. Evolution is Hamiltonian for isolated systems, which conserve
their integrals of motion so that the distribution is uniform over the respective
surfaces of constant integrals. In particular, dynamical chaos justifies micro-
canonical distribution, uniform over the energy surface.
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To diminish entropy, one needs to act. Let us now consider systems that are
not isolated; the dynamics are non-Hamiltonian, and the Liouville theorem is
invalid. The flow in the phase space is then generally compressible. The sim-
plest nonconservative effect is a dissipation of kinetic energy, which shrinks all
momenta and thus decreases the phase volume. We are interested, however, in
a nonequilibrium steady state where we keep the total energy nondecreasing.
For example, to compensate for the loss of momentum of particles with dis-
sipation rates γi, we act on them by external forces fi, so that the equations of
motion take the form (4.7)

ṗi= fi− γipi− ∂H
∂qi

, q̇i= ∂H
∂pi
⇒ div v=

∑
i

(
∂ fi

∂pi
− γi

)
.

When the system is in a thermostat, the forces fi are due to random kicks,
which are short-correlated compared to times of order γ−1

i . Such forces are
in detailed balance with the dissipation: after averaging over the short correla-
tion time, 〈∂ fi/∂pi〉= γi for every i, so that div v≡ 0. For an example, see the
consideration of a Brownian particle in section A.10, particularly (A.27).

Let us consider now a generic environment, where there is no detailed bal-
ance and the forces are correlated so that div v �= 0 during finite intervals. The
whole phase volume does not change, that is, the volume integral of the local
expansion rate is zero at every moment:

∫
div v dr= 0. Such phase-space flows

create quite different distributions since the probability density changes along
a flow: dρ/dt=−ρdiv v. For a nonuniform density, the entropy is not the
(Boltzmann) log of the phase volume but the (Gibbs) mean log of the inverse
density, S(t)=−〈ln ρ〉=− ∫ ρ(r, t) ln ρ(r, t) dr. The entropy production
rate equals the mean local expansion rate:

dS
dt
=
∫
ρ(r, t)div v(r, t) dr=〈div v〉. (5.18)

Even though
∫

div v dr= 0, (5.18) is nonzero because of correlations between
ρ and div v. Indeed, ρ is on average smaller in the expanding regions where
div v> 0. That means that (5.18) is nonpositive and the entropy decreases.
Maximal entropy corresponds to a uniform distribution. The decrease in
entropy, keeping normalization

∫
ρ(r, t) dr= 1, means (by convexity) that

the distribution is becoming more and more nonuniform in the phase space.
Let us now switch focus from space to time and consider the density of an

arbitrary fluid element with the coordinate r(t), which satisfies dr/dt= v and
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r(0)= r0. The density then evolves along the flow as follows:

ρ
(
r(t), t

)
ρ(r0, 0)

= exp
[
−
∫ t

0
div v(r(t′), t′) dt′

]
= eC(t). (5.19)

If the expansion rate in the flow reference frame, s(t)= div v(r(t), t),
is a random function with a finite correlation time τ , then its integral
C= ∫ t

0 s(t′) dt′ at t/τ =N� 1 can be broken into a sum of many uncorre-
lated random numbers with a zero mean and some variance �. According
to the central limit theorem (see section A.2), the statistics of such a sum
are Gaussian with a zero mean and the variance linearly growing with time:
P(C)∝ e−C2/2�N . We then obtain for the average over all possible trajecto-
ries exp(C)= ∫ P(C)eCdC∝ eN�/2. Therefore, for a generic random flow,
the density of most fluid elements must grow nonstop as they move. The rea-
son is again the concavity of the exponential function, as in (5.16): if the mean
is zero, the mean exponent generally exceeds unity.

Since the total measure is conserved, the growth of density in some places
must be compensated by a decrease in other places so that the distribution
becomes more and more nonuniform, which decreases the entropy. Look-
ing at the phase space, one sees it more and more emptied, with the density
concentrated asymptotically in time on a small subset. That is the oppo-
site of mixing by Hamiltonian incompressible flow. Note how arguing for
the entropy decrease we used the convexity of the logarithm in the spatial
consideration and the concavity of the exponent in the temporal argument.

If the density of any fluid element grows on average, its volume decreases.
The longtime Lagrangian average (along the flow) of the volume change rate,

dS
dt
= div v= lim

t→∞
1
t

∫ t

0
div v(t′) dt′ =

∑
i
λi,

is a sum of the Lyapunov exponents, which is then nonpositive, in con-
trast to from an instantaneous average over space, which is zero at any time:∫

div v dr= 0.
It is important that we allowed for compressibility of a phase-space flow,

v(r, t), but did not require its irreversibility. Even if the system is invariant with
respect to t→−t, v→−v, the entropy production rate is nonnegative and
the sum of the Lyapunov exponents is nonpositive for the same simple reason
that contracting regions have more measure and give higher contributions.
Backward in time, the measure also concentrates, only on a different set.
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figure 5.4. The number of covering squares depends on their size:
N(1/2)= 4, N(1/4)= 12, N(1/8)= 30.

Let us show that in a spatially smooth random compressible flow the den-
sity could concentrate on a very nonsmooth set having dimensionality less
than that of the full phase space. The dimensionality could even be noninteger,
which corresponds to a fractal set. One defines the (box-counting) dimension
of a set as follows:

df = lim
ε→0

ln N(ε)
ln(L/ε)

. (5.20)

Here N(ε) is the number of boxes of side ε needed to cover the set of the size
L (see figure 5.4).

Consider a two-dimensional phase-space flow with one positive and one
negative Lyapunov exponent, λ+ and λ−. After time t, a square having ini-
tial side δ� L will be stretched into a long, thin strip of length δ exp(tλ+)
and width δ exp(tλ−). To cover the contracting direction, we choose
ε= δ exp(tλ−), then N(ε)= exp[t(λ+ − λ−)], so that the dimension is

df = 1+ λ+
|λ−| . (5.21)

Since |λ−|≥ λ+, the dimension is between 1 and 2. The set is smooth in the
expanding direction and fractal in the contracting direction, giving two terms
in (5.21). How density concentrates on a fractal set in a random compressible
flow is illustrated by a toy model presented in section A.8.

The general (Kaplan-Yorke) conjecture is that df = j+∑j
i=1 λi/λj+1, where j

is the largest number for which
∑j

i=1 λi≥ 0 and
∑j+1

i=1 λi < 0. For incompress-
ible flows, j= d.

—-1

—0

—+1



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 17:47 — page 112 — #20
�

�

�

�

�

�

112 c h a p t e r 5

Fractalization of the measure proceeds until the coarse-graining stops it.
In contrast to from the incompressible flow, coarse-graining at a small scale
ε does not make the distribution uniform, but it makes the entropy finite:
S= ln N(ε)= df ln(L/ε). An equilibrium uniform (microcanonical) distri-
bution in d-dimensional phase space has the entropy S0= d ln(L/ε); a
nonequilibrium steady state generally has a lower dimensionality, df < d, with
a lower entropy.

We thus see that, for smooth dynamical systems, both temporal and spa-
tial properties of the entropy are determined by the Lyapunov exponents.
Entropy dependence on time (both forward and backward) is governed by
the Kolmogorov-Sinai entropy, which is the sum of the positive Lyapunov
exponents. The dimensionality determines entropy dependence on spatial
resolution.

Let us appreciate the dramatic difference between the entropy growth
described in section 5.3 and the entropy decay described in the present
section (see also section A.8 for examples of both). In the former, phase-space
flows were area-preserving and the volume growth of an element was due
to a finite resolution, which stabilized the size in the contracting direction
so that the mean volume growth rate was solely due to stretching direc-
tions and thus equal to the sum of the positive Lyapunov exponents, as
described in section 5.3. On the contrary, the present section deals with com-
pressible flows. The relation between compressibility and nonequilibrium
is natural: to make a system non-Hamiltonian, one needs to pump energy
into some degrees of freedom and absorb it from other degrees of freedom
to keep a steady state, which corresponds to expansion and contraction of
the momentum part of the phase space. That decreases entropy by creating
more inhomogeneous distributions. The mean rate of the entropy decay is
the sum of all the Lyapunov exponents, which is nonpositive since contract-
ing regions contain more trajectories and contribute more than expanding
regions. Long time net contraction of a fluid element and respective entropy
decay is the analog of the second law of thermodynamics: to deviate a system
from equilibrium, one needs to lower its entropy until the resolution limit is
reached.

This is a good time to reflect on the complementarity of determinism and
randomness expressed in terms “statistical mechanics” (nineteenth century)
and “dynamical chaos” (twentieth century). What shall we have in the twenty-
first century: predictable uncertainty, multiversion reality?-1—
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5.5 Renormalization Group and the Art of Forgetting

Erase the features Chance installed, and you will see the world’s great beauty.

—a le xa nder blok

Erase the features Chance installed. Watch by chance do not rub a hole.

—vsevolod nekr a sov2

Economics, biology, and physics all deal with what are essentially large-scale,
low-resolution effective theories. Even what were once considered elementary
particles are now described as large-scale excitations of fields whose micro-
scopic behavior is generally unknown (say, at the Planck scale, introduced
in section 6.6). The most fundamental question is which information about
the microscopic properties determines the observable macroscopic behavior,
and which is irrelevant and can be forgotten. We have seen in this chapter
how dynamics naturally lose information. Rather than leave it to Nature, we
ourselves can design the process of forgetting. One such step-by-step process
is called the renormalization group (RG). It eliminates degrees of freedom,
renormalizes remaining ones, and looks for universal features of the statisti-
cal distributions that are invariant with respect to such a procedure. There
is a paradigm shift brought by the renormalization group approach. Instead
of being interested in this or that probability distribution, we are interested
in different RG flows in the space of distributions. Under RG transforma-
tion, whole families (universality classes) of systems described by different
distributions flow to the same fixed point (i.e., have the same asymptotic
distribution).

As with almost everything in this book, the simplest realization of RG sums
independent random numbers, a procedure described in detail in Section A.2.
Let us do it step-by-step, summing pairs at every step. Consider a set of
random independent, identically distributed (iid) variables {x1 . . . xN}, each
having the probability distribution ρ(x) with zero mean and unit variance.
The two-step RG reduces the number of random variables by replacing
any two of them by their sum and rescales the sum to keep the variance:
zi= (x2i−1+ x2i)/

√
2. Since summing doubles the variance, we divide by

√
2.

2. Translated from Russian by A. Shafarenko. —-1
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Each new random variable has the following distribution:

ρ′(z)=
∫

dxdyρ(x)ρ(y)δ
(

z− x+ y√
2

)
. (5.22)

The distribution, which does not change under the procedure, is called a fixed
point (in the space of functions) and satisfies the equation

ρ(x)=√2
∫

dyρ(y)ρ(
√

2x− y).

Since this is a convolution equation, we solve it by the Fourier transform,
ρ(k)= ∫ ρ(x)eikxdx. Multiplying by eikx

√
2 and integrating, we get

ρ(k
√

2)= ρ2(k). (5.23)

The solution of (5.23) isρ0(k)∼ e−k2
andρ0(x)= (2π)−1/2e−x2/2. We thus

have shown that the Gaussian distribution is a fixed point of repetitive sum-
mation and rescaling of random variables, keeping variance fixed. This is not
surprising, since it has a maximal entropy among the distributions with the
same variance.

To turn that into the central limit theorem, we need to show that this distri-
bution is stable, that is, RG flows toward it. For the flow near the fixed point,
we denote ρ= ρ0(1+ h) and linearize the transform in h. The transformed
distribution is then h′(k)= 2h(k/

√
2). The eigenfunctions of the linearized

transform are hm(k)= km with eigenvalues h′m(k)/hm(k)= 21−m/2. We see
that the modes with m= 0, 1 grow, while the mode with m= 2 does not
decay. Fortunately, these three modes are forbidden by the three conserva-
tion laws of the transformation (5.22): the moments

∫
xnρ(x) dx must be

preserved for n= 0 (normalization), n= 1 (zero mean), and n= 2 (unit vari-
ance). The moments of ρ(x) are the derivatives of the generating function
ρ(k) at k= 0:

∫
xnρ(x) dx= dnρ(k)/d(ik)n

k=0. Therefore, the three conser-
vation laws mean that h(0)= dh(0)/dk= d2h(0)/dk2= 0, so only the per-
turbation modes with m> 2 are admissible. All the admissible perturbations
decay upon RG flow, that is, deviations from the fixed point decrease, which
means that the point is an attractor.

To conclude, the RG flow eventually brings us to the distribution with
the maximal entropy, forgetting all the information except the invariants—
normalization, the mean, and the variance.

When we look for limiting distributions in the real world, we often need to
deal not with independent but with strongly correlated random variables. Let
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Rescaling by predictive mind.

us consider the Ising model of interacting spins and describe RG as the pro-
cedure of block spin transformation. The model is mentioned in section 3.1:
random variables are spins, σi=±1. To eliminate small-scale degrees of free-
dom, we divide all the spins into groups (blocks). It is natural to group into
blocks the most strongly correlated spins. In neuron systems (3.3), correla-
tion is not necessarily related to spatial proximity. Here we consider physical
systems where the strongest correlations are with the nearest neighbors. In this
case, there are md spins in every block with the side m (d is space dimension-
ality). We then assign to any block a new variable σ ′, which is ±1 when the
spins in the block are predominantly up or down. We assume that the system
can be described equally well in terms of block spins, with the distribution of
the same form as the original but with renormalized parameters.

Consider first a one-dimensional chain, where the Gibbs distribution is

ρ{σi}=Z−1 exp
(
−K

∑
i
σiσi+1

)
. (5.24)

It has a single parameter, K= 1/T, which will be renormalized. The partition
function Z is easy to compute by summing not over N spins but over the N− 1
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bonds between them. A bond brings either factor eK when two spins have the
same sign or e−K when the signs are different. For a chain with open ends, we
also have two possible values at the ends, which gives

Z(K)=
∑
{σ=±1} exp

[
K
∑

i
σiσi+1

]
= 2(2 cosh K)N−1.

Let us transform ρ{σi} and Z(K) by the procedure (called decimation3)
of eliminating degrees of freedom by ascribing (undemocratically) to every
block of m= 3 spins the value of the central spin. Consider two neighbor-
ing blocks, σ1, σ2, σ3 and σ4, σ5, σ6, and sum over all values of σ3=±1,
σ4=±1, keeping σ ′1= σ2 and σ ′2= σ5 fixed. The respective factors in
the partition function can be written as follows: exp[Kσ3σ4]= cosh K+
σ3σ4 sinh K, which is true for σ3σ4=±1. Denote x= tanh K. Then only the
terms with even powers of σ3 and σ4 contribute the factors in the partition
function that involve these degrees of freedom:
∑
σ3,σ4

eK(σ ′1σ3+σ3σ4+σ4σ
′
2)= cosh3K

∑
σ3,σ4

(1+ xσ ′1σ3)(1+ xσ4σ3)(1+ xσ ′2σ4)

= 4 cosh3 K(1+ x3σ ′1σ ′2)= e−g(K) cosh K′(1+ x′σ ′1σ ′2)= e−g(K)+K′σ ′1σ ′2 .

(5.25)

The expression (5.25) has the form of the Boltzmann factor exp(K′σ ′1σ ′2)
with the renormalized constant K′ = tanh−1(tanh3 K) or x′ = x3—this
formula and g(K)= ln(cosh K′/4 cosh3 K) are called recursion relations.
The partition function of the whole system in the new variables is∑
{σ ′} exp

[
−g(K)N/3+K′

∑
i σ
′
i σ
′
i+1

]
. The term proportional to g(K)

represents the contribution to the free energy of the short-scale degrees of
freedom, which have been averaged out. This term does not affect the statistics
of the remaining variables, which is determined by (5.24) with the renormal-
ization of the constant, K→K′. Let us discuss this renormalization. Since
K∝ 1/T, then T→∞ corresponds to x→ 0+ and T→ 0 to x→ 1−. One
is interested in the values that do not change under the RG, i.e., that rep-
resent a fixed point of this transformation. Both x= 0 and x= 1 are fixed
points of the transformation x→ x3. The first one corresponds to the flat
distribution ρ{σi}=const having equal probabilities for both signs if every
spin is independent of other spins. Such a distribution has a zero mean and

3. The term initially meant putting to death every tenth soldier of a Roman regiment that
ran from a battlefield.
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corresponds to a disordered state. The second fixed point corresponds to the
distribution that is a delta function peaked at either σi= 1 or σi=−1 for all
i. It is an ordered state with nonzero magnetization 〈σi〉.

The first fixed point is stable and the second one is unstable: iterating the
process for 0< x< 1, we see that x approaches zero and effective tempera-
ture infinity. That means that large-scale degrees of freedom are described
by the distribution with the effective temperature so high that the system is
in a disordered (paramagnetic) state. Long-range order is impossible in one-
dimensional systems with short-range interaction because any overturned
spin breaks the correlation between left and right parts. For however small
yet finite temperature, the distance to the next overturned spin is eK , which is
finite so that the system is disordered at larger distances. At this limit, we have
K, K′ → 0 so that the contribution of the small-scale degrees of freedom is
independent of the temperature: g(K)→− ln 4. We see that spatial rescaling
leads to the renormalization of temperature: the spin chain looks hotter when
viewed with less resolution.

What entropic measure monotonically changes along RG to quantify the
irreversibility of forgetting? Eliminating some degrees of freedom decreases
the entropy of the whole system even when RG moves us toward a more dis-
ordered state. Then it is more natural to be interested in the entropy per spin
or in the mutual information between eliminated and remaining degrees of
freedom. These two entropic measures are related. For RG, we can define the
mutual information between two sublattices: eliminated and remaining. The
positivity of the mutual information then implies the monotonic growth of
the entropy per spin, h(K)= limN→∞ S(K, N)/N. Consider, for instance, the
RG eliminating every second spin, N→N/2, and renormalizing tanh K′ =
tanh2 K (such RG has the same flow and the same fixed points). Subtracting
the entropy of the original lattice from the sum of the entropies of two iden-
tical sublattices gives the mutual information: I= 2S(N/2, K′)− S(N, K)=
N[h(K′)− h(K)] ≥ 0. That shows that in 1D the entropy per block spin grows
with the block size upon RG at any distance from the fixed point.

Let us now consider a finite N system that comes close to a fixed point. In a
finite system with short-range correlations, the entropy for large N is generally
as follows:

S(N)= hN+C , I=N[h(K′)− h(K)]+ 2C′ −C. (5.26)

We now have two characteristics, h and C. In a fixed point, the extensive terms
in I cancel and I=C> 0. This is why C is called excess entropy. One can
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explain the positivity of C by saying that a finite system appears more random
than it is since we haven’t seen all the possible correlations.

Mutual information also naturally appears in the description of the informa-
tion flows in the real space. Let us break the 1D N chain into two parts, M and
N−M. The mutual information between two parts of the chain (or between
the past and the future of a message) is as follows: I(M, N−M)= S(M)+
S(N−M)− S(N). Here the extensive parts (linear in M, N) cancel in the limit
N, M→∞. Therefore, such mutual information is equal to C from (5.26).
Note that the past-future mutual information also serves as a measure of the
message complexity (that is, the difficulty of predicting the message).

After these general arguments, let us now compute h and C for the Ising
model. Recall that the entropy is expressed via the partition function as
follows:

S= E− F
T
=T

∂ ln Z
∂T
+ ln Z.

For the 1D Ising chain, Z= 2(2 cosh K)N−1 gives h= ln(2 cosh K)−
K tanh K and C=K tanh K− ln(cosh K). Upon RG flow, these quantities
monotonously change from h(K)≈ 3e−2K , C≈ ln 2 at K→∞ to h(K)≈
ln 2, C→ 0 at K→ 0. One can interpret this by saying that C= ln q, where q is
the degeneracy of the ground state. Indeed, q= 2 at the zero-temperature fixed
point due to two ground states with opposite magnetization, while q= 1 in the
fully disordered state. So this mutual information (and the excess entropy)
measures how much information per one degree of freedom one needs to
specify. (For noninteger q obtained midway through the RG flow, one can
think of it as viewing the system with finite resolution.)

The RG flow is rather trivial in 1D, where RG moves systems toward disor-
der so that K′<K and h(K′)> h(K). In higher dimensions, there could exist
fixed points (limiting distributions) that describe neither a low-temperature
fully ordered state nor a high-temperature fully disordered state, but a critical
state of the phase transition between the two. This is described in section A.9.

Exercise 5.1: RG and the family of universal distributions.
Consider a set of random iid variables x1 . . . xN .

(a) The RG reduces the number of random variables by replacing
any two of them by their mean (half sum):-1—
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zi= (x2i−1+ x2i)/2. Show that the Fourier image of the
distribution ρ(k)= exp(−|k|) is a fixed point of this map.
Study the linear stability of this fixed point. What probability
density does this correspond to? Why doesn’t this contradict
the central limit theorem?

(b) Consider the one-parametric family of the transformations:
zi= (x2i−1+ x2i)/21/μ. Find the fixed point, that is, the
distribution invariant under this transformation.
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Fundamental Limits
of Uncertainty

In our consideration so far, an uncertainty could be arbitrarily small or large.
Physical laws impose restrictions. First, the quantum nature of the world
bounds uncertainty from below, making some information unavailable in
principle. Second, gravity and relativity create regions of space (black holes)
from where no information can escape; surprisingly, this imposes an upper
bound on how much information can be stored in a finite region of space. That
upper bound contains all three fundamental constants known to physics: the
gravitational constant, the speed of light, and the Planck constant.

The first three sections of this chapter are devoted to the implications for
information theory of the quantum nature of our world. That adds some
unavoidable uncertainty, which cannot be diminished by improving measure-
ment precision or gathering more information. Quantum description is in
principle incomplete as it is formulated in physical terms that describe the
possible results of measurements, which are interactions with a classical object
that does not itself obey quantum laws. The unique source of quantum uncer-
tainty issuperposition: a quantum system can be in many different states at
the same time. Measurement chooses one state, which irreversibly changes the
system. This change cannot be made arbitrarily small. The results of quantum
measurement are then truly random (not because we did not bother to learn
more about the system). Accounting for quantum-mechanical uncertainty is
thus of fundamental value for information theory.

Interest in quantum information is also pragmatic. Quantum superposition
means that evolution proceeds in the space of factorially more dimensions
than the classical system. This is a source of the parallelism of quantum-1—
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computations. Moreover, classical systems, including computers, are limited
by locality; that is, operations have only local effects. Spatially separated quan-
tum systems may be entangled with each other so that operations may have
nonlocal effects. Those two basic facts motivate an interest in quantum com-
putations and communications, which is briefly discussed in the fourth and
fifth sections.

The last section of this chapter is devoted to the upper bounds of uncer-
tainty imposed by the existence of black holes, considered as gates out of the
accessible world. We shall see how general relativity and quantum mechanics
conspire to impose some fundamental restrictions on the amount of informa-
tion in the world.

6.1 Quantum Mechanics and Entropy

Not surprisingly, quantum information theory is also based on the notion
of entropy, which is similar to classical entropy yet differs in some impor-
tant ways. Uncertainty and probability already exist in quantum mechanics,
where we consider an isolated system. On top of that, we shall consider quan-
tum statistics due to incomplete knowledge, which is caused by considering
subsystems. Here I give a very brief introduction to the subject, focusing on
information and entropy and their most dramatic differences from the clas-
sical world. Recall that the entropy consideration by Planck is what started
quantum physics in the first place. Looking at two asymptotics of a spectral
curve, he decided to search for an analytic formula matching their entropies,
simply adding them. The resulting formula is the logarithm of the number of
ways to distribute a given energy in equal discrete portions—quantization was
born.

Quantum mechanics mathematically is quite elementary, since it is based
on linear algebra, that is, the study of vectors and linear operations on them. A
quantum state of a physical system is a vector, which contains all the informa-
tion. We denote such (column) vectors either byψi or by the Dirac notation
|i〉. The dual (row) vector then is denoted 〈i| and the inner (scalar) prod-
uct by 〈i|j〉. If in some orthonormal basis {|i〉}, two vectors are presented as
|v〉=∑

i vi |i〉 and |w〉=∑
i wi |i〉, then 〈v|w〉=∑

i v∗i wi. A property that can
be measured is called an observable and is described by a self-adjoint operator
(matrix), say, Ô. The expectation value of an observable in a stateψ is an inner
product 〈ψ | Ô |ψ〉. —-1
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The fundamental statement is that any system can be in a single state, ψi,
or in a superposition of states, ψ =∑

i aiψi, where ai are generally complex
numbers. An example of a single state is a fixed-energy eigenstate of a Hamilto-
nian (which is an operator that is a matrix). The possibility of a superposition
is the total breakdown from classical physics, where those states (say, with
different energies) are mutually exclusive.

There are two things we can do with a quantum state: either let it evolve
without touching or measure it. Measurement is classical; it produces one
and only one state from the initial superposition, and immediately repeated
measurements produce the same outcome. However, repeated measurements
of the identically prepared initial superposition, ψ =∑

i aiψi, find different
states: the state i appears with probability pi= |ai|2.

There is already an uncertainty in any state of an isolated quantum system.
A product of two operators X̂Ẑ defines the result of the successive measure-
ments. If the two observables X and Z can simultaneously have definite values,
then ẐX̂ gives the same result as X̂Ẑ. However, matrices generally do not com-
mute. If the operators are noncommuting, [X̂, Ẑ]= X̂Ẑ− ẐX̂ �= 0, then the
observables cannot simultaneously have definite values since the product of
their variances is restricted from below:

|〈ψ |[X̂, Ẑ]|ψ〉|2= 4|〈ψ |X̂Ẑ|ψ〉|2− |〈ψ |X̂Ẑ+ ẐX̂|ψ〉|2

≤ 4|〈ψ |X̂Ẑ|ψ〉|2≤ 4〈ψ |X̂2|ψ〉〈ψ |Ẑ2|ψ〉. (6.1)

Here the second step is the Cauchy-Bunyakovsky-Schwarz inequality. In par-
ticular, momentum and coordinate are such a pair: X̂= p̂−〈p〉, Ẑ= q̂−〈q〉.
Since the momentum operator in the coordinate representation is p̂x= ı�∂x,
then [p̂x, x]=−ı�, which gives the Heisenberg uncertainty principle: the
variances of the coordinate and the momentum along the same direction,
σp=〈p2〉− 〈p〉2, σq=〈q2〉− 〈q〉2, satisfy the inequality

√
σpσq≥ �/2. (6.2)

That means that we cannot describe quantum states as points in the phase
space (p, q). What we call “quantum entanglement” is ultimately related to
the fact that one cannot localize quantum states in a finite region of the phase
space—if coordinates are fixed somewhere, then the momenta are not.

The variances depend on the state. One can show (see exercise 6.1) that a
Gaussian wave packet corresponds to the minimal product of variances and
turns (6.2) into equality. For the corresponding Gaussian distribution, the
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entropy SG is a logarithm of the variance. Taking the log of the Heisenberg
equality for Gaussian states, we obtain log(2σp/�)+ log(2σq/�)= SG(p)+
SG(q)= 0, recasting it as a relation on the (differential) entropies of the
Gaussian probability distributions of the momentum and the coordinate. It
turns into an inequality for arbitrary distributions. In d dimensions, different
components commute, so that√σpσq≥ d�/2 and

S(p)+ S(q)≥ log d. (6.3)

More formally, if two matrices do not commute, they cannot be diagonalized
by a single orthonormal set. Assume that two noncommuting matrices X̂ and
Ẑ can be respectively diagonalized by (projected onto) two different orthonor-
mal bases, {|x〉}, {|z〉}. If we measure a quantum stateψ by projecting onto the
x basis, the outcomes define a classical probability distribution p(x). The Shan-
non entropy S(X) quantifies how uncertain we are about the outcome before
we perform the measurement. There is also a corresponding classical probabil-
ity distribution of outcomes when we measure the same stateψ in the z basis.
The two bases are incompatible, so there is a trade-off between our uncertainty
about X and about Z, captured by the inequality

S(X)+ S(Z)≥ log(1/c), c=max
x,z
|〈x|z〉|2. (6.4)

We see that the lower bound on the total uncertainty is given by the maxi-
mum overlap between any two eigenvectors, that is, by the degree of mutual
nonorthogonality of the two bases. We prove a more general form of that
relation in the next subsection.

Two different bases, {|x〉}, {|z〉}, for a d-dimensional space are called mutu-
ally unbiased if |〈xi|zk〉|2= 1/d for all i, k. That means that if we measure any
x-basis state in the z basis, all d outcomes are equally probable and give the
same contribution to the total probability:

∑
k |〈xi|zk〉|2=∑

i |〈xi|zk〉|2= 1.
For measurements in two mutually unbiased bases performed on a pure state,
the entropic uncertainty relation becomes

S(X)+ S(Z)≥ log d. (6.5)

This inequality is saturated by x-basis states, for which S(X)= 0 and S(Z)=
log d. In one dimension, log d= 0.

Note that the right-hand sides of (6.2, 6.3, 6.4, 6.5) are fixed lower bounds,
in contrast to that of (6.1), which generally depends on the stateψ and is thus
not universal.

Qubit So far, we have dealt with the statistics of the measurement outcomes,
and the entropy has been the familiar classical Gibbs-Shannon entropy. Let
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us now deal with the states of quantum systems rather than with the mea-
surements. We have defined a classical “bit” as a unit of information choosing
between two states, so we can also call a bit a physical system, where we dis-
tinguish two states only. This could be a coin, a magnetic moment looking
along or against an applied field, a photon with two polarizations, etc. Simi-
larly, we define a qubit as a quantum system having only two orthogonal states:
|0〉 and |1〉. The most general state of a qubit A is a superposition of two states,
ψA= a |0〉+ b |1〉, where any observable is as follows:

〈ψA|ÔA|ψA〉= |a|2〈0|ÔA|0〉+ |b|2〈1|ÔA|1〉+ (a∗b+ ab∗)〈0|ÔA|1〉.
(6.6)

Normalization requires |a|2+ |b|2= 1, and if the overall phase does not mat-
ter, then a qubit is characterized by two real numbers—say, the amplitude |a|
and the relative phase between a and b. Alternatively, we may characterize it by
a complex number. The qubit represents the unit of quantum information the
same way the bit represents the unit of classical information. Apparently, quan-
tum systems operate with much more information—one needs many bits to
record a complex number with reasonable precision, and the difference grows
exponentially when we compare the states of N classical bits with the possible
states of N qubits. Moreover, a qubit is not a classical bit because it can be in
a superposition; nor can it be considered a random ensemble of classical bits
with the probability |a|2 in the state |0〉, because the phase difference of the
complex numbers a, b matter, as seen from (6.6).

And yet quantum mechanics tells us that we cannot measure the com-
plex numbers a, b, that is, we cannot determine the quantum state of the
qubit. This is in sharp contrast with our ability to determine the state of a
bit (say, when a classical computer retrieves memory). Measurements of a
qubit bring either the result |0〉 with the probability |a|2 or the result |1〉
with the probability |b|2= 1− |a|2. In other words, a quantum coin can
defy gravity and stand on its edge at an arbitrary angle, but any measure-
ment collapses it on one side, either heads or tails up. What use then in
quantifying the quantum information if we cannot measure it? One should
not despair, though. While we cannot measure it directly, we can communi-
cate it. Moreover, we describe below indirect ways to manipulate a quantum
system so that a measurement gives a result, which depends distinctly on
the state of the system. These ways involve entanglement between different
subsystems.-1—
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Exercise 6.1: Least uncertain wave packet.
Proceeding from the fact that the momentum operator in the coordi-

nate representation is p̂x= ı�∂x, find the stateψ(x) that minimizes the
expectation of the product of variances of the coordinate and momen-
tum, 〈ψ |[p̂, x̂]|ψ〉. What is the correspondingψ(p)?

6.2 Quantum Statistics and the Density Matrix

To consider subsystems, we need to pass from quantum mechanics to quan-
tum statistics and introduce the fundamental notion of the density matrix.
Consider a composite system AB, which is in a state ψAB. If states of A are
characterized by N vectors and of B by M vectors, we need to characterize AB
by MN vector. We can make such a vector by the so-called tensor product,1

multiplying every component of one vector state of A by every component of
one of B: ψAB=ψA⊗ψB. This corresponds to independent subsystems. In
this case, any operator ÔA acting only on A has the expectation value (Î is the
identity operator)

〈ψAB|ÔA⊗ ÎB|ψAB〉= 〈ψA|ÔA|ψA〉〈ψB|ÎB|ψB〉= 〈ψA|ÔA|ψA〉,
so that one can forget about B and characterize A by the vectorψA, as expected
for independent systems. However, a general stateψAB is not a single (tensor)
product of A and B states. For example, if A and B are qubits, then a gen-
eral state of a two-qubit system is a superposition, a |00〉+ b |11〉+ c |01〉+
d |10〉. When ab �= cd, such a superposition cannot be presented as a single
tensor product:

(α |0〉A+β |1〉A)⊗ (α′ |0〉B+β ′ |1〉B)
=αα′ |00〉+ββ ′ |11〉+αβ ′ |01〉+α′β |10〉 .

For arbitrary orthonormal bases, φi
A and φj

B, one may generally expect a
double sum, ψAB=∑

ij αijφ
i
A⊗φj

B. Fortunately, a so-called singular value
decomposition allows one to represent the matrix of the coefficients as αij=
uikdkkvkj, where û, v̂ are unitary and d̂ is diagonal. We then defineψk

A= ukiφ
i
A

and ψk
B= vjkφ

j
B. This is called Schmidt decomposition by orthonormal vec-

torsψk
A,ψk

B, which allows us to present any state of AB as a single sum of the

1. For example, (a, b)⊗ (c, d, e)= (ac, ad, ae, bc, bd, be). —-1
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products: for each vector from A, there is just one vector from B:

ψAB=
∑

k

√
pkψ

k
A⊗ψk

B. (6.7)

If there is more than one term in this sum, we call subsystems A and B
entangled. There is no factorization of the dependencies in such a state. We
can always makeψAB a unit vector so that

∑
i pi= 1, and these numbers can

be treated as probabilities (to be in the state i). Now the operator acting only
on A has the following expectation value:

〈ψAB|ÔA⊗ ÎB|ψAB〉=
∑

i,j

√pipj〈ψ i
A|ÔA|ψ j

A〉〈ψ i
B|ÎB|ψ j

B〉

=
∑

i,j

√pipj〈ψ i
A|ÔA|ψ j

A〉δij=
∑

i
pi〈ψ i

A|ÔA|ψ i
A〉=TrAρAÔA,

where we define the density matrix as

ρA=
∑

i
pi|ψ i

A〉〈ψ i
A|. (6.8)

Tr denotes the trace, which is the sum of the diagonal elements of a (square)
matrix. The density matrix is all we need to describe A. From now on, we shall
distinguish pure states described by a vector and mixed states described by a
density matrix. The matrix is Hermitian; it has all nonnegative eigenvalues and
a unit trace. Every matrix with those properties can be “purified,” that is, pre-
sented (nonuniquely) as a density matrix of the subsystem A in the extended
system AB, which as a whole is in a pure state,ψAB. The possibility of purifi-
cations is quantum mechanical with no classical analog: the classical analog of
a density matrix is a probability distribution, which cannot be purified.

The statistical density matrix describes a mixed state or, in other words,
an ensemble of states. Different ensembles can give the same density matrix;
see exercise 6.2. A mixed state described by a matrix must be distin-
guished from a quantum-mechanical superposition described by a vector.
The superposition is in both states simultaneously; the ensemble is in per-
haps one or perhaps the other, characterized by probabilities—that uncer-
tainty appears because we do not have any information on the state of the B
subsystem.

We characterize the uncertainty in classical physics by a probability vec-
tor {pi} and in quantum mechanics by a state vectorψi. In quantum statistics,
we need a matrix, generally nondiagonal, whose ij element quantifies how the
states i and j of A are correlated via all possible states of B.

-1—
0—
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Example 6.1: Consider a pure entangled quantum state of a two-qubit
system A, B:2

ψAB= a |00〉+ b |11〉 . (6.9)

One can predict one qubit by knowing another. Any operator acting on
A gives

〈ψAB|ÔA⊗ ÎB|ψAB〉= (a∗〈00| + b∗〈11|)ÔA⊗ ÎB|(a|00〉+ b|11〉)
= |a|2〈0|ÔA|0〉+ |b|2〈1|ÔA|1〉. (6.10)

That corresponds to a diagonal density matrix:

ρA=TrB
(|a|2 |00〉 〈00| + |b|2 |11〉 〈11| + a∗b |00〉

〈11| + ab∗ |11〉 〈00|)

= |a|2 |0〉 〈0| + |b|2 |1〉 〈1| =
[|a|2 0

0 |b|2
]

. (6.11)

We can interpret this as saying that the system A is in a mixed state, that
is, with probability |a|2 in the quantum state |0〉 and with probability
|b|2 in the state |1〉. Due to the orthogonality of B states, the same results
(6.10, 6.11) are obtained if 〈0|ÔA|1〉 �= 0 and for whatever relative phase
between a and b, in contrast to (6.6). Being in a superposition is not the
same as being in a mixed state, where the relative phases of the states
|0〉 , |1〉 are experimentally inaccessible.

In 1852, long before Landau and von Neumann introduced the quantum
density matrix (1927), Stokes used an equivalent description for a partially
polarized light. Let us consider the (electric) field in a propagating wave:
E=A(t) exp(ık · r− ıωt). The two-dimensional polarization vector A is per-
pendicular to k. Since the wave has both amplitude and phase, it is described
by a complex vector, like a quantum state. Time dependence A(t) means that
polarization (slowly) changes with time. If one measures the light intensi-
ties (i.e., the quadratic functions of the field), the only nonzero averages over
time windows exceeding 1/ω are Jab= EaE∗b . We then can characterize the
polarization by the Hermitian 2× 2 density matrix with a unit trace: ρab=
Jab/TrĴ. Here uncertainty appears due to finite temporal resolution.

2. An early idea of entanglement was conjured up in the seventeenth century: it was claimed
that if two magnetic needles were magnetized at the same place and time, they would stay “in
sympathy” forever at however large distances, and the motion of one would be reflected on the
other. One con man tried to sell this communication device to Galileo, who didn’t buy it.

—-1
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Exercise 6.2: Density matrix.
Consider two mixed states (ensembles): In the first ensemble A, the

system can be in the state |0〉with the probability 3/4 and in the state |1〉
with the probability 1/4. In the second ensemble B, the system can be in
the state |a〉=√3/4 |0〉+√1/4 |1〉 and in the state |b〉=√3/4 |1〉−√

1/4 |0〉with equal probability.

(a) Write the density matrices for these two ensembles in the basis
|0〉 , |1〉.

(b) Consider two sets of normalized vectors, |ψi〉 and
∣∣φj

〉
, and two

probability distributions, pi and qj. The sets are related by√pi |ψi〉=∑
j uij
√qj

∣∣φj
〉
, where the matrix is unitary:∑

i uiju∗ik= δjk. Find the relation between two density matrices,
ρ1=∑

i pi |ψi〉 〈ψi| and ρ2=∑
j qj

∣∣φj
〉 〈
φj

∣∣.

6.3 Entanglement Entropy

One can ascribe to any density matrix ρA the entropy by the formula analo-
gous to the Gibbs-Shannon entropy of a probability distribution (von Neu-
mann 1927, 1932):

S(ρA)=−Tr ρA log ρA. (6.12)

Since we are dealing with diagonalizable matrices, a logarithm (or any other
function) of the matrix is defined for a diagonal matrix: if ρ=∑

k pk |k〉 〈k|,
then log ρ=∑

k log(pk) |k〉 〈k|. To avoid confusion, we always use Greek
letters for the argument of von Neumann entropy and Latin letters for the
argument of Shannon entropy.

The von Neumann entropy quantifies the type of uncertainty, which exists
only in a quantum world and is related to the principal restriction of measure-
ments to a finite volume. The classical entropy is the logarithm of the number
of microstates compatible with the given macroscopic state. The quantum
entropy S(ρA) is, roughly speaking, the logarithm of the number of states of
the inaccessible part B of the universe compatible with all measurements of A,
together with a priori knowledge that A+B is in a pure state.

Evidently, S(ρA) is invariant under a unitary transformation, ρA→
UρAU−1, which is an analog of the Liouville theorem on the conservation
of distribution by Hamiltonian evolution. Just like the classical entropy, it is
nonnegative, equals to zero only for a pure state, and reaches its maximum
log d for equipartition (when all d nonzero eigenvalues are equal), that is,

-1—
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it satisfies concavity (2.7). What does not have a classical analog is that the
purifying system B has the same entropy as A (since the same pi appears in
its density matrix). Moreover, von Neumann entropy of a part S(ρA) can be
larger than that of the whole system S(ρAB). When AB is pure, S(ρAB)= 0,
but S(ρA) could be nonzero (Landau 1927). Information can be encoded in
the correlations among the parts, yet be invisible when we look at one part of
a quantum system. That purely quantum correlation between different parts
is called entanglement, and the von Neumann entropy of a subsystem of pure
state is called entanglement entropy.

Classically, we measure the nonlocality of information encoding by the mutual
information I(A, B)= S(A)+ S(B)− S(A, B), which never exceeds the sum of
two entropies. Quantum I is nonnegative like classical, but generally is differ-
ent. The nonlocality of information encoding is raised to a whole new level in
the quantum world. For example, when AB is in an entangled pure state, then
S(ρAB)= 0 so that A and B together are perfectly correlated, but separately
each one is in a mixed state with S(ρA)= S(ρB)> 0. Classically, the mutual
information of perfectly correlated quantities is equal to each of their entropies,
but quantum mutual information is their sum that is twice more: I(ρAB)=
S(ρA)+ S(ρB)− S(ρAB)= 2S(ρA). Quantum correlations are stronger than
classical.

The von Neumann entropy of a density matrix is the Shannon entropy
S(p)=−∑

i pi log pi of its vector of eigenvalues, which is the probability
distribution {pi} of its orthonormal eigenstates. In particular, for ψAB=
a |00〉+ b |11〉, we have S(ρA)=−|a|2 log2 |a|2− |b|2 log2 |b|2. The maxi-
mum S(ρA)= 1 is reached when |a|2= |b|2= 1/2, which is called a state of
maximal entanglement. In this case, when we trace out B (or A), we wipe out
the information about the whole: any measurement on A or B cannot tell us
anything about the state of the pair since both outcomes are equally probable.
On the contrary, when either b→ 0 or a→ 1, the entropy S(ρA) goes to zero,
and measurements (of either A or B) give us definite information on the state
of the pair.

The original von Neumann argument involved a mixing process. Consi-
der a gas of molecules, where pN are in a pure state |a〉 and (1− p)N are
in an orthogonal state |b〉. This is described by the power N of the density
matrix ρ= p |a〉 〈a| + (1− p) |b〉 〈b|. Orthogonality of the states means that
a molecules can be separated from b molecules, for instance, by a wall perme-
able only for one state. We then double our volume and move a, b walls from

—-1
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opposite ends to the center to separate the molecules completely. The den-
sities in the respective halves are different: their ratio is p/(1− p). We now
squeeze one half by the factor p and the other by (1− p), making the densi-
ties equal and returning the whole volume to the original value. We can now
transform a states into b states by some unitary transformation, say, by tempo-
ral evolution. Here the quantum nature shows up. After that, we remove the
partition and obtain a zero-entropy state. Since the squeezing at a constant
temperature T releases the heat −T[p log p+ (1− p) log(1− p)]=TS(p),
which decreases the entropy by S(p), it is the mixing entropy of the original
mixture.

Let ρ=∑
k pk|ψk〉〈ψk| be diagonal in the basis of eigenvectors {|ψk〉},

but we measure by projecting ρ on a different orthogonal set {|φi〉}. In
this case, the outcome i happens with the probability qi=〈φi|ρ|φi〉=∑

k pkDik, where Dik= |〈φi|ψk〉|2 is a so-called double stochastic matrix, that
is,

∑
i Dik=∑

k Dik= 1. The Shannon entropy of that probability distribu-
tion is larger than the von Neumann entropy,

S(q)= S(p)+
∑

ik
pkDik log

(∑
n

pnDin/pk

)

= S(p)+D(q|p)≥ S(p)= S(ρ),

that is, such measurements are less predictable. Mathematically, the interpre-
tation is that the diagonal elements (qi) are more random than the eigenvalues
(pk) for a nonnegative Hermitian matrix.

General uncertainty relation If we measure a mixed state ρ by projecting
onto the orthonormal basis {|x〉}, the outcomes define the density matrix
M̂xρ= ρx=∑

x |x〉 〈x|ρ|x〉 〈x|. The measurement operator M̂z projecting
onto another basis {|z〉} defines M̂zρ= ρz=∑

z |z〉 〈z|ρ|z〉 〈z|. Both den-
sity matrices are diagonal so that each von Neumann entropy is equal to the
corresponding Shannon entropy: S(ρx)= S(X) and S(ρz)= S(Z). We now
introduce the relative entropy for density matrices:

D(ρ|ρx)=Tr ρ(log ρ− log ρx)=Tr ρ log ρ

−Tr ρx log ρx= S(X)− S(ρ).

Here we use the property of trace: Tr ρ log ρx=Tr ρx log ρx. As in the classi-
cal case, D is nonnegative and quantifies the number of measurements needed
to distinguish two density matrices. It also possesses the important property
of monotonicity, that is, nonincreases upon any partial trace. This property is
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intuitive, as in the classical case—after all, it should be no easier to distinguish
two density matrices looking only at the subsystem, yet the proof is compli-
cated and we do not give it here. We now use monotonicity of the relative
entropy D(ρ|ρx) under the action of the measurement in the z basis:

D(ρ|ρx)≥D(M̂zρ|M̂zρx)=D(ρz|M̂zρx)=−S(Z)−Tr ρz log M̂zρx.
(6.13)

The new density matrix obtained by two measurements,

M̂zρx= M̂zM̂xρ=
∑

z
|z〉

∑
x
〈z |x〉 〈x|ρ|x〉 〈x| z〉 〈z| ,

is diagonal, so that

log M̂zρx=
∑

z
|z〉 log

(∑
x
〈z |x〉 〈x|ρ|x〉 〈x| z〉

)
〈z| .

The logarithm is a monotonic function:

log

(∑
x
〈z |x〉 〈x|ρ|x〉 〈x| z〉

)
≤ log

(
max

x,z
|〈x|z〉|2

∑
x
〈x|ρ|x〉

)

= log
(

max
x,z
|〈x|z〉|2

)
.

Substituting that into (6.13), we obtain the generalization of the uncertainty
relation for a mixed state:

S(X)+ S(Z)≥ log(1/c)+ S(ρ), c=max
x,z
|〈x|z〉|2.

Both sources of uncertainty in quantum statistics are here: nonorthogonal-
ity of states quantified by c and entanglement quantified by S(ρ). Comparing
that with the uncertainty relations (6.4, 6.5) written for a pure state, we see
that the von Neumann entropy quantifies the increase in uncertainty due to
entanglement with the environment.

Coming to equilibrium When a classical system is attached to a thermostat,
it comes to thermal equilibrium with it, attaining entropy maximum deter-
mined by the temperature of the thermostat. But what if a quantum system is
attached to a large system with which they together form a pure quantum state
with zero entropy? Are thermalization and entropy growth possible for sub-
systems of a quantum system that as a whole remains in a pure quantum state?
Yes, they are! Thermalization takes place for any subsystem of a large system if
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the dynamics are ergodic and can be characterized by the growth of the entan-
glement entropy. Then the system as a whole acts as a thermal reservoir for its
subsystems, provided they are small enough.

Consider a small quantum system that at some moment is attached to a
large system. At this moment, the information is encoded locally, the entan-
glement entropy is zero, and the subsystem is not in equilibrium with the
whole system. As the small subsystem starts interacting with the large system
and approaches equilibrium, the von Neumann entropy grows and reaches
its maximum. Information, which was initially encoded locally in an out-of-
equilibrium state, becomes encoded more and more nonlocally as the system
evolves, eventually becoming invisible to an observer confined to the subsys-
tem. Such thermalization can be quantified by a relative entropy. Denote the
(evolving) density matrix of our subsystem as ρ. If the evolution of the sub-
system, when it is closed, is described by the Hamiltonian H, we can define
the Gibbs density matrix as

ρ0= exp(−βH)
Tr exp(−βH)

=Z−1 exp(−βH). (6.14)

We now define the respective free energies via the energy and the von Neu-
mann entropy:

F(ρ)= E−β−1S(ρ)=Tr ρH+β−1Tr ρ ln ρ=β−1Tr ρ(ln ρ+βH),

F0=β−1Tr ρ0(ln ρ0+βH)=−β−1 ln Z=−β−1 ln Tr exp(−βH).

The relative von Neumann entropy between ρ and ρ0 can be expressed via
the difference in the free energies:

D(ρ|ρ0)=Tr ρ ln ρ−Tr ρ ln ρ0

=Tr ρ(ln ρ+βH)+β−1 ln Tr exp(−βH)=β[F(ρ)− F0] ≥ 0,

(6.15)

where the last inequality follows from the positivity of the relative entropy,
just like in the classical case (2.30). Therefore, the Gibbs state has the lowest
free energy at a given temperature, which is determined by its environment
treated as a thermostat. Unitary evolution of the subsystem and its environ-
ment induces on a subsystem a decrease (by monotonicity) of D(ρ, ρ0),
eventually bringing the subsystem to the Gibbs state.
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Exercise 6.3: Von Neumann entropy.
Consider two nonorthogonal states, |0〉 and the superposition |s〉=

(|0〉− |1〉)/√2, mixed with the respective probabilities p and 1− p.
Find the density matrix ρ in the orthogonal basis |0〉 , |1〉, diagonalize
it, compute the von Neumann entropy S(ρ), and compare it with S(p).

6.4 Quantum Communications

Without going into the specifics of quantum processors and communication
schemes, here we discuss how much information one can transfer by send-
ing (or sharing) quantum objects. Let us first ask, How many bits of classical
information can be recovered from a quantum system? Even though any qubit
potentially contains a complex number, any measurement only gives one or
another state, so that a pure state of a qubit can store one classical bit. The four
orthogonal maximally entangled states of the qubit pair, (|00〉± |11〉)/√2
and (|01〉± |10〉)/√2, can store two bits. Generally, when sending a quantum
system whose state is determined by a d-dimensional complex vector, one can
send at most log d bits of classical information (for instance, by sending one
of the states from d basic vectors).

How this is related to the quantum mutual information can be realized
by looking at a more symmetric variant of the same problem. Let a com-
posite system AB be described by the density matrix ρAB. Alice has access
to A, while Bob has access to B. The results of the measurements belong to
classical information and can be written in the notebooks CA and CB. The
maximal number of bits Alice can get from her measurements about those of
Bob (and vice versa) is the classical mutual information between their note-
books, I(CA, CB). Measurements correspond to tracing out some degrees of
freedom so that monotonicity guarantees that I(CA, CB)≤ I(ρAB)≤ log d,
where I(ρAB)= S(ρA)+ S(ρB)− S(ρAB) is the mutual information of the
initial density matrix ρAB.

Let us now turn to quantum information, that is, to the information
about quantum states themselves rather than to the measurement results.
We pose the same natural question we asked for classical communications
in section 2.2: How much can a message be compressed? That is, what is
the maximum information one can transmit per quantum state? Is it given
by von Neumann entropy or by Shannon entropy, as in the classical case?
Now the letters of our message are quantum states picked with their respective
probabilities pk; that is, each letter is described by the density matrix and
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the message is a tensor product. Leaving aside how actual quantum com-
munication devices handle information compression, we discuss here only
the amount of quantum information, that is, the number of combinations of
states involved. If the states are mutually orthogonal and the density matrix
is diagonal, it is essentially the classical case; that is, the answer is given by
the Shannon entropy S(p)=−∑

k pk log pk, which is the same as the von
Neumann entropy in this case. For example, the output of a qubit source that
sends |0〉with probability p and |1〉with probability 1− p can be compressed
similarly to the classical source described in section 2.2.

The new issue in quantum theory is that nonorthogonal states cannot be
perfectly distinguished, a feature with no classical analog. If a pure state AB is
built from nonorthogonal states taken with the weights pi, then the density
matrix ρA is nondiagonal. There is then the difference between the Shan-
non entropy of the mixture and the von Neumann entropy of the matrix,
S{pi}− S(ρA). It is nonnegative and quantifies how much distinguishability is
lost when we mix nonorthogonal pure states. Measuring ρA, we receive S(ρA)

bits, which is less than S{pi} bits that were encoded mixing the states with
probabilities {qi}.

For example, nonorthogonal states |0〉 and the superposition |s〉= (|0〉+
|1〉)/√2 cannot be distinguished when a measurement in the basis |0〉 , |1〉
brings |0〉. Consider an output producing |0〉 with the probability p, and |s〉
with the probability 1− p, like in exercise 6.3. Sending classical information
about these states brings the information S(p). Could we use different encod-
ing corresponding to a shorter mean length of a codeword? The letters of our
alphabet, |0〉 and |s〉, both contain the state |0〉, which means redundancy. The
redundancy must allow for tighter compression than S(p). That can be demon-
strated using essentially the argument from section 2.2 with the only difference
being that, instead of typical sequences, we consider typical subspaces. Could
we decrease the entropy using the orthogonal states |0〉 , |1〉? A long N string
emitted by the source looks like a superposition of the terms having, after
reordering, the following form:

|0〉⊗Np |s〉⊗N(1−p)≈ |0〉⊗N(1+p)/2 |1〉⊗N(1−p)/2. (6.16)

This is because in the limit N(1− p) 1 the product |s〉⊗N(1−p) can
be approximated by the superposition of the states with equal proba-
bility of |0〉 and |1〉. The number of the states of the form (6.16) is
given by the number of N(1+ p)/2 choices out of N; the logarithm
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of the number of states is NS(1/2+ p/2) according to the Stirling for-
mula. If (1+ p)/2> 1− p, that is, p> 1/3, we can use the states of the
form (6.16) as the new alphabet letters and neglect atypical states. We
then achieve compression for sending classical information about these
states, since S(p)− S(1/2+ p/2)= (1/2+ p/2) log(1/2+ p/2)+ (1/2−
p/2) log(1/2− p/2)− p log p− (1− p) log(1− p)> 0 for p> 1/3. That
bound makes sense, since at p< 1/3 the chosen way of encoding actually
increases redundancy, and one needs to use a different encoding.

The most efficient encoding uses the states, where the density matrix of our
source is diagonal, instead of the states |0〉 , |s〉 or |0〉 , |1〉, where it is not. The
orthonormal eigenvectors can be found in the solution to exercise 6.3 in the
appendix. The number of typical strings is then given by the Shannon entropy
of this representation, which is now equal to the von Neumann entropy and
is strictly lower than the Shannon entropy for any representation where the
density matrix is not diagonal.

The best rate of quantum information transfer (the number of qubits car-
ried per letter of a long message) is given by the von Neumann entropy of the
density matrix of the source only when we deal with a mixture of pure states.
This is not true when ρ=∑

k pkρk and ρk are mixed states. It is easy to see
from a trivial example: Suppose that a particular mixed stateρ0 with S(ρ0)> 0
is chosen with probability p0= 1. Then the message ρ0⊗ ρ0⊗ . . . carries no
information.

When our alphabet is made of mixed yet mutually orthogonal states, the
states are distinguishable and the problem is classical, since we can just send
the probabilities of the states; so the maximal rate is the Shannon entropy
S(p). However, it is less than the von Neumann entropy, which now includes a
nonzero entropy of every mixed state ρk. Because all ρk are orthogonal, they
could be made diagonal simultaneously, and we obtain

S(ρ)=−
∑

k

Tr(pkρk) log(pkρk)

=−
∑

k

(
pk log pk+ pkTr ρk log ρk

)= S(p)+
∑

k

pkS(ρk).

This shows that, when ρk are mixed states, S(ρ) is no longer a good mea-
sure of quantum entanglement since it clearly mixes quantum and clas-
sical correlations. In this case, von Neumann entropy exceeds Shannon
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entropy:

S(p)= S(ρ)−
∑

k

pkS(ρk)= S

(∑
k

pkρk

)
−

∑
k

pkS(ρk). (6.17)

To conclude, the information transfer rate

i) by orthogonal pure states is equal to S(p)= S(ρ),
ii) by nonorthogonal pure states is equal to S(ρ), which is less than S(p),

iii) by orthogonal mixed states is equal to S(p), which is less than S(ρ).

For nonorthogonal mixed states, it is believed that

χ(ρk, pk)= S

(∑
k

pkρk

)
−

∑
k

pkS(ρk)

(called in quantum communications Holevo information) defines the limiting
compression rate in all cases, including when it does not coincide with S(p).
The reason for this belief is thatχ is monotonic (i.e., it decreases when we take
partial traces), but S(ρ) is not—one can increase von Neumann entropy by
going from a pure to a mixed state. It follows from concavity that χ is always
nonnegative. We see that it depends on the probabilities pk, that, is on the way
we prepare the states. Of course, (6.17) is a kind of mutual information; it tells
us how much, on average, the von Neumann entropy of an ensemble is reduced
when we know which preparation was chosen. It is exactly like classical mutual
information, I(A, B)= S(A)− S(A|B), which tells us how much the Shannon
entropy of A is reduced once we get the value of B. So we see that classical
Shannon information is mutual von Neumann information. One also calls χ
the accessible information of an ensemble of quantum states, that is, the maxi-
mal number of bits of information that can be acquired about the preparation
of the state on average.

6.5 Conditional Entropy and Teleportation

Similar to the classical conditional entropy (2.12), one defines for von Neu-
mann entropy

S(ρAB|ρB)= S(ρAB)− S(ρB). (6.18)

However, this is not an entropy conditional on something known; moreover, it
is not zero for correlated quantities but negative! Indeed, for pure AB, one has
S(ρAB|ρB)=−S(ρB)< 0. Classical conditional entropy measures how many
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classical bits we need to add to B to fully determine A. Similarly, we would
expect quantum conditional entropy to measure how many qubits Alice needs
to send to Bob to reveal herself. But what does it mean when S(ρAB|ρB) is
negative? In this situation, it includes the amount of quantum information
that Bob already shares with Alice.

That negativity is due to entanglement between A and B, which allows the
trick of teleportation. Teleportation moves quantum states around without a
quantum channel, and we shall see below that negative von Neumann condi-
tional entropy counts the number of possible future teleportations. Imagine
that Alice has in her possession a qubit A0 and wants Bob to create in his lab a
qubit in a state identical to A0. However, she is only able to communicate by
sending a classical message. If Alice knows the state of her qubit, there is no
problem (except that communicating a complex number exactly requires an
infinite number of classical bits): she tells Bob (say, over the telephone) the
state of her qubit and he creates one like it in his lab. If, however, Alice does
not know the state of her qubit, all she can do is make a measurement, which
will give some information about the prior state of qubit A0. She can tell Bob
what she learns, but the measurement will destroy the remaining information
about A0 and it will never be possible for Bob to re-create it. So she needs to
make a measurement revealing no information about A0. Then what informa-
tion can that measurement reveal? It must be about something else that Alice
and Bob share.

Suppose then that Alice and Bob have previously shared a qubit pair A1, B1
in a known entangled state, for example,

ψA1B1 =
1√

2
(|00〉+ |11〉)A1B1 . (6.19)

Bob then took B1 with him, leaving A1 with Alice. In this case, Alice can
solve the problem by making a joint measurement of her system A0A1 in a
basis, that is, chosen so that no matter what the answer is, Alice learns nothing
about the prior state of A0. In that case, she also loses no information about
A0. But after getting her measurement outcome, she knows the full state of the
system and she can tell Bob what to do to re-create A0. To see how this works,
let us describe a specific measurement that Alice can make on A0A1 that will
shed no light on the state of A0. The measurement must be a projection on a
state where the probability of A0 to be in the state |0〉 is exactly equal to the
probability to be in the state |1〉. The following four states of A0A1 satisfy that
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property:

1√
2
(|00〉± |11〉)A0A1 ,

1√
2
(|01〉± |10〉)A0A1 . (6.20)

The states are chosen to be entangled, that is, having A0 and A1 correlated. We
don’t use the state with |00〉± |10〉, which has equal probability of zero and
one for A but no correlation between the values of A0 and A1.

Denote the unknown initial state of the qubit A0 as α |0〉+β |1〉; then the
initial state of A0A1B1 is

1√
2
(α |000〉+α |011〉+β |100〉+β |111〉)A0A1B1 . (6.21)

Let’s say that Alice’s measurement, that is, the projection on the states (6.20),
reveals that A0A1 is in the state

1√
2
(|00〉− |11〉)A0A1 . (6.22)

That means that only the first and the last terms in (6.21) contribute (with
equal weights but opposite signs). After that measurement, B1 will be in
the state (α |0〉−β |1〉)B1 , whatever the (unknown) values of α,β . Appre-
ciate the weirdness of the fact that B1 was uncorrelated with A0 initially,
but instantaneously acquired correlation after Alice performed her measure-
ment a thousand miles away. Knowing the state of B1, Alice can send two
bits of classical information, telling Bob that he can re-create the initial state
α |0〉+β |1〉 of A0 by multiplying the vector of his qubit B1 by the matrix[

1 0
0 −1

]
, which switches the sign of the second vector of the basis. The

beauty of it is that Alice learned and communicated not what the state A0 was,
but how to re-create it.

To understand the role of the quantum conditional entropy (6.18) in tele-
portation, we symmetrize and purify our problem. Generally, the weirdness of
quantum entropies can be traced to the purely quantum possibility of purifi-
cation. Notice that A1 and B1 are maximally entangled (come with the same
weights), so that S(ρB)= log2 2= 1. On the other hand, A1B1 is in a pure
state, so its von Neumann entropy is zero. Let us now add another system R,
which is maximally entangled with A0 in a pure state A0R, say,

ψA0R= 1√
2
(|00〉+ |11〉)A0R. (6.23)
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Neither Alice nor Bob have access to R. From this viewpoint, the combined
system RAB=RA0A1B1 starts in a pure state, which is a direct product
ψRA0 ⊗ψA1B1 . Since A0 is maximally entangled with R, then S(ρA0)=
log2 2= 1, which is equal to the entropy of the AB system, S(ρA0A1B1)=
S(ρA0)= 1, since A1B1 is a pure state. Therefore, S(ρAB|ρB)= S(ρA0A1)|ρB)

= S(ρA0A1B1)− S(ρB1)= 0. One can show that teleportation is only possible
when S(ρAB|ρB) is nonpositive.

Recall that, classically, S(A|B) measures how many bits of information
Alice has to send to Bob (in addition to B, which he has) so that he will have full
knowledge of A. The quantum analog of this involves qubits rather than clas-
sical bits. Suppose that S(ρAB|ρB)> 0 and Alice nevertheless wants Bob to
re-create her states. She can simply send her states. The alternative is to do tele-
portation, which requires sharing with Bob an entangled pair for every qubit
of her state to be teleported. Either way, Alice must be capable of quantum com-
munication, that is, of sending a quantum system while maintaining its quan-
tum state. For teleportation, she first creates some maximally entangled qubit
pairs and sends half of each pair to Bob. Each time she sends Bob half of a pair,
S(ρAB) is unchanged but S(ρB) goes up by 1, so S(ρAB|ρB)= S(ρAB)− S(ρB)

goes down by 1. So S(ρAB|ρB), if positive, is the number of such qubits that
Alice must send to Bob to make S(A|B)nonpositive and to make teleportation
possible without any further quantum communication. Negative quantum
conditional entropy measures the number of possible future qubit telepor-
tations. We thus see that entanglement is an important resource in quantum
communications.

6.6 The Way Out Is via a Black Hole

All things physical are information-theoretic in origin.

—john wheeler , 1990

A black hole presents a way to eliminate all uncertainty about a system by
swallowing and forever eliminating it from our reach. No body, no uncer-
tainty. On the other hand, this information, while inaccessible, still remains
a part of our world. Our religious belief that uncertainty in the world can
only increase leads us to the entropy of a black hole and to the ultimate
restriction on the amount of information that can be encoded in a physical
system.
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Area law Relativity imposes a restriction: no material body can move faster
than light. Coupled with gravity, it makes possible inescapable regions of
space—black holes. A body of the mass m can escape a gravitating body of the
mass M from the distance R if the kinetic energy mv2/2 exceeds the poten-
tial energy GMm/R, where G is the gravitational constant. Since v< c, then
R> rh= 2GM/c2. One cannot escape from within the so-called horizon rh,
since the speed needed for that exceeds c. A black hole is an object, whose size
is smaller than its horizon.

Since the interior is inaccessible, one may think that the entropy of a black
hole must be zero for us. Let us now add to the mix the quantum theory that
does not allow strict separation of space regions. The quantum entanglement
entropy (between interior and exterior) is thought to be responsible for the
entropy of black holes. To estimate it, we need an equation of state, that is, the
relation between energy and temperature. The energy of the hole is simply
EBH=Mc2= c4rh/2G. The temperature of the hole is determined by its radi-
ation, which is due to a purely quantum phenomenon of particle-antiparticle
pairs appearing from vacuum fluctuations. Such pairs usually stay together and
soon annihilate. If, however, such a pair straddles the horizon, then the inside
part is absorbed by the hole, while the outside part can escape and be regis-
tered as radiation (this is how the entanglement appears). The typical wave-
length of such radiation can be estimated as rh, and its energy/temperature
is then T� �c/rh. Now we can obtain the entropy (up to π and order-unity
factors) by integrating the equation of state T= dE/dS:

T� �c
rh
� dEBH

dSBH
� c4

G
drh

dSBH
⇒ SBH� r2

hc3

G�
.

The entropy is proportional to the squared horizon, that is, to area rather than
volume. Since any entropy is dimensionless, �G/c3 must be a square of some
fundamental length. It is called the Planck length, lp=

√
�G/c3� 10−17 cm,

and it is the only combination with that dimensionality of the three funda-
mental physical constants, c, �, G; it is the scale where quantization of gravity
is expected to be important.3 The entanglement entropy of a black hole can

3. One-parameter theories: G-theory, seventeenth century; c-theory, nineteenth and twen-
tieth centuries; �-theory, early twentieth century. Two-parameter theories: c, G (general relativ-
ity), c, � (quantum electrodynamics), twentieth century. Hopefully, c, G, h-theory will appear
in the twenty-first century.-1—
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thus be written as follows:

SBH� r2
hc3

G�
= r2

h
l2
p
� GM2

�c
. (6.24)

The area law behavior of the entanglement entropy in microscopic theories
could be related to the holographic principle—the conjecture that the informa-
tion contained in a volume of space can be completely encoded by the degrees
of freedom that live on the boundary of that region.

Bekenstein bound We can now estimate the information capacity (not a chan-
nel capacity!) defined as the maximal amount of information that can be
encoded in a system by exploiting all of its degrees of freedom down to the
quantum level. Is there a universal limit on how large the entropy of a phys-
ical system can be? The answer is given by the so-called Bekenstein bound
(and its generalizations). On dimensional grounds, it can be guessed as fol-
lows. The entropy must be the total energy E (including any rest masses)
divided by a temperature (in energy units). The temperature must be deter-
mined by the system size R—the smaller the size, the higher the temperature.
Confining a system to a smaller region by quantum uncertainty increases the
kinetic energy. The only combination with the dimensionality of energy one
can make out of R and the world constants �, c is the same �c/R, which is the
energy of a photon with wavelength R. That suggests a bound in the following
form: S≤RE/�c (Bekenstein 1981, 2004; Casini 2008).

That bound was argued by exploiting the only known way to eliminate
entropy from the observable world—to drop it into a black hole. If we drop
a body of energy E and entropy S into a black hole of large mass M E/c2,
then the black hole’s mass will grow by E/c2. According to (6.24), the entropy
of the hole will then grow by� 2GME/�c3 plus a negligible term of order E2.
Meanwhile, the entropy S has gone forever out of this world. The second law
then requires that S< 2GME/�c3= rhE/�c. This is expected to hold up to a
body size comparable with the black hole horizon, which gives the estimate
for the bound:

S≤ RE
�c

. (6.25)

We presume that the body itself is not a black hole, that is, its size exceeds
its horizon, R> rh(E)�GE/c4. Substituting E< c4R/G into (6.25), we write —-1
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the entropy restriction solely in terms of the radius:

S≤ R2c3

G�
= R2

l2
p

. (6.26)

Comparing (6.26) and (6.24), we conclude that a system must be a black hole
to realize the capacity limit. We note without elaboration that (6.25, 6.26)
actually refer to the difference between the entropy of the system with energy
E and the entropy of the quantum vacuum in the region of size R.

In the thermodynamic limit, the classical total entropy is extensive; that is,
it is proportional to the system volume or total number of degrees of freedom.
We now see that the entropy is proportional to the volume only as long as one
can squeeze more and more distinguishable matter into it. When there is so
much matter or so little space that the system turns into a black hole, we can see
only the horizon, and the entropy is proportional to the area (like a hologram
where a 3D image is encoded on a 2D surface).

The appearance of the gravitational constant G in (6.26) deserves reflec-
tion. Via black holes, gravity makes some information unavailable in principle,
which is a source of the bound. Another way to look at it is that black holes
provide the gates out of the observable world. A counterpart to this is the Big
Bang, which provided a gate into this world—how something comes out of
nothing could probably teach us important lessons about the nature of infor-
mation as well. It is also worth bearing in mind that gravitational instabilities
soon after the Big Bang are the origin of structures in the universe and thus of
most of information.
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Conclusion

This chapter attempts to compress the book to its most essential elements.

7.1 Take-Home Lessons

1. Thermodynamics studies restrictions imposed by the hidden on the
observable. It deals with two extensive quantities. The first one
(energy), E, is conserved for a closed system, and its changes are
divided into work (due to observable degrees of freedom) and heat
(due to hidden ones). The second quantity (entropy), S, can only
increase for a closed system and reach its maximum in thermal
equilibrium, where the system entropy is a convex function of the
energy. All available states lie below this convex curve in the
S, E plane.

2. Convexity of the dependence, E(S), allows us to introduce
temperature as the derivative of the energy with respect to the entropy.
The extremum of the entropy means that the temperatures of the
connected subsystems are equal in equilibrium. The same is true
for the energy derivatives with respect to volume and other
extensive variables. The entropy increase (called the second law of
thermodynamics) imposes restrictions on thermal engine efficiency,
that is, the fraction of heat used for work:

W
Q1
= Q1−Q2

Q1
= 1− T2�S2

T1�S1
≤ 1− T2

T1
.

T1

W

T2

Q2

Q1
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If information processing generates�S= S2− S1= (Q −W)/

T2−Q/T1, its energy price is as follows:

Q = T2�S+W
1−T2/T1

.

T1

S1 = Q/T1

S2 = (Q – W )/T2 Q – W

Q
W

T2

3. Need in statistics appears due to incomplete knowledge: we are able
to follow only part of the degrees of freedom and only with finite
precision. Statistical physics defines the (Boltzmann) entropy of a
closed system as the log of the phase volume, S= log�, and assumes
(for lack of knowledge) the uniform distribution w= 1/�, called
microcanonical. For a subsystem, the (Gibbs) entropy is defined as the
mean phase volume: S=−∑

i wi log wi. The probability distribution
is then obtained, requiring maximal entropy for a given mean energy:
log wi∝−Ei. Information theory generalizes this approach; see point
11 below.

4. We quantify the lack of knowledge by the amount of information
needed to make the knowledge complete and remove the uncertainty.
We start by receiving information as answers to yes-no questions
(called bits). The amount of information is the number of such
answers, that is, log2 n, where n is the number of possibilities each
with the probability 1/n (Boltzmann entropy). If the probabilities pi
are different from 1/n, then the Shannon-Gibbs entropy/information
is the mean logarithm:−∑

i pi log2 pi. Convexity of the function
−p log p guarantees that the information/entropy has its maximum
for equal probabilities (when our ignorance is maximal).

5. A simple mathematical notion of convexity is a powerful tool. We
first use it in thermodynamics to make sure that the extremum is
on the boundary of the region and to make Legendre transforms of
thermodynamic potentials. Concavity of the logarithm and entropic
measures (including relative and von Neumann entropies) play a
central role in classical and quantum statistics. Convexity is used
to establish hierarchies and find the extremum. Convexity of the
exponential function is used to show that, even when the mean of
a random quantity is zero, its mean exponent exceeds unity. That
provides for an exponential separation of trajectories in an
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incompressible flow and exponential growth of the density of an
element in a compressible flow. On the other hand, if the mean
exponent is unity, 〈e−�S〉= 1, then the mean itself is negative:
−〈�S〉≤ 0.

6. In our discrete thinking, we use another basic mathematical
object—the sum of independent random numbers, X=∑N

i=1 yi.
Three concentric statements can be made (see section A.2). The
weakest one is that X approaches its mean value, X̄=N〈y〉,
exponentially fast in N. The next statement is that the distribution
P(X) is Gaussian in the vicinity of the width�N−1/2 around the
maximum. The whole distribution is also very sharp, which is
described by the large-deviation form: P(X) ∝ e−NH(X/N), where
H≥ 0 and H(〈y〉)= 0. Applying this to the log of the probability of a
given sequence, limN→∞ log p(y1 . . . yN)=−NS(Y), we learn two
lessons: i) the probability is independent of a sequence for most of
them (almost all events are almost equally probable), ii) the number
of typical sequences grows exponentially and the entropy is the rate.

7. The number of typical binary sequences of length N is then 2NS,
which cannot exceed 2N . The efficient encoding of the typical
sequences thus involves words with lengths from unity to NS, which is
less than N if the probabilities of 0 and 1 are not equal. That means
that the entropy is both the mean and the fastest rate of the reception
of information brought by long messages/measurements. To squeeze
out all the unnecessary bits, encoding is used both in industry and in
nature.

8. If the transmission channel B→A makes errors, then the message
does not completely eliminate uncertainty; what remains is the
conditional entropy, S(B|A)= S(A, B)− S(A), which is the mean rate
of growth of the number of possible errors. Sending extra bits to
correct these errors lowers the transmission rate from S(B) to the
mutual information, I(A, B)= S(B)− S(B|A)= S(A)+ S(B)−
S(A, B), which is the mean difference of the uncertainties before and
after the message. The great news is that one can still achieve an
asymptotically error-free transmission if the transmission rate is
lower than I. The maximum of I over all source statistics is the
channel capacity, which is the maximal rate of asymptotically
error-free transmission. In particular, to maximize the capacity of
sensory processing, one makes the signal probability flat using the
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response function of a sensor equal to a cumulative probability of
stimuli.

9. Very often our goal is not to transmit as much information as possible
but to compress it and process it as little as possible, looking for an
encoding with a minimum of the mutual information. For example,
rate-distortion theory looks for the minimal rate I of information
transfer under the restriction that the signal distortion does not
exceed the threshold D. This is done by minimizing the functional
I+βD.

10. Conditional probability allows for hypothesis testing by the Bayes
rule: P(h|e)= P(h)P(e|h)/P(e). That is, the probability P(h|e) that
the hypothesis h is correct after we receive the data e is the prior
probability P(h) times the support P(e|h)/P(e) that e provide
for h. Taking a log and averaging, we obtain the familiar S(h|e)=
S(h)− I(e, h). The Bayes approach demonstrates that there is no
inference without prior assumption. If our hypothesis concerns the
probability distribution itself, then the difference between the true
distribution p and the hypothetical distribution q is measured by the
relative entropy D(p|q)=〈log2(p/q)〉. This is yet another rate—how
the error probability grows with the number of trials. D also measures
the decrease of the transmission rate due to nonoptimal encoding:
the mean length of the codeword is not S(p) but is bounded by
S(p)+D(p|q). Mutual information is a particular case of relative
entropy; they are both invariant with respect to arbitrary
transformations of variables in a continuous case, which facilitates
their ever-widening area of applications.

11. Since so much hangs on getting the right distribution, how best can we
guess it from the data? This is achieved by maximizing the entropy
under the given data—“the truth and nothing but the truth.” That
explains and makes universal the entropy maximization from point 3.
What was thought to be a unique property of thermal equilibrium is
now understood as universally applicable common sense. It also sheds
new light on physics, telling us that, on some basic level, all states are
constrained equilibria. Whenever we encounter a trade-off, free energy
appears, whose two terms quantify the opposite tendencies. Not only
do its (conditional) minima describe physical systems, but they are
presently the most powerful technical tools of optimization, from our
Bayesian brain to machine learning algorithms.
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12. Information is physical. At a finite temperature, both learning
and erasing information require work. The energetic price of a
learning-erasing cycle is T times the mutual information between the
system and the measuring device. Another side of the physical nature
of information is that there is a (Bekenstein) limit on how much
entropy one can squeeze inside a given radius; surprisingly, the limit is
proportional to the area rather than the volume and is realized by black
holes—our gates out of this world.

13. Full knowledge persists, partial knowledge dissipates. Irreversible
entropy growth may seem to contradict the laws of mechanics, which
are time-reversible and preserve the N-particle phase-space density.
If we follow precisely all the degrees of freedom, the entropy is
conserved and no information is lost. But if we follow only part of
them, the entropy of that part generally grows as it interacts with the
rest—whatever information we had is getting less relevant with time.
We illustrate that for a one-particle momentum distribution of a dilute
gas. Assuming that before every collision particles are independent,
one obtains the Boltzmann kinetic equation, which, in particular,
describes the irreversible growth of the one-particle entropy.
Therefore, the difference must grow between the growing sum of
one-particle entropies and the constant total entropy. That difference
describes correlations and is called mutual information. Similarly, the
thermalization of a quantum subsystem increases the entanglement
entropy since the information is getting encoded in interaction with
the environment and is locally inaccessible.

14. Total entropy growth can appear even if we follow all the degrees of
freedom but do it with finite precision, that is, if we consider the
evolution of finite phase-space regions. Instability leads to the
separation of trajectories, which spread over the whole phase space
under generic reversible Hamiltonian dynamics, very much like flows
of an incompressible liquid are mixing (metaphorically, extra digits in
precision add new degrees of freedom for unstable systems). Spreading
and mixing in phase space correspond to the approach to equilibrium
and entropy growth. On the contrary, to deviate a system from
equilibrium, one adds external forcing and dissipation, which makes
its phase flow compressible and distribution nonuniform.

15. The renormalization group (RG) is the best known way to forget
information. As always with forgetting, the trick is to choose what to
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keep, which is decided by the renormalization. For example, we can
divide the sum of two random numbers either by 2, keeping the mean,
or by
√

2, keeping the variance. That leads to different asymptotic
distributions, which is the main focus of RG. We find that the entropy
of the partially averaged and renormalized distribution is the proper
measure of forgetting in simple cases, like adding random numbers on
the way to the central limit theorem. In physical systems with many
degrees of freedom, the quantity that changes monotonically upon RG
could be the mutual information, defined in two ways: either between
remaining and eliminated degrees of freedom or between different
parts of the same system.

16. Two central themes of quantum information and the two respective
sources of quantum uncertainty are nonorthogonality and
entanglement. The first theme appears in quantum mechanics, where
uncertainty can be characterized by classical entropy. Quantum
statistics appears when we treat subsystems and must deal with von
Neumann entanglement entropy. The quantum entropy of the whole
can be less than the entropy of a part. In particular, the whole system
can be in a pure state with zero entropy, in which case all the entropy of
a subsystem comes from entanglement.

17. The last lesson is two progressively more powerful forms of the second
law of thermodynamics, which originally was 〈�S〉≥ 0. The first new
form, 〈e−�S〉= 1, is the analog of a Liouville theorem. The second
form relates the probabilities of forward and backward processes:
ρ†(−�S)= ρ(�S)e−�S.

7.2 Epilogue

The central idea of this book is that learning about the world means building
a model, which is essentially finding an efficient representation of the data.
Optimizing information transmission or encoding may seem like a technical
problem, but it is actually the most important task of science, engineering, and
survival. Science works on more and more compact encoding of the strings of
data, which culminates in formulating a law of nature, potentially describing
an infinity of phenomena.

The main mathematical tool we learned here is an ensemble equivalence
in the thermodynamic limit; its analog is the use of typical sequences in-1—
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communication theory. The result is two roles of entropy: it defines maximum
transmission and minimum compression.

Another central idea is that entropy is not a property of the physical
world, but the information we lack about it. And yet the information is
physical—it has an energetic value and a monetary price. The difference
between work and heat is that we have information about the former but not
the latter. That means that one can turn information into work and one needs
to release heat to erase information. We also have learned that one not only
pays for information but can turn information into money as well. The physi-
cal nature of information is manifested in the universal limit on how much of
it we can squeeze into a space restricted by a given area.

The panoramic view accepted here works on different levels. Natural
scientists and engineers tend to see analogies between phenomena. One
analogy extensively exploited here is that measurements, predictions, record-
ing retrievals, etc. can all be treated and described uniformly as different
forms of communication. Another analogy is between finding optimal strat-
egy in economics (proportional gambling), biology (phenotype switching),
engineering design, data processing, perceptual inference, etc. On a higher
level, mathematicians see analogies between analogies. For the two analogies
above, the unifying mathematical notions are relative entropy and free energy.
Convexity with its bag full of inequalities is another recurring mathematical
notion unifying different approaches to the classes of phenomena, rather than
phenomena themselves.

No rigorous proofs were given in this book, replaced instead by exam-
ples or hand-waving arguments of varying plausibility. A more rigorous and
detailed while still compact deductive presentation of thermodynamics can
be found in Thermodynamics by Callen (1965). Detailed information the-
ory with proofs can be found in Elements of Information Theory by Cowen
and Thomas, whose chapter 1 gives a concise overview. A more practical and
problem-oriented approach with numerous exercises can be found in Infor-
mation Theory, Inference and Learning Algorithms by MacKay. Those interested
in proofs for chapter 5 can find them in An Introduction to Chaos in Nonequi-
librium Statistical Mechanics by Dorfman. On quantum information, the two
comprehensive books are those by Preskill (2015), and Nielsen and Chuang
(2010).

I also wish to stress that the examples given in this book represent a
small slice of the ever-widening avalanche of applications; more biological —-1

—0

—+1



�

�

“125-128005_Folkovich_Information” — 2024/6/5 — 19:00 — page 150 — #8
�

�

�

�

�

�

150 c h a p t e r 7

applications can be found in Biophysics by Bialek, and others in original arti-
cles and reviews. Numerous references scattered through the text, like (Zipf
1949), give you the most compact encoding for a search. On the other end
of the spectrum is the popular book The Origins of Life: From the Birth of
Life to the Origin of Language by Maynard Smith and Szathmary, describing
evolution as a set of transitions from competition (between replicating
molecules, genes, cells, individuals) to cooperation, which raises competi-
tion to the level of collectives (chromosomes, multicellular organisms, animal
groups, societies). Accompanied by the appearance and development of signal
systems, from cellular to human languages, came major transitions in informa-
tion storage and transfer. We mention the speculative but compelling hypoth-
esis that the explosion of innovations that started approximately 50,000 years
ago was brought about by the development of language, which broke barri-
ers between social, technical, and foraging skills. This is another argument in
favor of a panoramic view.

Several important subjects were left out of this book. Our focus was largely
(though not entirely) on finding a data description that is good on average.
There exists a closely related approach that focuses on finding the shortest
description and ultimate data compression for a given string of data. The Kol-
mogorov complexity is defined as the shortest binary computer program able
to compute the string. It allows us to quantify how much order and random-
ness is in a given sequence—a truly random sequence cannot be described
by an algorithm shorter than itself, while any order allows for compression.
Complexity is (approximately) equal to the entropy if the string is drawn from
a random distribution, but is actually a more general concept, treated in texts
on computer science. A fundamental issue is the dramatic difference between
the classical and quantum classifications of computational complexity. After
much hesitation, I also left out evolutionary game theory, which describes,
in particular, the appearance of cooperation and diversity—subjects having
direct bearing on the information transfer in our world. Other subjects for
mathematically oriented readers to explore are the applications of entropy as a
measure of irreversibility in geometry (see, e.g., Perelman 2002) and the rela-
tion of entropy subadditivity to the rich world of isoperimetric and related
inequalities (see, e.g., Gromov 2013).

Taking a wider view, I invite you to reflect on the history of our attempts
to realize the limits of the possible, from heat engines to communication
channels to computations. Will the next step be to study the natural limits of
thinking and feeling?
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Looking back, one may wonder why accepting the natural language of
information took so much time and was so difficult for scientists and engi-
neers. Generations of students (myself included) were tortured by “para-
doxes” in statistical physics, which disappear when information language is
used. I suspect that the resistance was to a large extent caused by the misplaced
desire to keep the scientist out of science. A dogma that science must be some-
thing “objective” and only related to the things independent of our interest in
them obscures the simple fact that science is a form of human language. True,
we expect it to be objectively independent of the personality of this or that sci-
entist as opposed, say, to literature, where we celebrate the difference between
languages (and worlds) of Shakespeare and Tolstoy. However, science is the
language designed by and for humans, so it necessarily reflects both the way
body and mind operate and the restrictions on our ability to obtain and pro-
cess data. Presumably, omnipresent and omniscient beings would have no
need for the statistical information approach described here. As far as physics
is concerned, I do not share the belief, widely held inside and outside the disci-
pline, that physicists’ notions are truly objective and fundamental, as opposed
even to chemistry (where the distinction between organic and inorganic is
due to our distinctively human interest in life), not to mention linguistics or
economics. I believe that we, physicists, can benefit from better appreciating
the essential presence of the scientist in science (for instance, to understand
the special status of measurement in quantum mechanics).

As we learned here, better understanding must lead to a more compact
presentation; hopefully, the next edition will be shorter.
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APPENDIX

Extras, Exercises, and Solutions

This appendix addresses some advanced subjects, which are either more
technical or more cross-disciplinary, or both.

A.1 Formal Structure of Thermodynamics

Both energy and entropy are homogeneous, first-order functions of their
variables: S(λE, λV , λN)= λS(E, V , N) and E(λS, λV , λN)= λE(S, V , N)
(here V and N stand for the whole set of extensive macroscopic parameters).
Differentiating the second identity with respect toλ and taking it atλ= 1, one
gets the Euler equation:

E=TS− PV +μN. (A.1)

The equations of state are homogeneous of zero order, for instance,

T(λE, λV , λN)=T(E, V , N).

That confirms that the temperature, pressure, and chemical potential are the
same for a portion of an equilibrium system as for the whole system.

Generally, thermodynamics can be developed for as many quantities as
we observe. But what is the minimal number of observables for a meaning-
ful description? It may seem that a thermodynamic description of a one-
component mechanical system requires operating functions of three intensive
variables. Let us show that the homogeneity leaves only two independent
parameters. For example, the chemical potentialμ can be found as a function
of T and P. By differentiating (A.1) and comparing with (1.5), one gets the so-
called Gibbs-Duhem relation (in the energy representation), Ndμ=−SdT+
VdP, or for quantities per mole, s= S/N and v=V/N: dμ=−sdT+ vdP.
In other words, one can choose λ= 1/N and use first-order homogeneity to

—-1

—0

—+1
153



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 17:53 — page 154 — #2
�

�

�

�

�

�

154 a p p e n d i x

get rid of the variable N, for instance: E(S, V , N)=NE(s, v, 1)=Ne(s, v). In
the entropy representation,

S= E
1
T
+V

P
T
−N

μ

T
,

the Gibbs-Duhem relation again states that, because dS= (dE+ PdV −
μdN)/T, the sum of products of the extensive parameters and the differentials
of the corresponding intensive parameters vanish:

Ed(1/T)+Vd(P/T)−Nd(μ/T)= 0. (A.2)

Let us summarize the formal structure: The fundamental relation is equiv-
alent to the three equations of state (1.4). If only two equations of state
are given, then the Gibbs-Duhem relation may be integrated to obtain the
third relation up to an integration constant; alternatively, one may integrate
the molar relation de=Tds− Pdv to get e(s, v), again with an undetermined
constant of integration.

Example A.1: Consider an ideal monatomic gas characterized by two
equations of state (found, say, experimentally with R� 8.3 J/mole
K� 2 cal/mole K):

PV =NRT, E= 3NRT/2. (A.3)

The extensive parameters here are E, V , N, so we want to find the fun-
damental equation in the entropy representation, S(E, V , N). We write
(A.1) in the form

S= E
1
T
+V

P
T
−N

μ

T
. (A.4)

Here we need to express intensive variables 1/T, P/T,μ/T via exten-
sive variables. The equations of state (A.3) give us two of them:

P
T
= NR

V
= R

v
,

1
T
= 3NR

2E
= 3R

2e
. (A.5)

Now we need to find μ/T as a function of e, v using the Gibbs-
Duhem relation in the entropy representation (A.2). Using the expres-
sion of intensive via extensive variables in the equations of state
(A.5), we compute d(1/T)=−3Rde/2e2 and d(P/T)=−Rdv/v2, and
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substitute into (A.2):

d
(μ

T

)
=−3

2
R
e

de− R
v

dv ,
μ

T
=C− 3R

2
ln e−R ln v ,

s= 1
T

e+ P
T

v− μ
T
= s0+ 3R

2
ln

e
e0
+R ln

v
v0

. (A.6)

Here we assume that the system has the entropy s0 in the state with the
parameters e0, v0.

A.2 Central Limit Theorem and Large Deviations

The true logic of this world is to be found in the theory of probability.

—ja me s maxwell

A bridge from statistical physics to information theory is a simple techni-
cal tool used in both. Mathematics, underlying most of the statistical physics
in the thermodynamic limit, comes from universality, which appears upon
adding independent random numbers. The weakest statement is the law
of large numbers: the sum approaches the mean value exponentially fast.
The next level is the central limit theorem, which states that the majority
of fluctuations around the mean have a Gaussian probability distribution.
Consideration of large, rare fluctuations requires the so-called large-deviation
theory. Here we briefly present all three at the physical (not mathematical)
level.

Consider the variable X, which is a sum of many independent, iden-
tically distributed (iid) random numbers, X=∑N

1 yi. Its mean value,
〈X〉=N〈y〉 grows linearly with N. Here we show that its fluctuations
X−〈X〉 not exceeding O(N1/2) are governed by the central limit theorem:
(X−〈X〉)/N1/2 becomes for large N a Gaussian random variable with vari-
ance 〈 y2〉− 〈y〉2≡�. The quantities yi that we sum can have quite arbitrary
statisticsP(y); the only requirements are that the first two moments, the mean
〈 y〉 and the variance �, are finite. Finally, the fluctuations X−〈X〉 on the
larger scale O(N) are governed by the large-deviation theorem, which states
that there exists a convex function H such that the probability distribution of
X asymptotically has the form

P(X) ∝ e−NH(X/N). (A.7)
—-1
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P(X)

X/N

– lnP/N

〈X 〉/NX

N1

N2

To show this, we write

P(X)=
∫
δ

( N∑
i=1

yi−X

)
P( y1)dy1 . . .P( yN) dyN

=
∫ ∞
−∞

dp
∫

exp

[
ıp

( N∑
i=1

yi−X

)]
P( y1)dy1 . . .P( yN) dyN

=
∫ ∞
−∞

dpe−ıpX
N∏

i=1

∫
eıpyiP( yi)dyi=

∫ ∞
−∞

dpe−ıpX+NG(ıp) . (A.8)

Here we introduce the generating function 〈e zy〉≡ eG(z). The derivatives of
the generating function with respect to z at zero are equal to the moments
of y, while the derivatives of its logarithm G(z) are called cumulants (see
exercise A.3).

For large N, the integral (A.8) is dominated by the saddle point z0 such
that G′(z0)=X/N. This is similar to representing the sum (1.10) by its
largest term. If there are several saddle points, the result is dominated by the
one with the largest probability. We assume that the contour of integration
can be deformed in the complex plane z to pass through the saddle point
without hitting any singularity of G(z). We now substitute X=NG′(z0) into
−zX+NG(z) and obtain the large-deviation relation (A.7) with

H=−G(z0)+ z0G′(z0). (A.9)

We see that −H and G are related by the ubiquitous Legendre transform
(which always appear in the saddle-point approximation of the Fourier or
Laplace transformations). Note that NdH/dX= z0(X) and

N2d2H/dX2=Ndz0/dX= 1/G′′(z0).

The function H of the variable X/N−〈y〉 is called the Cramér or rate func-
tion since it measures the rate of probability decay with the growth of N
for every X/N. It is also sometimes called an entropy function since it is a
logarithm of probability.
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Several important properties of H can be established independently of
G(z). It is a convex function as long as G(z) is a convex function since their
second derivatives have the same sign. It is straightforward to see that the
logarithm of the generating function has a positive second derivative (at least
for real z):

G′′(z)= d2

dz2 ln
∫

ezyP(y) dy

=
∫

y2ezyP(y) dy
∫

ezyP(y) dy− [∫ yezyP(y) dy
]2

[∫
ezyP(y) dy

]2 ≥ 0. (A.10)

This uses the Cauchy-Bunyakovsky-Schwarz inequality, which is a gener-
alization of 〈y2〉≥ 〈y〉2. Also, H(z0) takes its minimum at z0= 0, i.e., for X
taking its mean value 〈X〉=N〈y〉=NG′(0). The maximum of probability
does not necessarily coincide with the mean value, but they approach each
other when N grows and the maximum gets very sharp—this is called the
law of large numbers. Since G(0)= 0, the minimal value of H is zero, that
is, the probability maximum saturates to a finite value when N→∞. Any
smooth function is quadratic around its minimum with H′′(0)=�−1, where
�=G′′(0) is the variance of y. Quadratic entropy, H∝ (X−〈X〉)2, means
Gaussian probability near the maximum—this statement is (loosely speak-
ing) the essence of the central limit theorem. In the particular case of the
Gaussian P(y), the distribution P(X) is Gaussian for any X. Non-Gaussianity
of the y’s leads to a nonquadratic behavior of H when deviations of X/N from
the mean are large, of the order of�/G′′′(0).

One can generalize the central limit theorem and the large-deviation approach
in two directions: i) for nonidentical variables yi, as long as all variances are
finite and none dominates the limit N→∞, it still works with the mean and
the variance of X being given by the average of means and variances of yi;
ii) if yi is correlated with a finite number of neighboring variables, one can
group such “correlated sums” into new variables, which can be considered
independent.

The above figure and (A.7, A.9) show how distribution changes upon
adding more numbers. Is there any distribution that does not change upon aver-
aging, that is, upon passing from yi to

∑N
i=1 yi/N? That can be achieved for

H≡ 0, that is, for G(z)= kz, which corresponds to the Cauchy distribution
P(y)∝ (y2+ k2)−1. Since the averaging decreases the variance, it is no surprise
that the invariant distribution has infinite variance. Distributions invariant
under summation of variables are treated by the renormalization group in
section 5.5.
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Exercise A.1: Large deviations for the energy of particles.
Find the probability distribution of the kinetic energy, E=∑N

1 p2
i /2,

of N classical, identical unit-mass particles in 1D, which have the
Maxwell distribution over momenta. Derive the large-deviation form of
the distribution in the limit N→∞.

Exercise A.2: Large deviations for the binomial distribution.
One of the most widely used statistical distributions (including in

this book) is the binomial distribution of two possible outcomes, y= 1
with probability p and y= 0 with probability 1− p. Compute the prob-
ability, that in a large number of trials N, the first outcome happens qN
times; that is, X=∑N

i=1 yi= qN. Do it in two ways: 1) discrete combi-
natoric, using the binomial formula CqN

N =N!/(qN)!(N− qN)! for the
number of ways to choose qN out of N, and the Stirling formula ln N! ≈
N ln N; 2) continuous, using the large-deviation theory, that is, comput-
ing the cumulant generating function G(z)= ln〈ezy〉= ln(pez+ 1− p)
and the Legendre transform of it.

Exercise A.3: Generating function for cumulants.
The derivatives at zero of the logarithm of the generating func-

tion G(z)= ln〈ezy〉 are called cumulants. Are κn= (dnG/dzn)z=0 equal
to the moments of (y−〈y〉)n? Express the first four κ1, . . . , κ4 via
μn=〈yn〉.

A.3 Numbers, Words, and Animal Signals

How best to encode numbers? Using a separate symbol for every number
stops making sense when the number N gets large. An alternative is to repeat
one symbol N times, but it is immediately clear that one can encode much
more efficiently by dividing into groups so that the number N can be encoded
by log N symbols. One particular way of organizing numbers is the posi-
tional numeral system—a discovery of historical importance. Apart from
the log N economy, another profound consequence of encoding where the
meaning of the symbol depends on the position is that the decoding implies
algebraic operations of multiplying and adding: 2024= 2× 1000+ 2×
10+ 4. Such a system allows simple, automatic rules for computations. This
was (formulated by the Persian mathematician al-Khwarizmi, from whose
name the word algorithm is derived; algebra, alcohol, etc. also have Arabic
origins.)
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Human languages encode meaning not in separate letters but in words.
The oldest system of writing was logographic, where every word required
a separate symbol, or logogram. Several of these systems were developed
independently: Egyptian hieroglyphics, cuneiform, Chinese characters, etc.
Scribes and readers then learned thousands of symbols, which necessarily
was restricted to a small part of society. The great democratizing invention of
alphabetic writing, which dramatically improved information handling (and
irreversibly changed how we speak, hear, and remember), was done only once
in history. All known alphabets derive from that seminal (Semitic) script. The
idea was to make writing both to convey meaning and to reproduce (extremely
poorly!) the way speech sounds. Of course, the old logograms have some pho-
netic component, generally based on the rebus principle, mostly representing
the names of foreign rulers (Putin= put+ in). But the alphabet makes a
complete transition, using phonograms instead of logograms. The way we
hear is related to the notion of phonemes. Linguists define the phoneme as
the smallest acoustic unit that makes a difference in meaning. Their exact
number in different languages is subject to disagreement, but generally there
are a few dozen, which is comparable to the number of letters in the alpha-
bet. Another interesting question is how we recognize words in a speech,
which is essentially a running stream of sound—apparently, rhythm plays the

“The prophecy says they will turn back to hieroglyphs in the twenty-first
century.”
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leading role. Coming full circle, the new age has brought two new hieroglyphic
encodings: emoticons and emoji.

The statistics of words and their meanings is the subject of much research
and still poorly understood. It was found empirically that if one ranks words
by the frequency of their appearance in texts, then the frequency decreases
with the rank by a power law: pr=Cr−α (Zipf 1949). In first place is the with
7%, followed by of with 3.5%, and with 1.7%, etc. Most data give α� 1. Such
a decrease is remarkably slow—rare words appear quite frequently. Moreover,∑V

r=1 r−1 grows with the vocabulary size V . Another empirical finding is that
the vocabulary itself grows approximately as a square root of the text length,
V ∝√N (Herdan 1960, Heap 1978). Word length distributions also keep
changing with the sample size (shifts to longer words). Such nonsaturation
is a nontrivial feature of the word statistics.

Probably the simplest model that gives the Zipf law is random typing: all
letters plus the space are taken with equal probability (Miller 1957, Wentian
Li 1992). Then any word with the length L is flanked by two spaces and has
the probability Pi(L)= (M+ 1)−L−2/Z, where i= 1, 2, . . . , ML and M is the
alphabet size. The normalization factor is Z=∑L ML(M+ 1)−L−2= (M+
1)2/M. Since the probability decreases with L, so does the rank, so that r(L)
is a growing function: 0< r(1)≤M, M< r(2)≤M(M+ 1). Generally, the
number of words with a length not exceeding L is

∑L
i=1 Mi, so that r(L) of

any L word satisfies the inequality

M(ML−1− 1)/(M− 1)=
L−1∑
i=1

Mi< r(L)≤
L∑

i=1
Mi=M(ML− 1)/(M− 1) ,

which can be written as Pi(L)<C[r(L)+B]−α ≤ Pi(L− 1) with α=
logM(M+ 1), B=M/(M− 1), and C=Bα/M. Note that α > 1 so that the
distribution is normalizable. For M= 26, we have α= 1.01, and in the limit
of large alphabet size, M� 1, we obtain

P(r)∝ (r+ 1)−1. (A.11)

This asymptotic actually takes place for wide classes of letter distributions, not
necessarily equiprobable. Does then the Zipf law trivially appear because both
the number of words (inverse probability) and rank increase exponentially
with the word size? The answer is negative because the number of distinct
words of the same length in real language is not exponential in length and is
not even monotonic (though on average the brevity law holds: the frequency
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of a given word decays exponentially with its length). Moreover, if we estimate
the maximal word length for a finite (typical!) N text by P(Lmax)N= 1, then
the random typing model gives the highest rank, i.e., vocabulary V = r(Lmax),
growing linearly with the length, N/M4 <V <N/M3, which does not corre-
spond to reality. Random models also give wrong lexical density (the number
of words differing from a given word by one letter), which is very important
for errors in transmission and comprehension.

It is reassuring that our texts are statistically distinguishable from those
produced by an imaginary monkey with a typewriter. Besides, words mean
something. The number of meanings (counted from the number of dictionary
entries for a word) grows approximately as the square root of the word fre-
quency: mi∝√Pi. Meanings correspond to objects of reference having their
own probabilities, and it might be that the language combines these objects
into groups whose sizes are proportional to the mean probability of the group
pi, so that Pi=mipi∝m2

i .
A way of interpreting statistical distributions is to look for the variational

principle they satisfy. What we mostly do in this book and what most statis-
ticians do most of the time is to look for a conditional entropy maximum
and minimize a two-term functional. In this case, one may require maximal
information transferred with the least effort. It is tempting to suggest that
the word distributions appear due to the balance between minimizing the
efforts of writers and readers, or speakers and listeners. Writers and speak-
ers would minimize their effort by having one word meaning everything and
appearing with the probability of one. On the other end, the difficulty of
perception is proportional to the depth of the memory keeping the context,
needed, in particular, for choosing the right meaning. Readers and listeners
then prefer a lot of single-meaning words. The rate of information transfer is
S=−∑r P(r) log P(r). The effort must be higher for less common words,
that is, it must grow with the rank. It is natural to assume that the effort is pro-
portional to the word length L; then it is logarithmic in r. The mean effort
is then W =∑r P(r) log r. Looking for the minimum of S− λW , we obtain
P(r)∝ r−λ (Mandelbrot 1962). The Zipf law corresponds to λ= 1, when
goals and efforts are balanced. So far, no convincing optimization scheme
giving different features of word statistics has been found.

Some statistical laws of language probably could be better understood by
treating it as a signal system. The information that changes the behavior
of a receiver is referred to as a signal. For example, some conversations are
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not exchanges of information but rather mating games, with multiple syn-
onyms and meanings as verbal plumage (Miller 2011). The information-
versus-manipulation dilemma is also at the heart of the fascinating study of
animal signals, where reliability and cost are central themes. For example, if
a signal indicates the intention to attack, the population of honest signalers
seems unstable to the invasion of dishonest signalers who drive opponents from
precious resources without any intention or ability to attack; eventually, the
majority will be dishonest and the signal meaningless (Maynard Smith and
Price 1973). One hypothetical resolution is the handicap principle, which sug-
gests that some signals are too metabolically costly to fake: a fitness-lowering
peacock tail is a reliable signal of greater fitness (Zahavi 1975). Another mech-
anism involves mutual benefits between the signaler and receiver: a bright color
of a toxic animal benefits both it and a potential predator. Nontoxic animals can
use mimicry, but it is effective only if rare, as any unreliable signal. A quantitative
description of the evolution and stable equilibria of signal systems is a subject
of much interest. Even more tantalizing is the question of how any system of sig-
nals and codes gets started. After all, an absence of signaling also seems a stable
equilibrium: no signals means no ability to respond, which means no need to
signal. Related are the studies of the appearance and evolution of cooperation.
Such problems are generally treated in evolutionary game theory, which con-
siders optimization strategies (like we do in sections 3.6 and A.6) but in more
general situations where the result depends on the behavior of other players.

A.4 Ising Model of the Brain

As was mentioned at the end of section 3.1, the activity of a network of neu-
rons could be described by one-bit variables,σi=±1 (active or inactive). The
probability distribution that maximizes entropy under the given set of mean
activities 〈σi〉 and pairwise correlations 〈σiσj〉 is that of an Ising model (3.3):

ρ({σ })=Z−1 exp

⎡
⎣∑

i
hiσi+ 1

2

∑
i<j

Jijσiσj

⎤
⎦. (A.12)

One can also measure some multicell correlations and check how well they
agree with those computed from (A.12). Despite apparent patterns of collec-
tive behavior involving many neurons, it turns out to be enough to account
for pairwise correlations to describe the statistical distribution remarkably
well (Schneidman, Berry, Segev, and Bialek 2006). This is also manifested
by the entropy changes: measuring double, triple, and multicell correlations
imposes more restrictions and lowers the entropy maximum. One then checks
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that accounting for pairwise correlations changes the entropy significantly,
while accounting for further correlation changes the entropy relatively lit-
tle. The practical sufficiency of pairwise correlations provides an enormous
simplification, which may be important not only for our description but also
for the brain itself. The reason is that our mind actually develops and con-
stantly modifies its own predictive model of probability needed in particular
to accurately evaluate new events for their degree of surprise, as described in
section 3.4. The dominance of pairwise interactions means that learning rules
based on pairwise correlations could be sufficient to generate nearly optimal
internal models to accurately evaluate probabilities. Side remark: We should
not think that what is encoded from sensors into electrical neuron activity is
then “decoded” inside the brain. Whatever it is, the brain is not a computer.

It is interesting how the entropy scales with the number of interacting
neurons N. The entropy of noninteracting (or nearest-neighbor interacting)
neurons is extensive, that is, proportional to N. The data show that Jij are
nonzero for distant neurons as well. That means that the entropy of an
interacting set is lower at least by the sum of the mutual information terms
between all pairs of cells. The negative contribution is thus proportional to
the number of interacting pairs, N(N− 1)/2, that grow faster with N, at
least when it is not too large. One can estimate from low N data a “critical”
N when the quadratic term is expected to turn entropy into zero. That
critical N corresponds well to the empirically observed sizes of the clusters
of strongly correlated cells. The lesson: Even when pairwise correlations are
weak, sufficiently large clusters can be strongly correlated. It is also important
that the interactions Jij have different signs so that frustration can prevent
the freezing of the system into a single state (like ferromagnetic or anti-
ferromagnetic). Instead, there are multiple states that are local minima of
the effective energy function, as in spin glasses.

A.5 Applying the Infomax Principle

The maximal-capacity approach described in section 3.3 turns out to be quite
useful for image and speech recognition by iterative algorithms. One chooses
some form of the response function y= g(x, w) characterized by the param-
eter w and finds the optimal value of w using an “online” stochastic gradient
ascent learning rule, giving the change of the parameter:

�w∝ ∂

∂w
ln
(
∂g(x, w)
∂x

)
. (A.13)
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Of course, the eye or camera provides not a single input signal but the whole
picture. Let us consider N inputs and outputs (neurons/channels). An input
vector x= (x1, . . . , xN) is transformed into the output vector y(x)one to one,
that is, det[∂yi/∂xk] �= 0. The multivariate probability density function of y is
as follows:

ρ(y)= ρ(x)
det[∂yi/∂xk] . (A.14)

Making it flat (distributing outputs uniformly) for maximal entropy is not
straightforward now. In one dimension, it is enough to follow the gradient
to arrive at the closest extremum, but there are many possible paths to dif-
ferent mountain summits. Maximizing the total mutual information between
input and output, which requires maximizing the output entropy, is often (but
not always) achieved by first minimizing the mutual information between the
output components. For two outputs, we may start by maximizing S(y1, y2)=
S(y1)+ S(y2)− I(y1, y2), that is, minimizing I(y1, y2). If we are lucky and find
encoding in terms of independent components, then we choose for each com-
ponent the transformation (3.8), which maximizes its entropy, making the
probability flat; see exercise 2.10.

Maximizing the mutual information between input and output by first min-
imizing the mutual information between the components of the output is
particularly useful for natural signals, where most redundancy comes from
strong correlations (like that of the neighboring pixels in visuals). Also, finding
an encoding in terms of the least dependent components is important by itself
for its cognitive advantages. For example, such encoding generally facilitates
pattern recognition. In addition, presenting and storing information in the
form of independent (or minimally dependent) components is important for
associative learning done by brains and computers. To learn a new association
between two events A and B, the prior joint probability P(A, B) is needed. For
correlated N-dimensional A and B, one needs to store N×N numbers, but
only 2N numbers for quantities uncorrelated (until the association occurs).

Another cognitive task of identifying independent components is the
famous “cocktail party problem” posed by security services: N microphones
(flies on the wall) record N people speaking simultaneously, and we need
the program to separate them—the blind separation problem. A less sinister
aspect of such an auditory scene analysis is when you try to follow one of
the conversations in a noisy hall—it is easy when you look at the speaking
person and it is difficult when you don’t. Formally, the problem is as follows:
Uncorrelated sources s1, . . . , sN are mixed linearly by an unknown matrix Â.
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All we receive are the N superpositions of them, x1, . . . , xN . The task is to
recover the original sources by finding a square matrix Ŵ , which is the inverse
of the unknown Â, up to permutations and rescaling. Closely related is the
blind de-convolution problem (see, e.g., Bell and Sejnowski 1995): a single
unknown signal s(t) is convoluted with an unknown filter, giving a corrupted
signal x(t,= ∫ a(t− t′)s(t′) dt′, where a(t) is the impulse response of the
filter. This time the signal is corrupted not by other signals but by the time-
shifted version of itself. The task is to recover s(t) by integrating x(t) with
the inverse filter w(t), which we need to find by learning procedure. Upon
discretization, s, x are turned into N vectors and w into an N×N matrix,
which is lower triangular because of causality: wij= 0 for j> i and the diag-
onal values are all the same, wii= w̄. The determinant in (A.14) is simplified
in this case. For y= g(ŵx), we have det[∂y(ti)/∂x(tj)]= det ŵ

∏N
i y′(ti)=

w̄ N ∏N
i y′(ti). One then applies some variant of the gradient ascent method

to minimize mutual information.
Ideally, we wish to find the (generally stochastic) encoding y(x) that

achieves the absolute minimum of the mutual information
∑

i S(yi)− S(y).
One way to do that is to minimize the first term while keeping the second
one, that is, under the condition of the fixed entropy S(y)= S(x). In gen-
eral, one may not be able to find such encoding without any entropy change,
S(y)− S(x). In such cases, one defines a functional that grades different cod-
ings according to how well they minimize both the sum of the entropies of the
output components and the entropy change. The simplest energy functional
for statistical independence is then

E=
∑

i
S(yi)−β[S(y)− S(x)]=

∑
i

S(yi)−β ln det[∂yi/∂xk]. (A.15)

A coding is considered to yield an improved representation if it possesses a
smaller value of E. The choice of the parameter β reflects our priorities—
whether statistical independence or an increase in indeterminacy is more
important.

Maximizing information transfer and reducing the redundancy between
the units in the output is applied in practically all disciplines that analyze and
process data, from physics and engineering to biology, psychology, and eco-
nomics. Within the general infomax domain, this specific technique is called
independent component analysis. More sophisticated schemes employ not
only mutual information but also interaction information (2.32). The redun-
dancy reduction is usually applied after some procedure of eliminating noise.
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This is because our gain function provides equal responses for probable and
improbable events, but the latter can be mostly due to noise, which thus needs
to be suppressed. Moreover, if input noises are uncorrelated, they can get cor-
related after coding. More generally, it is better to keep some redundancy for
corrections and checks when dealing with noisy data.

A.6 Exploration or Exploitation: Index Strategy

Devising gambling strategies in section 3.6, we took the probabilities {pi} as
given. But more often one needs to play the game to learn the chances. As
one plays, incurs some gains and losses, and collects some information, one
needs to strike the right balance between the exploitation of existing informa-
tion to maximize the gain and an exploration for new information. There is a
broad class of the so-called sequential allocation problems encompassing the
design of clinical trials, adaptive routing, job scheduling, gambling, and mili-
tary logistics. Optimal for all of them is the remarkable index strategy, which
we first illustrate using the simple problem of scheduling jobs: Job i takes time
ti and, on completion, gives reward ri. It is important that later rewards are γ t

less valuable, where the discount factor 0<γ < 1. To maximize the total dis-
counted reward, we do i before j, if riγ

ti + rjγ
ti+tj > rjγ

tj + riγ
ti+tj . Taking ri

terms to the left and rj terms to the right, we can present this as an inequality
for the job indices:

νi= γ ti

1− γ ti
ri>νj= γ tj

1− γ tj
rj .

So we can compute the index νi for each job independently and schedule the
jobs in decreasing order of the indices.

It is remarkable that there exists an index strategy for problems where each
option has a random element with statistics initially unknown to us. Let us play
a so-called multiarmed bandit game, where we can only make one bet at a time,
choosing among several options (arms of slot machines). Each arm has some
probability of winning, 0≤ si≤ 1, and gives the same reward: r= 1 if you win
and 0 if you lose. At the start, we do not know the probabilities of winning,
si, so we take a uniform prior: P(si)= 1. We play each arm several times and
compute the posterior distribution by Bayes’ formula. If we encounter wi wins
and li losses, then for every value of si, the posterior probability is the binomial
distribution of wi, li happening:

P(si)= swi
i (1− si)

li (wi+ li+ 1)!
wi!li! . (A.16)
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Upon further trials with l′ losses and w′ wins, the distribution is multiplied
by sw′

i (1− si)
l′ ; that is, it preserves its form, renormalizing parameters. A

Bayesian update for every arm is equivalent to a random walk in a positive
direction on a two-dimensional lattice (wi, li). Each of these lattice points is a
state of a Markov process with the one-step vector of transition probabilities
P={wi/(wi+ li), li/(wi+ li)}.

We need a strategy that maximizes the sum of the discounted rewards: the
expected value of the sum r0+ γ r1+ γ 2r2+ . . . . Even though the total num-
ber of steps is potentially infinite, the discount factor introduces an effective
horizon� (1− γ )−1. The powerful statement that we give without proof is
that the optimal strategy is to play at each step the arm with the maximal index
νi (Gittins 1979). The index is the ratio of the expected sum of rewards to the
discounted time, under the assumption that playing the arm will be terminated
in the future after τ steps:

ν(li, ni, t)= sup
τ>0

∑τ−1
k=0 γ

k〈rt+k−1〉∑τ−1
k=0 γ

k
. (A.17)

Here

〈rt+k−1〉= wi(ti+ k− 1)
wi(ti+ k− 1)+ li(ti+ k− 1)

is the expected reward at step k, and we sum the future rewards that one would
obtain by choosing to play only the ith arm up to the stopping time t+ τ . The
brackets denote the averaging over all the lattice paths with expectations based
on the distributions (A.16) at every lattice point wi(ti+ k− 1), li(ti+ k− 1).
We take the maximum over the number of future steps, which is variable
since we admit the possibility of a switch to another arm. That supremum
can be shown to be achieved; that is, the stopping time τ is finite because
the discounted time in the denominator of (A.17) grows with τ . Denote
L= ν/(1− γ ), then

L= 1
1− γ τ

τ−1∑
k=0

γ k〈rt+k−1〉=
τ−1∑
k=0

γ k〈rt+k−1〉+ γ τL.

That formula means that the lump sum L either now or after some optimal
number of further rewards is an equally good alternative. One then obtains L
(numerically) as a maximal reward, which is a fixed point that does not change
upon one step.
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The game thus proceeds as follows: At the beginning, all indices are equal.
We start from an arbitrary arm and play it until the number of losses makes
its index less than other ones, then we switch to another one, etc. After a
while, all arms are played many times with switches occurring when enough
losses are encountered. In the limit li+wi→∞, the probability shrinks to
P(si)= δ(si− pi), where pi= limli+wi→∞ wi/(wi+ li), the mean reward is
r0= pi, and the evident optimal strategy is to choose the arm with the high-
est pi, that is, νi= r0= pi. Generally, the finite-time index is larger than its
infinite-time asymptotic, accounting for the possibility that the actual prob-
ability is larger than the observed one. As we play an arm, its distribution
(A.16) is getting more and more narrow and the index decreases, which makes
it possible to switch to another arm. Switching arms provides the possibility
of exploration and obtaining new information.

A.7 Memory Effects in Particle Collisions

Let us understand how corrections to the Boltzmann kinetic equation can
diverge with system size. To estimate the correction proportional to the
squared concentration, one needs to estimate the probability of a repeated
collision. For simplicity, assume that a given particle is scattered by randomly
placed, distant fixed scatterers with concentration ρ. The simplest case of a
repeated collision is shown in the figure: the particle is reflected by scatterer 2
to collide with 1 the second time.

1

2

The probability of such an event is proportional to ρ2 times the solid angle
of scatterer 2 as seen from 1 times the solid angle of scatterer 1 as seen from
2. To get the whole probability, one needs to integrate over all possible posi-
tions of scatterer 2. Let us show that such a probability diverges at large
distances in 2D and converges in 3D. The solid angles of the scatterers are
proportional to R1−d, where R is the distance between 1 and 2, considered
to be much larger than the size of the scatterer. The probability of finding
the second scatterer at such a distance is proportional to Rd−1dR. The total
probability of a triple collision giving a ρ2 correction is thus given by the inte-
gral

∫
Rd−1R2(1−d)dR= ∫ R1−ddR, which diverges at d≤ 2. Moreover, the
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correction proportional to ρn involves integration over n− 1 positions of dis-
tant scatterers and n solid angles, R(n−1)d+n(1−d), which diverges for all n≥ d.
That shows how the memory of past collisions and correlations accumulates.
In particular, a ρ3 correction is determined by the probability of returning to
1 after two consequent scatterings by 2 and 3 (not shown); such a probability
integrated over all possible positions of 2 and 3 could diverge in 3D.

Remarkably, all the divergences cancel in thermal equilibrium due to
detailed balance, so that the equation of state has a regular virial expansion.
For example, the pressure is an analytic function of density for dilute gases. For
nonequilibrium states, the cancellations are generally absent and one has to
deal with the divergences. In particular, that takes place if one tries to apply the
expansion over density to kinetic coefficients, like diffusivity, conductivity, or
viscosity. Of course, the divergences appear because the “naive” virial expan-
sion allows particles to travel arbitrarily long distances between collisions.
One must account for the collective effects that impose the large-distance cut-
off as the mean free path proportional to 1/ρ. That requires resummation and
brings logarithmic dependency ofρ. As a result, kinetic coefficients and other
nonequilibrium properties are nonanalytic functions of density.

A.8 Baker’s Map

Here we present a toy model that is able to describe both the mixing of area-
preserving flows and the fractalization of compressible flows.

Area-preserving map and mixing Consider first the area-preserving transfor-
mation: an expansion in the x direction and a contraction in the y direction,
arranged so that the unit square is mapped onto itself at each step. The trans-
formation consists of two steps: First, the unit square is contracted in the y
direction and stretched in the x direction by a factor of two. The unit square
becomes a rectangle, 0< x< 2, 0< y< 1/2. Next, the rectangle is cut verti-
cally in the middle and the right half is put on top of the left half to recover a
square.

1 1

(0, 0) (0, 0) (0, 0)1 2

1/2

y y y

x 1 xx
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This is how bakers prepare long, thin strips of pasta. If we consider two
initially close points, after n such steps the distance along x and y will be mul-
tiplied respectively by 2n= en ln 2 and 2−n= e−n ln 2. It is then easy to see,
without a lot of formalities, that there are two Lyapunov exponents corre-
sponding to the discrete time n. The one connected to the expanding direction
isλ+ = ln 2. The other connected to the contracting direction isλ− =− ln 2.
For the forward time operation of the baker’s transformation, the expand-
ing direction is along the x axis and the contracting direction is along the y
axis. If one considers the time-reversed motion, the expanding and contract-
ing directions change places. Therefore, for the forward motion, nearby points
separated only in the y direction approach each other exponentially rapidly
with the rate λ− =− ln 2. In the x direction, points separate exponentially
with λ+ = ln 2. The sum of the Lyapunov exponents is zero, which reflects
the fact that the baker’s transformation is area-preserving.

1

0 1

figure A.1. Iterations of a baker’s map.

Let us argue now that the baker transformation is mixing, that is, spread-
ing the measure uniformly over the whole phase space. If a measure is ini-
tially concentrated in any domain, as in the gray areas in figure A.1, after
a sufficiently long time the domain is transformed into a large number of
very thin, horizontal strips of length unity, distributed more and more uni-
formly in the vertical direction. Eventually, any set in the unit square will
have the same fraction of its area occupied by these little strips of pasta as
any other set. This is the indicator of a mixing system. If we add to that a
small coarse-graining, at a sufficiently long time it blurs our measure to
a constant one. We conclude that a sufficiently smooth initial distribution
function defined on the unit square will approach a uniform (microcanon-
ical) distribution. The baker’s map is area-preserving and does not change
entropy. When we add repeated coarse-graining along with the evolution,
then the entropy grows and eventually reaches the maximum, which is the
logarithm of the phase volume, as must be the case for the microcanonical
distribution.
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One can encode any point on the square using the binary code of the expansion
x=∑∞k=0 ak2−k−1, y=∑∞i=1 b−i2−i, where all ak, b−i are either 1 or 0. Sim-
ply, a1 encodes in which half, a2 encodes in which quarter within the half, etc.
Encoding any point as a bi-infinite string, (x, y)= . . . b−3b−2b−1.a0a1a2 . . . ,
one finds out that the baker’s map shifts the point . one step to the right. Using
such so-called symbolic dynamics, one can analyze the mixing properties of
maps.

To avoid the impression that cutting and gluing of the baker’s map are nec-
essary for mixing, consider a smooth model with a similar behavior. Namely,
consider a unit two-dimensional torus, that is, a unit square with periodic
boundary conditions, so that all distances are measured modulo 1 in the x and
y directions. We map x′ = ax+ by and y′ = cx+ dy. The action of such a toral
map is shown in figure A.2; it maps a unit torus into itself if a, b, c, d are all
integers. The eigenvalues λ1,2= (a+ d)/2±√(a− d)2/4+ bc are real when
(a− d)2/4+ bc≥ 0. For the transform to be area-preserving, the product of
the eigenvalues must be unity:λ1λ2= ad− bc= 1. In a general case, one eigen-
value is larger than unity and one is smaller, which corresponds respectively to
positive and negative Lyapunov exponents ln λ1 and ln λ2.

1

0

2

y

yʹ

yʹ

xʹ xʹx 1 2 3

figure A.2. Toral map.

Compressible map and fractalization To illustrate the entropy decay and frac-
talization in compressible flows, we consider a slight generalization of the
baker’s map, expanding one region and contracting another, keeping the
whole area:
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The transformation has the form

x′ =
{

x/l for 0< x< l
(x− l)/r for l< x< 1

,

y′ =
{

ry for 0< x< l
r+ ly for l< x< 1

, (A.18)

where r+ l= 1. The Jacobian of the transformation is not identically equal to
unity when r �= l:

J=
∣∣∣∣∂(x

′, y′)
∂(x, y)

∣∣∣∣=
{

r/l for 0< x< l
l/r for l< x< 1

. (A.19)

If l> 1/2, then r= 1− l< l, so that J< 1 in the shaded region where x< L
and J> 1 in the white region where x> L. Of course, the mean Jacobian
J= r+ l is unity, since we always occupy the same unit square. Like in the
treatment of the incompressible baker’s map, consider two initially close
points. If during n steps the points find themselves n1 times in the region
0< x< l and n2= n− n1 times inside l< x< 1, then the distances along x
and y will be multiplied respectively by l−n1 r−n2 and rn1 ln2 . Taking the log and
the limit, we obtain the Lyapunov exponents:

λ+ = lim
n→∞

1
n

ln
δx(n)
δx(0)

= lim
n→∞

[
n1

n
ln

1
l
+ n2

n
ln

1
r

]
=−l ln l− r ln r,

(A.20)

λ− = lim
n→∞

1
n

ln
δy(n)
δy(0)

= lim
n→∞

[n1

n
ln r+ n2

n
ln l
]
= r ln l+ l ln r. (A.21)

The sum of the Lyapunov exponents, λ+ + λ− = (l− r) ln(r/l)= ln J, is
nonpositive and is zero only for l= r= 1/2. Again, the convexity of the loga-
rithmic function means that ln J≤ ln J= 0. The volume contraction means
that the expansion in the λ+ direction proceeds slower than the contrac-
tion in the λ− direction. After n iterations of the map, a square having initial
side δ� L will be stretched into a long, thin rectangle of length δ exp(nλ+)
and width δ exp(nλ−). Asymptotically our strips of pasta concentrate on a
fractal set, which is smooth in the x direction and fractal in the y direction.
That gives two terms in the noninteger dimensionality, df = 1+ λ+/|λ−|;
see (5.21).
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Let us now use our model to derive the relation between the probabilities
of entropy increase and decrease:

P†(−�S)= P(�S)e−�S. (A.22)

Here P† refers to a time-reversed process. At every step, the volume con-
traction factor is the Jacobian of the transformation: J= r/l for x∈ (0, l)
and J= l/r for x∈ (l, 1). A longtime average rate of the entropy production,
ln J= (l− r) ln(r/l), is the volume contraction rate of a fluid element. How-
ever, during a finite time n, there is always a finite probability to observe an
expansion of an element. This probability must decay exponentially with n,
and there is a universal law relating relative probabilities of the extraction and
contraction. If during n steps a small rectangular element finds itself n1 times
in the region 0< x< l and n2= n− n1 times inside l< x< 1, then its sides
along x and y will be multiplied respectively by l−n1 r−n2 and rn1 ln2 . The vol-
ume contraction factor for such an n sequence is (l/r)n2−n1 , and its log is
�S= n ln J= n1 ln r

l + n2 ln l
r . The probability of the sequence is P(ln J)=

ln1 rn2 . The opposite sign of ln J takes place, for instance, in a time-reversed
sequence. Time reversal corresponds to the replacement x→ 1− y, y→ 1−
x, that is, the probability of such a sequence is P(− ln J)= rn1 ln2 . Therefore,
denoting the entropy production rate σ =− ln J, we obtain the universal
probability independent of r, l:

P(�S)
P(−�S)

= P(σ )
P(−σ) =

(
l
r

)n2−n1

= enσ = e�S. (A.23)

A.9 Multidimensional Renormalization Group

Here we qualitatively describe the renormalization group flow for the Ising
model in higher dimensions. Recall that we consider the Gibbs distribution
ρ{σi}=Z−1 exp

(
−K

∑
i,j σiσj

)
, where σi=±1, i, j are the nearest neigh-

bors, and K= 1/T is the parameter to be renormalized upon passing from
spins to blocks.

1D

σ1 σ2 σ3 σ4 σ5 σ6

2D

T = 0 T = 0 TcK = 0 K = 0
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Critical point and phase transition We have seen in section 5.5 that renormal-
ization in 1D is according to the law K′ = tanh−1(tanh3 K). Since tanh K< 1,
then K′<K, i.e., K decreases under RG transformation. That means that the
zero-temperature fixed point (K=∞) is unstable in 1D. Note, however, that
in the low-temperature region, K decreases slowly so that it does not change
in the main order: K′ =K− const≈K. This can be readily interpreted: the
interaction between m blocks is mediated by their boundary spins, which
all point in the same direction, K′ ≈K〈σ3〉σ2=1〈σ4〉σ5=1≈K (by the same
token, at high temperatures 〈σ 〉∝K so that K′ ∝K3). However, in d dimen-
sions, there are md−1 spins at the block side so that K′ ≈md−1K as K→∞.
For m= 3 and d= 2, we have K′ ≈ 3K; see the right panel of the preced-
ing figure. That means that K′>K, that is, the low-temperature fixed point
is stable at d> 1. On the other hand, the paramagnetic fixed point K= 0 is
stable too, so there must be an unstable fixed point in between at some Kc that
corresponds to a critical temperature Tc.

In contrast to the case of summing random numbers in section 5.5, we are
interested now in an unstable fixed point, because it separates regions between
two qualitatively different large-scale behaviors—ordered and disordered. At
a finite temperature, there are always ordered and disordered domains of dif-
ferent scales. At T>Tc, looking at larger and larger domains we find them
less and less correlated with each other. At T<Tc, the mean spins of larger
and larger domains are more and more correlated with each other.

Another new aspect of multidimensional spin systems is the need to con-
sider RG flows not only along the line of K values but also in multidimensional
parameter spaces. As seen in the left panel of figure A.3, summing over a
corner spin σ produces diagonal coupling between blocks. In addition to
K1, which describes an interaction between neighbors, we need to introduce
another parameter, K2, to account for a next-nearest-neighbor interaction. In
fact, RG generates all possible further couplings so that it is a flow in an infinite-
dimensional K space. An unstable fixed point in this space determines critical
behavior. The dimensionality of the attractor is determined by the number of
unstable directions. To be at criticality, displacements in the unstable direc-
tions must be kept at zero, which requires tuning the respective parameters.
We know, however, that we need to control a finite number of parameters to
reach a phase transition; for Ising at zero external field and many other systems,
it is a single parameter, temperature. For all such systems, RG flow has only one
unstable direction; all the rest must be contracting stable directions, like the
projection on the K1, K2 plane shown in the right panel of figure A.3. The line
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Critical surface

0 K1

K1

K2

K 2́

σ

Tc1

Tc2

figure A.3. Left: Next-nearest-neighbor coupling K2 due to
a corner spin. Right: Renormalization group flow with an
unstable fixed point.

of points attracted to the fixed point is the projection of the critical surface, so
called because the long-distance properties of each system corresponding to a
point on this surface are controlled by the fixed point. The critical surface is a
separatrix, dividing points that flow to high T (paramagnetic) behavior from
those that flow to low T (ferromagnetic) behavior at large scales.1

We can now understand why physicists are so interested in the critical sur-
face, where the fixed point is actually stable and attractive. That picture of the
RG flow explains the universality of long-distance critical behavior: different
physical systems (in different regions of the parameter K space) flow to the
same fixed point, that is, have the same statistics of large-scale correlations
and fluctuations. For example, changing the temperature in a system with only
nearest-neighbor coupling, we move along the line K2= 0. The point where
this line meets the critical surface defines K1c and respectively Tc1. At that
temperature, the large-scale behavior of the system is determined by the RG
flow, i.e., by the fixed point. In another system with nonzero K2 and changing
T, we move along some other path in the parameter space, indicated by the
dashed line in the right panel of figure A.3. The intersection of this line with
the critical surface defines some other critical temperature Tc2. However, the
long-distance properties of this system at that temperature are determined by
the same fixed point.

Irreversibility of RG flow It seems reasonable to expect the irreversibility of
the renormalization group since it is a way of forgetting. Yet it is far from

1. We mention in passing that, in dimensions d> 4, the block-spin renormalization of the
Ising-class models leads to asymptotic Gaussian distribution of the coarse-grained magnetiza-
tion: ln ρ(η)∝−|∇η|2.
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trivial to find entropic characteristics that change monotonically upon RG in a
multidimensional space. Eliminating modes step-by-step generally decreases
the mutual information between the remaining degrees of freedom. However,
rescaling and renormalization may increase it because some of the information
about eliminated degrees of freedom is stored in the renormalized values of the
parameters of the distribution. An increase or decrease of the mutual infor-
mation upon RG thus shows whether the large-scale behavior is respectively
ordered or disordered. It does not characterize the irreversibility of forgetting.

In Section 5.5, we characterized information exchange in one dimension,
looking at a single bond that separates two parts of a spin chain. Breaking a sin-
gle bond in more than one dimension does not cause separation. In a 2D plane,
one can consider a (finite) line L and break the direct interactions between
the degrees of freedom on the different sides of it. That is, we make a cut and
ascribe to every point two (generally different) values on the opposite sides.
The statistics of such a set are now characterized not by a vector of probabil-
ity on the line but by a matrix ρL, similar to the density matrix in quantum
statistics described in section 6.3. For that matrix, one defines von Neumann
entropy as SL=−TrρL log ρL.

For long lines in short-correlated systems, that quantity can be shown to
depend only on the distance r between the endpoints and not on the form
of a line connecting them (that is, information flows like an incompress-
ible fluid). Moreover, this dependence is logarithmic at criticality (when we
have fluctuations of all scales). To cancel nonuniversal terms depending on
the microscopic detail, one defines the function c(r)= rdSL(r)/dr, which is
shown to be a monotonic zero-degree function, using the positivity of the
mutual information (subadditivity of the entropy) between lines with r and
r+ dr (Zamolodchikov 1986, Casini and Huerta 2007). The same function
changes monotonically under RG flow and in a fixed point takes a finite value
equal to the so-called zero charge of the conformal field theory. The zero
charge is a measure of relevant degrees of freedom that respond to boundary
perturbations. It is even more difficult to introduce a proper intensive measure
of information flow in dimensions higher than two; so far it is done in a quite
model-specific way (see, e.g., Komargodski and Schwimmer 2011, Klebanov
et al. 2011).

In looking for fundamental characteristics of order in fluctuating systems in
higher dimensions, one can go even deeper. For instance, one can consider
for quantum systems in 2+ 1 dimensions the relative entanglement of three
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finite planar regions, A, B, C, all having common boundaries. As a quantum
analog of the interaction information (2.32), one can introduce so-called topo-
logical entanglement entropy, SA+ SB+ SC+ SABC− SAB− SBC− SAC. For
some classes of systems, one can show that the terms depending on the bound-
ary lengths cancel out; what remains (if anything) can be thus independent
of the deformations of the boundaries, that is, characterizing the topological
order, if it exists in the system (Kitaev and Preskill 2006).

A.10 Brownian Motion

We consider the motion of a small particle in a fluid. The momentum of the
particle, p=Mv, changes because of collisions with the molecules. Thermal
equipartition guarantees that the mean kinetic energy of the particle is the
same as the energy of any molecule and equal to T/2. When the particle
mass M is much larger than the molecular mass m, the RMS particle veloc-
ity, v=√T/M, is small compared to the typical velocities of the molecules,
vT =√T/m. That allows one to write the force f(p) acting on the particle as
a Taylor expansion in p, keeping the first two terms, independent of p and lin-
ear in p: fi(p, t)= fi(0, t)+ pj(t)∂ fi(0, t)/∂pj(t) (we neglect the dependence
of the force on the momentum at earlier times). Such expansion makes sense
if the neglected third term is much less than the second one, but then the sec-
ond term must be much smaller than the first one—what is the reason to keep
both? The answer is that molecules hitting a standing particle produce a force
whose average is zero. The mean momentum of the particle is zero as well.
However, random force by itself would make the squared momentum grow
with time, like the squared displacement of a random walker in section 4.2.
To describe the particle in equilibrium with the medium, the force must be
balanced by resistance, which is also provided by the medium: the particle
meets more molecules in the direction it moves and loses its momentum to
them. That resistance has a nonzero mean and must be described by the sec-
ond term, which then may be approximated as pj∂ fi/∂pj=−γ pjδij=−γ pi.
The dimensionality of γ is 1/sec; it is the rate of the momentum loss due to
the resistance of the liquid. We then obtain

ṗ= f − γ p. (A.24)

The solution of the linear equation (A.24) is

p(t)=
∫ t

−∞
f(t′)eγ (t′−t)dt′. (A.25) —-1
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We must treat the force f(t) as a random function since we do not track
molecules hitting the particle. We assume that 〈f〉= 0 and that 〈f(t′) · f(t′ +
t)〉= 3C(t) decays with t during the correlation time τ , which is much
smaller than γ−1 because it takes many collisions to change the momen-
tum of the particle. Since the integration time in (A.25) is of order γ−1,
then the condition γ τ� 1 means that the momentum of a Brownian particle
can be considered as a sum of many independent random numbers (inte-
grals over intervals of order τ), so it must have Gaussian statistics ρ(p)=
(2πσ 2)−3/2 exp(−p2/2σ 2), where

σ 2=〈p2
x〉=〈p2

y〉=〈p2
z〉=
∫ ∞

0
C(t1− t2)e−γ (t1+t2)dt1dt2

≈
∫ ∞

0
e−2γ t dt

∫ 2t

−2t
C(t′) dt′≈ 1

2γ

∫ ∞
−∞

C(t′) dt′. (A.26)

On the other hand, equipartition guarantees that 〈p2
x〉=MT so that we can

express the friction coefficient via the correlation function of the force fluctu-
ations (a particular case of the detailed balance):

γ = 1
2TM

∫ ∞
−∞

C(t′) dt′. (A.27)

Displacement,

�r(t′)= r(t+ t′)− r(t)=
∫ t′

0
v(t′′) dt′′,

is also Gaussian with a zero mean. To get its second moment, we need the
different-time correlation function of the velocities,

〈v(t) · v(0)〉= (3T/M) exp(−γ |t|), (A.28)

which can be obtained from (A.25). Note that friction makes velocity corre-
lated on a longer timescale than force. That gives

〈|�r|2(t′)〉=
∫ t′

0
dt1

∫ t′

0
dt2〈v(t1)v(t2)〉= 6T

Mγ 2 (γ t′ + e−γ t′ − 1).

The mean squared distance initially grows quadratically (the so-called ballis-
tic regime at γ t′ � 1). In the limit of a long time (comparing to relaxation
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timeγ−1 rather than to force correlation time τ), we have the diffusive growth
〈(�r)2〉≈ 6Tt′/Mγ .

Generally, 〈(�r)2〉= 6κt, where κ is the diffusivity. If the particle radius R is
larger than the molecular mean free path �, in calculating resistance, we can
consider liquid as a continuous medium and characterize it by the viscosity η.
For a slow-moving particle, v� vT�/R, the resistance is given by the Stokes
formula, γ = 6πηR/M. The diffusivity then satisfies the Einstein relation:

κ = T
Mγ
= T

6πηR
. (A.29)

The diffusivity depends on the particle radius but not the mass. Heavier par-
ticles are slower both to start and to stop moving. Measuring the diffusion of
particles with a known size, one can determine the temperature.2

The probability distribution of displacement at γ t′ � 1,

ρ(�r, t′)= (4πκt′)−3/2 exp[−|�r|2/4κt′] , (A.30)

satisfies the diffusion equation ∂ρ/∂t′ = κ∇2ρ.
An external field V(q) adds the force:

ṗ=−γ p+ f − ∂qV , q̇= p/M. (A.31)

These equations characterize the system with the HamiltonianH= p2/2M+
V(q). The system interacts with the thermostat, which provides friction−γ p
and agitation f—the balance between these two terms expressed by (A.27)
means that the thermostat is in equilibrium.

We now pass from considering individual trajectories to the description of
the “cloud” of trajectories and its statistics. Recall that our particle is macro-
scopic, that is, we consider the so-called overdamped limit γ τ� 1, where
τ is the correlation time of the random force. Since we are not interested in
small, irregular changes of the velocity, but only in the statistics of displace-
ment, we average (coarse-grain) over a moving time window, p(t)→ p(t)=∫ t+τ

t−τ p(t′)dt′. After the average, we can neglect acceleration. In this limit, our

2. With the temperature in degrees, (A.29) contains the Boltzmann constant, k= κMγ /T,
which was actually determined by this relation and found truly constant, i.e., independent of the
medium and the type of particle. That proved the reality of atoms—after all, kT is the kinetic
energy of a single atom.
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second-order equation (A.31) on q is reduced to the first-order equation
(we keep the same notations for coarse-grained quantities):

γ p= γMq̇= f − ∂qV . (A.32)

We can now derive the equation on the probability distributionρ(q, t), which
changes with time due to random noise and evolution in the potential; the two
mechanisms can be considered additively. Together, diffusion and advection
give the Fokker-Planck equation, which is a multidimensional generalization
of (4.7):

∂ρ

∂t
= κ∇2ρ+ 1

γM
∂

∂qi
ρ
∂V
∂qi
=−div J. (A.33)

More formally, one can derive (A.33) by writing (A.32) as q̇i−wi= ηi and
taking the random force Gaussian, delta correlated: 〈ηi(0)ηj(t)〉= 2κδijδ(t).
One can write the conditional probability ρ(q, t; 0, 0) as an average over all
possible paths, each with its own weight determined by the Gaussian statis-
tics of ηi. We start from the convolution identity, which simply states that the
walker was certainly somewhere at an intermediate time t1:

ρ(q, t; 0, 0)=
∫
ρ(q, t; q1, t1)ρ(q1, t1; 0, 0) dq1. (A.34)

We now divide the time t into a large number of short intervals, and using
(A.30) for each interval, we write

ρ(q, t; 0, 0) =
∫
�n

i=0
dqi+1

[4πκ(ti+1− ti)]d/2

× exp
[
−|qi+1− qi+w(ti+1− ti)|2

4κ(ti+1− ti)

]

→
∫

Dq(t′) exp
[
− 1

4κ

∫ t

0
dt′|q̇−w|2

]
. (A.35)

The last expression is an integral over paths that start at zero and end up at q
at t. The notation Dx(t′) implies integration over the positions at intermedi-
ate times normalized by square roots of the time differences. The exponential
gives the weight of every trajectory.

To describe the time change ofρ, consider the convolution identity (A.34)
for an infinitesimal time shift ε; then instead of the path integral, we get simply
the integral over the initial position q′. Into the exponent of this integral, we
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substitute q̇= (q− q′)/ε and obtain

ρ(q, t)=
∫

dq′(4πκε)−d/2 exp
[
−[q− q′ − εw(q′)]2

4κε

]
ρ(q′, t− ε).

(A.36)

What is written here is simply that the transition probability is the Gaussian
probability of finding the noise η with the right magnitude to provide for
the transition from q′ to q. It is a coarse-grained continuous version of (4.3).
We now change the integration variable, y= q′ + εw(q′)− q, and keep only
the first term in ε: dq′ = dy[1− ε∂q ·w(q)]. Here ∂q ·w= ∂iwi= divw. In
the resulting expression, we expand the last factor, ρ(q′, t− ε):

ρ(q, t)≈ (1− ε∂q ·w)
∫

dy(4πκε)−d/2e−y2/4κερ(q+ y− εw, t− ε)

≈ (1− ε∂q ·w)
∫

dy(4πκε)−d/2e−y2/4κε
[
ρ(q, t)+ (y− εw) · ∂qρ(q, t)

+ (yiyj− 2εyiwj+ ε2wiwj)∂i∂jρ(q, t)/2− ε∂tρ(q, t)
]

= (1− ε∂q ·w)[ρ− εw · ∂qρ+ εκ�ρ− ε∂tρ+O(ε2)].
(A.37)

We obtain (A.33), collecting terms linear in ε. Note that it was necessary to
expand to the quadratic terms in y, which made the contribution linear in ε
(namely the Laplacian, i.e., the diffusion operator).

A.11 Fluctuation Relations in a Multidimensional Case

Apart from making the potential time-dependent (as in section 4.4), there is
another way to deviate the system from equilibrium in more than one dimen-
sion: to add to (A.31) another external coordinate-dependent force F(q),
which is nonpotential (not a gradient of any scalar):

ṗ=−γ p+ f − ∂qV +F , q̇= p/M.

The nonpotential force makes the system non-Hamiltonian even without any
contact with a thermostat, that is, when γ = 0 and f = 0. Bringing such a
system into contact with a thermostat generally does not lead to thermal equi-
librium, as we discussed in section 5.4. The equation on the full phase-space
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distribution ρ(p, q, t) has the form

∂tρ={H, ρ}+T�pρ+ ∂pρ[F− γ p]=HKρ. (A.38)

It is called the Kramers equation. The Fokker-Planck equation follows from it
in the overdamped limit. Only withoutF, the Gibbs distribution exp(−H/T)
is a steady solution of (A.38), and one can formulate the detailed balance,

H†
K =�eH/THKe−H/T�−1 , (A.39)

where we add the operator-inverting momenta:�p�−1=−p. A nonpoten-
tial force violates the detailed balance in the following way:

H†
K =�eH/THKe−H/T�−1+ (F · q̇)/T. (A.40)

The last term (breaking the time-reversal symmetry) is again the power (F · q̇)
divided by temperature, i.e., the entropy production rate. The work done
by that force depends on the trajectory, in contrast to the case of a time-
independent potential force. That dependence of the work on the trajectory
precludes thermal equilibrium and is common for nonpotential forces and for
time-dependent potential forces. A close analog of the Jarzynski relation can
be formulated for the entropy production rate averaged during time t:

σt = 1
tT

∫ t

0
(F · q̇) dt. (A.41)

The power (F · q̇) is identically zero for a magnetic Lorentz force, which
is perpendicular to the velocity. For a potential force, F= dU/dq, we have
(F · q̇)= dU(q(t))/dt, and the integral turns into zero on average. A nonpo-
tential external force F must on average do positive work to keep the system
away from equilibrium. Over a long time, we thus expect σt to be overwhelm-
ingly positive, yet fluctuations do happen. The probabilities P(σt) satisfy the
relation, analogous to (4.20, A.23), which we give without derivation:

P(σt)

P(−σt)
∝ etσt = e�S. (A.42)

The probability of observing a negative entropy production decays expo-
nentially with the time of observation. Such fluctuations were unobservable
in classical macroscopic thermodynamics, but they are often very impor-
tant in modern applications to nano- and bio- objects. In the limit t→∞,
the probability of the integral (A.41) must have a large-deviation form,
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P(σt)∝ exp[−tH(σt)], so that (A.42) means that H(σt)−H(−σt)=−σt ,
as if P(σt) is Gaussian with H(σt)= (σt − 1)2/2.

One calls (4.20, A.23, A.42) detailed fluctuation-dissipation relations
since they are stronger than integral relations of the type (4.17, 4.18). Indeed,
it is straightforward to derive 〈exp(−tσt)〉= 1 from (A.42).

The relation similar to (A.42) can be derived for any system symmetric
with respect to some transformation, to which we add perturbation antisym-
metric with respect to that transformation. Consider a system with the vari-
ables s1, . . . , sN and the even energy: E0(s)= E0(−s). Consider the energy
perturbed by an odd term, E= E0− hM/2, where M(s)=∑ si=−M(−s).
The probability of the perturbation P[M(s)] satisfies the direct analog of
(A.42), which is obtained by changing the integration variable s→−s:

P(a)=
∫

dsδ[M(s)−a]eβ(ha−E0)=
∫

dsδ[M(s)+a]e−β(ha+E0)=P(−a)e−2βha.

The validity condition for the results in this section, as well as in section 4.4, is
that the interaction with the thermostat is represented by a noise independent
of the evolution of the degrees of freedom under consideration.

A.12 Quantum Fluctuations and Thermal Noise

Many aspects of the quantum world are bizarre and have no classical ana-
log. In spite of that, quantum and thermal fluctuations impose uncertainty in
somewhat similar ways due to the necessity of summing over different pos-
sibilities. One analogy is mentioned in section 4.4, where the Schrodinger
equation is treated as a diffusion equation with an imaginary diffusivity. That
means that one can treat the propagation of a quantum particle as a random
walk in an imaginary time. Indeed, the transition probability of a classical
unbiased random walk according to section A.10 is as follows:

ρ(x, t; 0, 0)=
∫

Dx(t′) exp
[
− 1

4κ

∫ t

0
dt ′̇x2(t′)

]
.

The transition amplitude T(x, t; 0, 0) of a quantum nonrelativistic particle
with mass M from zero to x during t is given by the sum over all possible paths
connecting the points. Every path is weighted by the factor exp(iS/�), where
S is the classical action (integral of energy over time):

T(x, t; 0, 0)=
∫

Dx(t′) exp
[
ıM
2�

∫ t

0
dt′ẋ2

]
. —-1
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Comparing the two, we see that the transition probability of a random walk
is given by the transition amplitude of a free quantum particle during an
imaginary time.

Another similarity is revealed using the Heisenberg representation of the
operators evolving in time. Recall that one special operator, called the Hamil-
tonian Ĥ, determines the temporal evolution of any other operator P̂ accord-
ing to P̂(t)= exp(iHt)P(0) exp(−iHt). We encountered an analog of the
evolution operator T̂(t)= exp(iĤt) in section 4.3. The quantum-mechanical
average of P̂(t) is calculated as a trace with the evolution operator normalized
by the trace of the evolution operator:

〈P̂〉= Tr T̂(t)P̂
Z(t)

, Z(t)=Tr T̂(t)=
∑

a
e−itEa . (A.43)

The normalization factor is naturally called the partition function, all the more
so if we formally consider it for an imaginary time t= iβ , now related to the
inverse temperature:

Z(β)=Tr T̂(iβ)=
∑

a
e−βEa . (A.44)

If the inverse “temperature”β goes to infinity, then all the sums are dominated
by the ground state, Z(β)≈ exp(−βE0), and the average in (A.44) is just the
expectation value in the ground state.

That quantum-mechanical description can be compared with the so-called
transfer-matrix description for the systems with nearest-neighbor interaction.
Take for simplicity the Ising model whose Gibbs probability distribution,
exp(−βH), is expressed via the classical Hamiltonian,

H= J
2

N−1∑
i=1
(1− σiσi+1) , σi=±1. (A.45)

Consider it on a ring so that σN+1= σ1 and write the partition function as a
simple sum over a spin value at every site:

Z=
∑
{σi}

exp

[
−βJ

2

N−1∑
i=1
(1−σiσi+1)

]
(A.46)

=
∑
{σi}

N−1∏
i=1

exp
[
−βJ

2
(1−σiσi+1)

]
. (A.47)-1—
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Every factor in the product can have four values, which correspond to four
different choices of σi=±1, σi+1=±1. Therefore, every factor can be writ-
ten as an element of a 2× 2 matrix: 〈σj|T̂|σj+1〉=Tσjσj+1 = exp[−βJ(1−
σiσi+1)/2]. It is called a transfer matrix because it transfers us from one site to
the next:

T=
(

T1,1 T1,−1
T−1,1 T−1,−1

)
, (A.48)

where T11=T−1,−1= 1, T−1,1=T1,−1= e−βJ . For any matrices Â, B̂, the
matrix elements of the product are [AB]ik=AijBjk. Therefore, when we sum
over the values of the intermediate spin, we obtain the elements of the matrix
squared:

∑
σi

Tσi−1σi Tσiσi+1 =[T2]σi−1σi+1 . The sum over N− 1 spins gives
TN−1. Because of periodicity, we end up summing over a single spin, which
corresponds to taking the trace of the matrix:

Z=
∑
{σi}

Tσ1σ2 Tσ2σ3 . . .TσNσ1 =
∑
σ1=±1

〈σ1|T̂N−1|σ1〉=Tr TN−1. (A.49)

We thus see that taking the sum over two values of σ at every site in the
Ising model is the analog of taking a trace in the quantum-mechanical aver-
age. If there are m values on the site, then T is an m×m matrix. For a spin
in n-dimensional space (described by the so-called O(n)model), trace means
integrating over orientations. The translations along the chain are analogous
to quantum-mechanical translations in (imaginary) time. This analogy is not
restricted to 1D systems; one can consider 2D strips that way too.

A.13 Quantum Thermalization

At the end of section 6.3, we mentioned a purely quantum way of thermaliza-
tion via the growth of entanglement. Is there any quantum analog of chaos
that underlies thermalization the same way that dynamical chaos underlies
mixing and thermalization in classical statistics, as described in section 5.3?
Writing the classical formula of exponential separation, δx(t)= δx(0)eλt , as
∂x(t)/∂x(0)= eλt and replacing quantum mechanically the space derivative
by the momentum operator, one naturally comes to consider the commutator
of x̂(t) and p̂(0):

∂x(t)
∂x(0)

= ∂x(t)
∂x(0)

∂p(0)
∂p(0)

− ∂x(t)
∂p(0)

∂p(0)
∂x(0)

={x(t), p(0)}→ �
−1[x̂(t), p̂(0)] . —-1
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That corresponds to the Heisenberg representation, where operators are
time-dependent. The commutator measures the effect of having the value
p̂(0) on the later measurement of x̂(t). The average value of this commuta-
tor over the Gibbs distribution with a finite temperature T is zero. Averaging
the square, C(t)=〈[x(t)p(0)]2)〉, brings the concept of a so-called out-of-
time-order correlation function like 〈x(t)p(0)x(t)p(0)〉. Such quantities are
found to grow exponentially in time in some quantum systems (complicated
enough to allow chaos and simple enough to allow for analytic solvability):
C(t)= �

2e2λt , where the uncertainty relation gives the starting value at t= 0.
The commutator squared is bounded, so that the exponential growth saturates
when C(t) becomes comparable with 〈p2〉〈x2〉—that value is supposed to be
much larger than �

2, which requires a quasi-classical limit. The corresponding
Lyapunov exponent dimensionally must be energy (temperature) divided by
�, and indeedλ= 2πT/� is shown to be a universal upper limit. To appreciate
this, note that for a particle with mass m, the time of effective scattering λ−1

cannot be less than the de Broglie wavelength �/
√

mT divided by the thermal
velocity

√
T/m (and the mass drops out!). The limit is reached, for instance,

by black holes, which scramble quantum information at the greatest possible
rate.

When there are many interacting particles, the growth of the many-particle
version, Cij=〈[xi(t)pj(0)]2)〉, describes how the entanglement of more and
more distant particles appears on the way to thermalization. The evolution of
the operators in the Heisenberg representation is governed by the Hamilto-
nian H{x̂i, p̂i}:

x̂i(t)= eıHt x̂i(0)e−ıHt =
∞∑

j=0

(ıt)j

j! [H . . . [Hx̂i(0)] . . .]. (A.50)

Since the Hamiltonian describes the interaction between particles, the sub-
sequent terms of the expansion involve more and more particles, which
describes the growth of entanglement with time.

Exercise A.4: Growth of entanglement entropy.
Consider an Ising spin chain with the transverse magnetic field in

the x direction. The Hamiltonian H=∑j σ
z
i σ

z
i+1+ hσ x

i . At t= 0,
the chain is in a pure unentangled state, ρ(0)= ρ1⊗ ρ2⊗ . . . , and
all components, σx, σy, σz, are nonzero. Find in which order in t
entanglement between neighboring sites appears. Use the commutation
relation [σ x

i , σ z
j ]= �δijσ

y
i .
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A.14 Exercises and Solutions

1.1: Candies and kids.
There are three candies and two systems to distribute them: system

1 contains two boys and system 2 contains three girls. Every boy and girl
can have zero, one, two, or three candies with equal probability. Kids are
distinguishable, but candies aren’t. What is the most probable number
of candies in system 1? What is the average number of candies in sys-
tem 1? What are the most probable and average numbers of candies in
system 2?

Solution
Let us compute the possible number of states. There is only one way

to leave girls without candies so that �2(0)= 1. Since we distinguish
the boys, there are four ways to distribute the remaining three candies
between the two of them: (0, 3), (1, 2), (2, 1), (3, 0) so that �1(3)=
4, and the composite system has �1(3)�2(0)= 4 · 1= 4 states. Simi-
larly,�1(2)�2(1)= 3 · 3= 9,�1(1)�2(2)= 2 · 6= 12,�1(0)�2(3)=
10. Since all the states are equally probable, then the maximal proba-
bility corresponds to the maximal number of states (12)—when there
is one candy in system 1 (and two in system 2). The probabilities of
different numbers for system 1 are p1(0)= 10/(10+ 12+ 9+ 4)=
10/35, p1(1)= 12/35, p1(2)= 9/35, p1(3)= 4/35. The average num-
ber in system 1 is (12+ 2 · 9+ 3 · 4)/35= 42/35= 6/5. The aver-
age number in system 2 is (9+ 2 · 12+ 3 · 10)/35= 63/35= 9/5.
The average number per kid is, thank God, the same for boys and
girls: 3/5. Most probable and average numbers approach each other
only in the thermodynamic limit of large populations and plentiful
candies.

2.1: Three squares have an average area of 100 m2. The average of the
lengths of their sides is 10 m. Use the Jensen inequality to determine the
values the areas of the three squares can take.

Solution
Convexity of the parabola means that the only way to have a

mean square equal to the square of the mean is to have all squares the
same.

—-1

—0

—+1



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 17:53 — page 188 — #36
�

�

�

�

�

�

188 a p p e n d i x

2.2: Information about precipitation.
In New York City, the probability of rain on the Fourth of July is 40%.

On Thanksgiving, the probability of rain is 65%, while the probability of
snow is 15%. When does the message on the presence or absence of pre-
cipitation bring more information—on Thanksgiving or on the Fourth
of July?

Solution
In the current climate, it is natural to assume that no snow is possi-

ble in July, so the information is−0.4 log2 0.4− 0.6 log2 0.6≈ 0.97 bits.
On Thanksgiving, the probability of no precipitation is 0.2, so that the
information is−0.2 log2 0.2− 0.8 log2 0.8≈ 0.72 bits.

2.3: Asking the right yes-no questions.
There are two different numbers not exceeding 100. What is the min-

imal number of one-bit questions we need to ask to determine both
of them? How many bits does one need to establish m numbers not
exceeding n?

Solution
There are C2

100= 4950 possible results, which all a priori have equal
probability. The uncertainty is then log2 4950≈ 12.3 bits. The minimal
number of one-bit questions is 13. Each question needs to be designed
to bring maximum information, which requires that the probabilities
of “yes” and “no” are equal or as close as possible. One way to do that
is to divide 4950 outcomes into two halves, etc. In a general case, the
information we need is log2 Cm

n bits.

2.4: Catching counterfeit coins.
In a pile of 27 coins, there is a counterfeit coin that weighs less than

the others. What is the minimum number of weighings on a balancing
scale we need to isolate that coin? Describe the procedure.

Solution
The information we need is log2 27 bits. Every weighing has three

possible outcomes—balanced, skewed to the left, skewed to the right—
so it brings log2 3 bits. The number of weighings then cannot be less
than log2 27/ log2 3= log3 27= 3. We get maximal information from
every act if the probabilities of all three outcomes are equal. At the first
step, that suggests dividing 27 into the three equal groups, and putting 9
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coins on each side of the scale. That determines the suspicious 9 coins,
which we then divide into three groups of 3, etc.

2.5: Deuteronomy.
Estimate the probability of the following sequence:

Solution
The length is N= 29 symbols. There are 12 distinct symbols with

the number of appearances respectively 6, 3 (four symbols), 2 (four
symbols), and 1 (three symbols). The total entropy is then SN=
6 ln(29/6)+ 12 ln(29/3)+ 8 ln(29/2)+ 3 ln(29)= 29 ln 29− 18 ln
3−14 ln 2≈ 68. The probability is exp(−NS)= exp(−68)≈ 3 · 10−30.
Without any extra information, it is an estimate from above, as any
asymptotic equipartition. Assuming that this alphabet is approxi-
mately triple-redundant as any modern one, we would divide the
entropy by 3.

2.6: Encoding by binary digits.
If we need to encode the results of independent throwing of a fair

coin, we can use a one-bit encoding: 0 for heads and 1 for tails.

(a) If we have a fair die, which is either a regular tetrahedron or a
cube, how long must our binary codewords be?

(b) If we have a fair die with six sides (all having the same
probability), which binary encoding could we use to provide
for a transmission rate within approximately 3% of the maximal
rate?

Solution

(a) Two-bit encoding provides four words for the four sides of the
tetrahedron, while three-bit encoding provides eight words for
the eight sides of the cube. In both cases, those are the shortest
encodings, so that the transfer rate is maximal.

(b) Each result brings the information log2 6≈ 2.58 bits. We could
divide the sequence of results into groups each containing m
results and encode each group by a word with length n; then we
use n/m bits per result. We can come within approximately 3%
of 2.58 by using n= 8, m= 3, and 8/3≈ 2.66. Indeed, the

—-1

—0

—+1



�

�

“125-128005_Folkovich_Information” — 2024/6/10 — 17:53 — page 190 — #38
�

�

�

�

�

�

190 a p p e n d i x

number of such groups is 63= 216. To represent them, we need
eight-digit words, whose number is 28= 256.

2.7: Conditional entropy of criminality.
In our town, 2% of the people are criminals, and they all carry guns.

In the rest of the population, only half of the people carry a gun.

(a) How much information yields a result about whether a given
person is a criminal or not?

(b) How much information yields such a result if we also know in
advance that the person does not carry a gun? How much
information does the result yield if we see that the person
carries a gun?

(c) How much information on average about a person’s criminality
yields knowledge of whether he/she carries a gun?

Solution

(a) Let us denote B as the criminality status; then the probabilities
are p(B1)= 0.02 and p(B2)= 0.98, so that the information
about criminality yields
S(B)=−0.98 log2 0.98− 0.01 log2 0.02≈ 0.14 bits.

(b) When we know that the person does not carry a gun (call it
A1), then the conditional probabilities are p(B1|A1)= 0 and
p(B2|A1)= 1, so that the conditional entropy S(B|A1)= 0;
no uncertainty left. However, when we spot a gun (call it A2),
the conditional probabilities are p(B1|A2)= 2/51 and
p(B2|A2)= 49/51, so that the conditional entropy
S(B|A2)=−(49/51) log2(49/51)− (2/51) log2(2/51)
≈ 0.24 bits, which is larger that the unconditional S(B).
The reason is simple—seeing the gun has excluded 49%
of the population, so that criminals now comprise a larger
fraction, which makes probabilities closer and increases
uncertainty.

(c) On average, the knowledge about carrying a gun decreases our
uncertainty about criminality: S(B|A)= p(A1)S(B|A1)+
p(A2)S(B|A2)≈ 0.51 · 0.24≈ 0.12 bits, which is less than
S(B)≈ 0.14 bits. The information about criminality gained by
the knowledge of gun carrying is I(A, B)= S(B)− S(B|A)=
0.02 bits. The same information about carrying a gun yields
knowledge of criminality.
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2.8: Cascade of binary channels.
Find the capacity of a cascade of n consequent binary channels each

with the probability of error q. How does the capacity decay at large n?

Solution
The capacity is C= 1− S(pn), where pn is the probability of an

error at the receiver after subsequently passing through n channels.
The error happens every time there is an odd number of errors on the
way. For example, p3= q3+ 3q(1− q)2. For arbitrary n, the error prob-
ability can be found using binomials and making all the even terms
cancel in the difference: pn=[(1− q+ q)n− (1− q− q)n]/2=[1−
(1− 2q)n]/2. Asymptotically, the capacity is quadratic in pn− 1/2 and
decays exponentially with n: C∝ (1− 2q)2n.

2.9: Capacity of a noisy channel.
Consider a noisy channel X→ Y , where both input and output can

take four values. After making 128 transmissions, the frequencies were
as follows:

Y\X x1 x2 x3 x4 Sum

y1 12 15 2 0 29
y2 4 21 10 0 35
y3 0 10 21 4 35
y4 0 2 15 12 29

Sum 16 48 48 16 128

Compute the mutual information between the input and the output.
What fraction of the output Y is a signal? What would be the capacity
of the channel if it were error-free?

Solution
The table of joint probabilities p(X, Y) looks as follows:

Y\X x1 x2 x3 x4 p(Y)

y1 0.094 0.117 0.016 0 0.227
y2 0.031 0.164 0.078 0 0.273
y3 0 0.078 0.164 0.031 0.273
y4 0 0.016 0.117 0.094 0.227

p(X) 0.125 0.375 0.375 0.125 1

On the margins are the marginal probability distributions p(X) and
p(Y).
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It is straightforward now to compute S(X)= 1.81 bits, S(Y)= 1.99
bits, S(X, Y)= 3.30 bits. Note that the output entropy S(Y) is larger
than the input entropy S(X), since the channel adds noise. The mutual
information is as follows: I(X, Y)= S(X)+ S(Y)− S(X, Y)= 0.509
bits. That means that only about a quarter of the output entropy is a sig-
nal; the rest is noise: I(X, Y)/S(Y)= 0.509/1.99≈ 0.256. That value
can be called transmission efficiency.

The error-free channel would have a capacity of two bits.

2.10: Efficient coding of Gaussian signals.
Consider two correlated signals with Gaussian statistics determined

by 〈x1〉= 〈x2〉= 0, 〈x2
1〉= 〈x2

2〉= 1, and 〈x1x2〉= r. Find the most effi-
cient encoding, y1(x1, x2) and y2(x1, x2). Remember that such encoding
must maximize the data transmission rate, that is, the entropy.

Solution
We first apply a linear transform to statistically independent com-

binations: x+ = (x1+ x2)/
√

2(1+ r), x− = (x1− x2)/
√

2(1± r), so
that 〈x2+〉= 〈x2−〉= 1, 〈x+x−〉= 0. Then we transform each of them
to make the probability flat, using the erf function whose derivative is
Gaussian:

y1,2= erf (x1± x2)/
√

2(1− r) .

2.11: Interaction information.
Consider a love triangle in which Y can date X and Z. Consider

the statistics of dating-not dating. Compute the entropies of the joint
distribution and all the marginal distributions and the interaction infor-
mation, II= S(X)+ S(Y)+ S(Z)+ S(X, Y , Z)− S(X, Y)− S(X, Z)−
S(Y , Z), in the two cases.

(a) Assume that Y with equal 1/3 probabilities can be in these
three states: not dating anyone, dating X, dating Z. That is, Y is
dating with probability 2/3.

(b) Assume that Y with equal 1/4 probabilities can be in these four
states: not dating anyone, dating X, dating Z, dating both X
and Z.

Solution

(a) Both X and Z are dating with probability 1/3 and not dating
with probability 2/3. Y is dating with probability 2/3, so that
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S(X)= S(Z)= S(Y)= (1/3) log2 3+ (2/3) log2(3/2). All the
composite states have probability 1/3 so that S(X, Y)=
S(Y , Z)= S(X, Z)= S(X, Y , Z)= log2 3. In this case, II< 0.
Even though there is a true correlation between the dating
states of X and Z, knowledge of whether Y is dating or not
increases it.

(b) S(X)= S(Z)= 1, S(Y)= 1/2+ (3/4) log2(4/3), S(X, Y , Z)=
S(X, Z)= 2, S(X, Y)= S(Z, Y)= 3/2. II= 1+ 1+ 1/2+
(3/4) log2(4/3)+ 2− 2− 3= (1/4) log2(16/27)< 0. In this
case, I(X, Z)= 0 and II=−I(X, Z|Y); that is, knowledge
of the dating state of Y imposes a correlation between X and Z.
Alternatively, one may say that this is a case of synergy, where
knowing the dating states of both X and Z gives more
information about Y than knowing them separately.

2.12: Correlations between three events.
What sign is the interaction information between i) clouds, rain, and

darkness, and ii) a dead car battery, a broken fuel pump, and failure to
start the engine?

Solution

i) Positive interaction information appears for common-cause
phenomena. Clouds cause rain and also block the sun;
therefore, the correlation between rain and darkness is partly
accounted for by the presence of clouds: I(rain, dark|cloud)
< I(rain, dark) and II(rain, dark, cloud)> 0.

ii) Negative interaction information appears for common-effect
phenomena. Generally, malfunctions of the fuel pump and the
battery are uncorrelated. However, if we know that the engine
failed to start (fix common effect), then the dependency
appears: if the check shows that the battery is OK, we infer that
the pump must be broken.

2.13: Distance between distributions.
Consider two random quantities X and Y and define ρ(X, Y)=

S(X|Y)+ S(Y |X). Apparently, ρ(X, Y) is nonnegative and turns into
zero if and only if X and Y are perfectly correlated.
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(a) Prove the triangle inequality ρ(X, Z)≤ ρ(X, Y)+ ρ(Y , Z).
(b) Recall that the three random quantities X→ Y→Z constitute

a Markov triplet if Y is completely determined by X, Z, while
X, Z are independent, conditional on Y ; that is, I(X, Z|Y)= 0.
Find the relation between ρ(X, Z) and ρ(X, Y), ρ(Y , Z).

Solution

(a) Triangle inequality:

S(X, Z)≤ S(X, Y , Z)= S(X, Z|Y)+ S(Y)

≤ S(X|Y)+ S(Z|Y)+ S(Y)= S(X, Y)+ S(Y , Z)− S(Y) .

(b) For the Markov triplet, Y is completely determined by X, Z,
that is, S(X, Y , Z)= S(X, Z). In addition, I(X, Z|Y)=
S(X, Z|Y)− S(X|Y)− S(Z|Y)= S(X, Y , Z)+ S(Y)− S(X, Y)
− S(Y , Z)= 0. That gives equality ρ(X, Z)= ρ(X, Y)+
ρ(Y , Z), that is, the “point” Y lies on a “straight line” through X
and Z. In terms of the distances, all points in a Markov chain lie
in a straight line. That allows one to establish identities of the
following type: S(X1, X3)+ S(X2, X4)= S(X1, X4)

+ S(X2, X3).

3.1: Distribution from information.
Consider particles having coordinates x on a line: −∞< x<∞.

Find the probability distribution p(x) in two cases.

(a) The only information established by measurement is that the
mean distance from zero is 〈|x|〉 =X.

(b) The only information established by measurement is that the
variance is given by 〈x2〉=X2.

Which measurement provides more information on the coordinate dis-
tribution? Quantify the difference in bits.

Solution
p1= (2X)−1 exp(−|x|/X), p2= (2πX2)−1/2 exp(−x2/2X2). S1=

ln(2X)+ 1, S2= ln X+ 1/2[1+ ln(2π)]. I2− I1= (S1− S2)/ ln 2=
(1+ ln 2− lnπ)/2 ln 2≈ 0.4 bits.-1—
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3.2: Rate-distortion function of a binary source.
Consider a binary source, which generates B= 1 with probability

p< 1/2 and B= 0 with probability 1− p. Define the distortion function
d(A, B)= δAB− 1, that is, zero when A=B and unity otherwise (the
so-called Hamming function). Find the rate-distortion function R(D).

Solution
For D> p, we can choose A= 0 with probability 1, so that R=

I(A, B)= 0. For D≤ p, one realizes the minimum of the mutual infor-
mation by symmetric encoding: P(A= 1|B= 1)= 1−D= P(A=
0|B= 0) and P(A= 1|B= 0)= P(A= 0|B= 1)=D. By the nature of
the Hamming distortion function, D is the probability of miscod-
ing. The conditional probabilities give S(B|A)= S(D) and R(D)=
I(A, B)= S(B)− S(B|A)= S(p)− S(D), where S(x)=−x log x−
(1− x) log(1− x).

3.3: Bookmaker’s sure bet.
In a series of two-horse races, the first horse wins three times more

often than the second one. Yet public sentiment is such that it bets on the
first horse only twice as many times. A bookmaker has two choices to set
the rewards: i) according to race probabilities, pay respectively 4/3Z and
4/Z times the amount of the bet on the first/second horse, ii) according
to public preferences, pay respectively 3/2Z and 3/Z times the amount
of the bet on the first/second horse. Here Z> 1 to guarantee a (small)
profit. Which strategy is preferable?

Solution
Even though the longtime mean profit is the same in both cases,

the second strategy is preferable because the bookmaker guarantees the
profit of 1− 1/Z from every race independent of its result. The rea-
son is that every bet is an average over many people. The first strategy
can encounter some short-term losses before the long-term average over
many races sets it.

4.1: PageRank of the two-page internet.
Consider the simplest version of the internet, which has two pages:

page 1 has one link to page 2, which has no links. Rank these —-1
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pages according to the PageRank algorithm with arbitrary d< 1 (the
probability of following a link).

Solution
The Google matrix is as follows:

Ĝ= 1
2

(
1 1

1− d 1+ d

)
.

The eigenvalues satisfy the equation ‖λÎ−Ĝ‖= (λ− 1/2)[λ− (1+
d)/2]−(1− d)/4= 0, which has two solutions: λ= 1 and λ= d/2.
The eigenvector that corresponds to λ= 1 is (1− d, 1)/(2− d), so the
rank 1 is (1− d)/(2− d) and the rank 2 is 1/(2− d).

4.2: Eigenvalues of the Google matrix.
Assume that the matrix Â with the spectrum (1, λ2, . . . , λn) is

stochastic, that is,
∑

j aij= 1 for every i. Prove that the spectrum of the
Google matrix Ĝ= dÂ+ (1− d)evT is (1, dλ2, . . . , dλn), where v is an
arbitrary probability vector, that is,

∑
i vi= 1.

Solution
Any stochastic matrix has the eigenvector e= (1, . . . , 1) with the

eigenvalue 1. Let Q̂ = (e X̂) be a nonsingular matrix having the eigen-

vector e as its first column. Denote Q̂−1=
(
yT

YT

)
. Then Q̂−1Q̂ =(

yTe yTX̂
YTe YTX̂

)
, which gives two useful identities: yTe= 1 and YTe=

0. Now we can use Q̂ in the similarity transformation (which does not
change the spectrum) to isolate the first eigenvalue:

Q̂−1ÂQ̂ =
(
yTe yTÂX̂
YTe YTÂX̂

)
=
(

1 yTÂX̂
0 YTÂX̂

)
, (A.51)

which reveals that YTÂX̂ contains the remaining eigenvalues of Â,
(λ2, . . . , λn). Applying the similarity transformation to Ĝ= dÂ+ (1−
d)evT gives

Q̂−1ĜQ̂ =
(

d dyTÂX̂

0 dYTÂX̂

)
+ (1− d)

(
yTe

YTe

)
(vTe vTX̂)

=
(

1 dyTÂX̂+ (1− d)vTX̂

0 dYTÂX̂

)
.-1—
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Comparing with (A.51), we conclude that the eigenvalues of Ĝ= dÂ+
(1− d)evT are (1, dλ2, . . . , dλn).

4.3: Solus Rex.
A king randomly moves to any of the adjacent squares with equal

probability on an otherwise empty 3× 3 chessboard.

(a) How much information brings a message specifying his
position?

(b) If we wish to encode the whole long game (the random walk of
the king), we need to know how the number of typical
sequences N(n) grows asymptotically with the number n of the
moves: limn→∞ N(n)= 2nS. Find S, which is called the
information rate of the source. Is it the same as the entropy that
determined the answer to the previous question?

Solution
Denote ⎛

⎝ 1 2 3
4 5 6
7 8 9

⎞
⎠.

(a) A message specifying the king’s position gives the information
equal to the entropy of the invariant (stationary) distribution
pi, i= 1, . . . , 9. A straightforward way to find the distribution is
to write the 9× 9 transition probability matrix Â={aij} and
find its eigenvector with the unit eigenvalue:

pi=
∑

j
pjaji . (A.52)

A simpler way is to use symmetries and a detailed balance.
Symmetries require p1= p3= p7= p9, p2= p4= p6= p8, and
normalization gives 4p1+ 4p2+ p5= 1. The detailed balance
means that for any i, j we have

piaij= pjaji. (A.53)

Note that (A.52) is a sum of (A.53) over j. The detailed balance
gives two independent relations, p1/3= p2/5 and p1/3= p5/8.
That gives p1= p3= p7= p9= 3/40, p2= p4= p6= p8= 1/8,
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p5= 1/5. The entropy of such a distribution is S=−∑ pi
log2 pi= 29/10+ (1/2) log2 5− (3/10) log2 3.

(b) The information rate is H=−∑ij piaij log2 aij= 3/40+
10−1 log2 15. Of course, H< S since the rules of the game
impose restrictions on possible strings.

4.4: Random walk on a circle.
Consider a one-dimensional random walk over a circle with N sites as

a Markov chain and write the one-step transformation of the probability
distribution over the sites i= 1, . . . , N. Find the transition probabil-
ity matrix Â and show that its eigenvectors are eıjk if kn= 2πn/N for
n= 0, 1, . . . , N− 1. Show that the only stationary distribution is the
eigenvector with the highest eigenvalue and the rate of relaxation to it
is determined by the second largest eigenvalue.

Solution
Probability at a site evolves according to pi(t+ τ)=[pi−1(t)+

pi+1(t)]/2=∑j pjaij; that is, the matrix Â has all elements zero, except
next-to-diagonal elements 1/2. Eigenvalues are λn= cos kn for the
respective eigenvectors eıjkn . After m steps in time, the amplitude corre-
sponding to an eigenvector is multiplied by λm

n ≈ exp[−2m(nπ/N)2].
In the limit m→∞, the only surviving eigenvector corresponds to
λ= 1 and n= 0; the longtime relaxation is determined by the next
eigenvector with n= 1. The relaxation time is then τN2/2π2.

4.5: Random walk in an inverted potential.
Consider a particle in an inverted quadratic potential V(x)=
−αx2/2 under the action of a random noise η(t) with 〈η(0)η(t)〉=
δ(t). This is described by the Langevin equation with α > 0:

ẋ=αx+ η. (A.54)

Assume that the particle is at x0 at t= 0.

(a) Find the probability distribution ρ(x, t) by directly solving
(A.54). Find the longtime decay of probability at a finite
distance.

(b) Write the Fokker-Planck Hamiltonian HFP. Find the spectrum
of the Hamiltonian and compare it with the cases of negative
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and zero α. In our case of positive α, relate the longtime
asymptotic of ρ(x, t) to the lowest eigenvalue of the
Fokker-Planck Hamiltonian.

Solution

(a) At all times, x has Gaussian statistics since it is linearly related to
η. To specify the Gaussian statistics, all we need is the mean and
the variance. The direct solution of the Langevin equation gives

x(t)= x0eαt +
∫ t

0
eα(t−t′)η(t′) dt′ . (A.55)

The mean value grows exponentially with time: 〈x(t)〉= x0eαt .
Taking the square of (A.55), we obtain the variance:

〈[x(t)−〈x(t)〉]2〉= 1
2α
(

e2αt − 1
)

. (A.56)

The distribution is thus given by

ρ(x, t)=
[π
α

(
e2αt − 1

)]−1/2
exp
[
− α

e2αt − 1
(

x− x0eαt)2
]

.

(A.57)

Asymptotically at αt� 1, the probability at any finite distance,
x� x0eαt , decays as follows:

ρ(x, t)=
(α
π

)1/2
exp
(−αt−αx2

0
)

.

(b) The Fokker-Planck Hamiltonian is HFP=
(−∂2

x +α2x2+
α
)
/2. Its eigenvalues are En= (n+ 1/2)|α| +α/2. For a

noninverted potential with α < 0, the lowest eigenvalue is zero,
E0= 0, and the respective eigenfunction is an asymptotic
equilibrium steady state, exp(αx2). In our case, however, the
lowest eigenvalue is positive: E0=α. Still, it determines the
longtime asymptotic of (A.57): ρ(x, t)∝ e−αt +O

(
e−2αt).

The probability of finding the particle at any finite distance
from the origin decays exponentially with the rate, E0=α. In
the degenerate case of a free random walk, α= 0, the spectrum
of HFP is continuous and covers the half-line [0,∞); the
probability decays by a power law, t−1/2.
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5.1: RG and the family of universal distributions.
Consider a set of random iid variables x1 . . . xN .

(a) The RG reduces the number of random variables by replacing
any two of them by their mean (half sum): zi= (x2i−1+
x2i)/2. Show that the Fourier image of the distribution
ρ(k)= exp(−|k|) is a fixed point of this map. Study the linear
stability of this fixed point. What probability density does this
correspond to? Why doesn’t this contradict the central limit
theorem?

(b) Consider the one-parametric family of the transformations:
zi= (x2i−1+ x2i)/21/μ. Find the fixed point, that is, the
distribution invariant under this transformation.

Solution

(a) The RG transformation is as follows:

ρ′(z)=
∫
ρ(x)ρ(y)δ(z− x/2− y/2) dxdy ⇒ ρ′(k)

= ρ2(k/2) .

The stationary solution satisfying ρ0(k)= ρ2
0(k/2) is ρ0(k)=

exp(−|k|), whose Fourier transform is ρ0(x)= (1+ x2)−1. For
ρ(k)= ρ0(k)[1+ h(k)], the linear eigenfunctions of the RG
transformation are hm= km with eigenvalues 21−m. The
transform conserves normalization and the mean (m= 0, 1), so
ρ0 is the limiting distribution (attractor) when the mean was
zero from the very beginning. Since every step of the
transformation diminishes the variance, then the invariant
distribution ρ0(x)must have an infinite variance. This is the
reason the central limit theorem cannot be applied. In a sense,
this distribution (named after Cauchy) generalizes the central
limit theorem for iid variables with the tails 1/x2; it can be
generalized further for other power tails.

When the second moment is finite, all terms within the sum
are of the same order, and none of them play a dominant role,
which leads to a sum having Gaussian statistics. When the
second moment is infinite, a few terms become extremely large
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and dominate the sum, which leads to a non-Gaussian
distribution.

(b) We now have the family of universal distributions
ρ(k)= exp(−|k|μ), characterized by the parameterμ.

6.1: Least uncertain wave packet.
Proceeding from the fact that the momentum operator in the coordi-

nate representation is p̂x= ı�∂x, find the stateψ(x) that minimizes the
expectation of the product of variances of the coordinate and momen-
tum, 〈ψ |[p̂, x̂]|ψ〉. What is the correspondingψ(p)?

Solution
Consider (6.1):

|〈ψ |[Â, B̂]|ψ〉|2= 4|〈ψ |ÂB̂|ψ〉|2− |〈ψ |ÂB̂+ B̂Â|ψ〉|2

≤ 4|〈ψ |ÂB̂|ψ〉|2≤ 4〈ψ |Â2|ψ〉〈ψ |B̂2|ψ〉.
To turn the Cauchy-Schwarz inequality into equality in the second line,
we need the vectors Â|ψ〉 and B̂|ψ〉 to be parallel. Solving the equation

x̂|ψ〉= xψ(x)∝ p̂|ψ〉= ı�∂ψ(x)
∂x

,

we obtain ψ(x)= exp(ıCx2). In addition, we need 〈ψ |p̂x̂+ x̂p̂|ψ〉=
0, which requires imaginary C= ıa. Normalization implies a> 0. The
solution is thus Gaussian:ψ(x)∝ exp(−ax2). The wave functions of a
quantum particle in the coordinate and momentum representations are
related by the Fourier transform,ψ(x)= ∫ dpψ(p) exp(ıpx/�), so that
ψ(p) is Gaussian as well. Computing the respective probability distribu-
tions |ψ(x)|2 and |ψ(p)|2, one verifies that the Heisenberg minimum of
the product of variances of x and p is realized by a Gaussian wave packet.

6.2: Density matrix.
Consider two mixed states (ensembles): In the first ensemble A, the

system can be in the state |0〉with the probability 3/4 and in the state |1〉
with the probability 1/4. In the second ensemble B, the system can be in
the state |a〉=√3/4 |0〉+√1/4 |1〉 and in the state |b〉=√3/4 |1〉−√

1/4 |0〉with equal probability.

(a) Write the density matrices for these two ensembles in the basis
|0〉 , |1〉.
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(b) Consider two sets of normalized vectors, |ψi〉 and
∣∣φj
〉
, and

two probability distributions, pi and qj. The sets are related
by√pi |ψi〉=∑j uij

√qj
∣∣φj
〉
, where the matrix is unitary:∑

i uiju∗ik= δjk. Find the relation between two density matrices,
ρ1=∑i pi |ψi〉 〈ψi| and ρ2=∑j qj

∣∣φj
〉 〈
φj
∣∣.

Solution

(a) The density matrices are the same:

ρA= ρB= 3
4
|0〉 〈0| + 1

4
|1〉 〈1| = 1

4

[
3 0
0 1

]
.

(b) More generally,

ρ1=
∑

i
pi |ψi〉 〈ψi| =

∑
ijk

uiju∗ik
√qjqk

∣∣φj
〉 〈φk|

=
∑

jk

δjk
√qjqk

∣∣φj
〉 〈φk| =

∑
j

qj
∣∣φj
〉 〈
φj
∣∣= ρ2.

6.3: Von Neumann entropy.
Consider two nonorthogonal states, |0〉 and the superposition |s〉=

(|0〉− |1〉)/√2, mixed with the respective probabilities p and 1− p.
Find the density matrix ρ in the orthogonal basis |0〉 , |1〉, diagonalize
it, compute the von Neumann entropy S(ρ), and compare it with S(p).

Solution
Since the probabilities of the nonorthogonal states |0〉 and (|0〉+
|1〉)/√2 are, respectively, p and 1− p, the density matrix in the orthog-
onal basis |0〉 , |1〉 is as follows:

ρ= p |0〉 〈0| + 1− p
2
|0+ 1〉 〈0+ 1| = 1

2

[
1+ p 1− p
1− p 1− p

]
. (A.58)

The eigenvalues are q= (1±√2p2− 2p+ 1)/2 and 1− q with the
respective eigenstates√q |1〉+√1− q |0〉 and−√q |0〉+√1− q |1〉.
The von Neumann entropy is the Shannon entropy in this orthonormal
representation: S(ρ)= S(q). One can show that S(q)≤ S(p) for any p.
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In particular, for p= 1/2, we have q= (2+√2)/2= sin2(π/8) and

S(ρ)= S(q)=−q log q− (1− q) log(1− q)

= 1+ 1
2
− 1

2
√

2
log

2+√2
2−√2

≈ 0.6 bits,

which is indeed less than S(p)= 1.

A.1: Large deviations for the energy of particles.
Find the probability distribution of the kinetic energy, E=∑N

1 p2
i /2,

of N classical, identical unit-mass particles in 1D, which have the
Maxwell distribution over momenta. Derive the large-deviation form of
the distribution in the limit N→∞.

Solution
The Maxwell distribution for momenta is Gaussian:

ρ(p1, . . . , pN)= (2πT)−N/2 exp

(
−

N∑
1

p2
i /2T

)
.

The energy probability for any N is done by integration, using spherical
coordinates in the momentum space:

ρ(E, N)=
∫
ρ(p1, . . . , pN)δ

(
E−

N∑
1

p2
i /2

)
dp1 . . . dpN

=
(

E
T

)N/2 exp(−E/T)
E�(N/2)

. (A.59)

Plotting it for different N, one can appreciate how the thermodynamic
limit appears. Taking the logarithm and using the Stirling formula, one
gets the large-deviation form for the energy R= E/Ē, normalized by the
mean energy Ē=NT/2:

ln ρ(E, N)= N
2

ln
RN

2
− ln

N
2
! − RN

2
≈ N

2
(1−R+ ln R). (A.60)

This expression has a maximum at R= 1, i.e., the most probable value
is the mean energy. The probability of R is Gaussian near the maximum
when R− 1≤N−1/2 and non-Gaussian for larger deviations. Notice
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that this function is not symmetric with respect to the minimum; it is
logarithmic at zero and linear asymptotic at infinity.

A.2: Large deviations for binomial distribution.
One of the most widely used statistical distributions (including in

this book) is the binomial distribution of two possible outcomes, y= 1
with probability p and y= 0 with probability 1− p. Compute the prob-
ability that, in a large number of trials N, the first outcome happens qN
times; that is, X=∑N

i=1 yi= qN. Do it in two ways: 1) discrete combi-
natoric, using the binomial formula CqN

N =N!/(qN)!(N− qN)! for the
number of ways to choose qN out of N, and the Stirling formula ln N! ≈
N ln N; 2) continuous, using the large-deviation theory, that is, comput-
ing the cumulant generating function G(z)= ln〈ezy〉= ln(pez+ 1− p)
and the Legendre transform of it.

Solution

1) P(q)=CqN
N pqN(1− p)(1−q)N and ln[P(q)]≈N ln N−

qN ln(qN)− (1− q)N ln(N− qN)+ qN ln p+ (1− q)N ln(1−
p)= qN ln(q/p)+ (1− q)N ln[(1− q)/(1− p)].

2) P(q)≈ exp[−NH(q)], where H(q)= z0q−G(z0), where
G′(z0)= q. Inverting G′(z0), we obtain z0= ln[q(1− p)/
p(1− q)], so that H(q)= q ln(q/p)+ (1− q) ln[(1− q)/(1− p)].
It is a concave function with the minimum H(q= p)= 0.

We see that H is the relative entropy between the measured probabil-
ity q and the probability p treated as a hypothesis.

A.3: Generating function for cumulants.
The derivatives at zero of the logarithm of the generating func-

tion G(z)= ln〈ezy〉 are called cumulants. Are κn= (dnG/dzn)z=0 equal
to the moments of (y−〈y〉)n? Express the first four κ1, . . . , κ4 via
μn=〈yn〉.

Solution

〈exp(zy)〉= 1+
∞∑

n=1

zn

n! 〈y
n〉 , G(z)= ln〈ezy〉= ln〈1+ ezy− 1〉

=−
∑
n=1

1
n
(

1−〈exp(zy)〉)n=−
∑
n=1

1
n

(
−
∞∑

m=1

zm

m! 〈y
m〉
)n
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= z〈y〉+
(
〈y2〉− 〈y〉2

)z2

2! + . . . . (A.61)

Comparing order by order, we find

κ1=μ1, κ2=μ2−μ2
1=〈(y−μ1)

2〉,
κ3=μ3− 3μ2μ1+ 2μ3

1=〈(y−μ1)
3〉,

κ4=μ4− 4μ3μ1− 3μ2
2+ 12μ2μ

2
1− 6μ4

1 �= 〈(y−μ1)
4〉.

An advantage in working with cumulants is that for the sum of
independent random variables their cumulants sum up. For example,
consider two random quantities A, B and the second cumulant of their
sum: 〈(A+B−〈A〉− 〈B〉)2〉= 〈(A−〈A〉)2〉+ 〈(B−〈B〉)2〉), which
is true as long as 〈AB〉= 〈A〉〈B〉, i.e., A, B are independent. Therefore,
the cumulant generating functions G is a sum. Indeed, it is the log of
the generating function of the moments 〈(A+B)n〉, which is a product:
〈exp z(A+B)〉= 〈exp zA〉 〈exp zB〉.
A.4: Growth of entanglement entropy.

Consider an Ising spin chain with the transverse magnetic field
in the x-direction. The Hamiltonian H=∑j σ

z
i σ

z
i+1+ hσ x

i . At t= 0,
the chain is in a pure unentangled state, ρ(0)= ρ1⊗ ρ2⊗ . . . , and
all components, σ x, σ y, σ z are nonzero. Find in which order in t
entanglement between neighboring sites appears. Use the commutation
relation [σ x

i , σ z
j ]= �δijσ

y
i .

Solution

σ z
i+1(t)− σ z

i+1(0)= t[H, σ z
i+1(0)]+

t2

2
[H, [H, σ z

i+1(0)]]

= t�hσ y
i+1(0)+

(t�)2

2
hσ x

i+1(0)σ
z
i (0).

The entanglement between neighboring sites appears at t2-order.
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active inference, 68
adiabatic process, 3
area law, 141
asymptotic equipartition, 20, 46

Bayes approach, 66
Bayesian approach, 43
Bekenstein bound, 141
binocular rivalry, 66
bit, 18
blind de-convolution, 165
box-counting dimension, 86, 111
brain, 60
brevity law, 160

capacity, 35, 63, 145
Carnot criterion, 2
central limit theorem, 157
central limit therem, 114
chain rule, 32, 41
coarse graining, 101
cocktail-party problem, 164
codeword, 25
complexity, 150
conditional entropy, 28, 31
conditional probability, 28, 30, 66
continuity equation, 86, 95
convexity, 5, 22, 47, 83, 110, 144, 149
convolution identity, 180
critical surface, 175

density matrix, 125
detailed balance, 182

differential entropy, 39
distortion function, 70
dynamical chaos, 93, 108

energy, 3
entanglement, 126, 131
entropy, xi, 2, 11, 15
entropy production, 92
equation of state, 13, 140,

153, 154
equilibrium, 54, 95, 99
equipartition, 178
erasing information, 58
ergodic, 107
Euler equation, 153
evolution operator, 88

Fokker-Planck equation, 87, 90, 180
fractal, 111, 172
free energy, 10, 46, 56, 60, 91

geberative model, 70
general uncertainty relation, 130
generating function, 114, 156
generative model, 67
genome, 60
geometric mean, 77
Gibbs distribution, 15, 46, 52, 72, 91
Gibbs-Duhem relation, 153
Gittins index, 167

handicap principle, 162
heat engine, 2
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Herdan-Heap law, 160
Hick-Hyman law, 62
holographic principle, 141
horizon, 140
Huffman code, 27

imaginary time, 184
independent component analysis, 165
infomax principle, 63
information bottleneck, 73
Ising model, 55, 115, 118, 173
isoperimetric inequality, 6

jacobian, 6
Jensen inequality, 22, 91

kinetic equation, 98
kinetic proofreading, 60
Kolmogorov-Sinai entropy, 107

Landauer principle, 58
large deviation theory, 155
Legendre transform, 156
Liouville theorem, 95
Lyapunov exponent, 105, 112, 170

Markov chain, 28, 82, 84
mating games, 162
mixed state, 126, 135
mixing, 93, 170
money, 79
monotonicity, 48, 130
mutual information, 47, 57, 99, 117, 129,

145, 164

natural selection, 61
negative temperature, 13
neuron, 64
non-orthogonal states, 134

Occam’s razor, 42

partition function, 15, 116
perception, 66
phase transition, 174
phenotype switching, 78
proportional gambling, 76
pure state, 126, 131

quantum state, 121
quantum superposition, 120
quantum thermalization, 131
quasi-static process, 7
qubit, 123

random walk, 81
random-typing model, 160
redundancy, 24, 29, 73
relative entropy, 52, 77, 146
renormalization, 116, 148, 176
response function, 63

Schmidt decomposition, 125
separation of trajectories, 104
spin-block renormalization, 115, 173
statistical weight, 11
Stirling formula, 13
stochastic matrix, 83
sub-additivity of entropy, 33

temperature, 6
tensor product, 125
thermodynamic limit, 4, 12
thermostat, 14
typical sequence, 19, 36, 134, 145

uncertainty principle, 122

Zipf law, 160
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