Gravitational waves from the first-order phase transition as probe of Leptogenesis

Nimmala Narendra

IACS, Kolkata,

Hearing beyond the standard model with cosmic sources of Gravitational Waves 30 December 2024 to 10 January 2025 at ICTS, Bengaluru.

3 Gravitational Waves From FOPT

4 Results-GW as a probe of Leptogenesis

Gravitational Waves From FOPT

4 Results-GW as a probe of Leptogenesis

5 Summary

• Within the Standard Model $(SU(3)_c \times SU(2)_L \times U(1)_Y)$, the neutrinos are massless particles.

- Within the Standard Model (SU(3)_c × SU(2)_L × U(1)_Y), the neutrinos are massless particles.
- Neutrino Oscillation experiments confirmed non-zero but small neutrino masses.

- Within the Standard Model $(SU(3)_c \times SU(2)_L \times U(1)_Y)$, the neutrinos are massless particles.
- Neutrino Oscillation experiments confirmed non-zero but small neutrino masses.
- By introducing right-handed neutrinos (RHN), the small neutrino mass can be addressed through Type-I seesaw mechanism.

- Within the Standard Model $(SU(3)_c \times SU(2)_L \times U(1)_Y)$, the neutrinos are massless particles.
- Neutrino Oscillation experiments confirmed non-zero but small neutrino masses.
- By introducing right-handed neutrinos (RHN), the small neutrino mass can be addressed through Type-I seesaw mechanism.
- Fukugita and Yanagida(1986) Baryogenesis via Leptogenesis

- Within the Standard Model $(SU(3)_c \times SU(2)_L \times U(1)_Y)$, the neutrinos are massless particles.
- Neutrino Oscillation experiments confirmed non-zero but small neutrino masses.
- By introducing right-handed neutrinos (RHN), the small neutrino mass can be addressed through Type-I seesaw mechanism.
- Fukugita and Yanagida(1986) Baryogenesis via Leptogenesis
- But the Right-handed neutrino mass scale is at High scale

- Within the Standard Model $(SU(3)_c \times SU(2)_L \times U(1)_Y)$, the neutrinos are massless particles.
- Neutrino Oscillation experiments confirmed non-zero but small neutrino masses.
- By introducing right-handed neutrinos (RHN), the small neutrino mass can be addressed through Type-I seesaw mechanism.
- Fukugita and Yanagida(1986) Baryogenesis via Leptogenesis
- But the Right-handed neutrino mass scale is at High scale
- Resonant Leptogenesis, singlet scalar extension, Leptogenesis in the scotogenic model of radiative neutrino masses-terrestrial laboratories.

- Within the Standard Model $(SU(3)_c \times SU(2)_L \times U(1)_Y)$, the neutrinos are massless particles.
- Neutrino Oscillation experiments confirmed non-zero but small neutrino masses.
- By introducing right-handed neutrinos (RHN), the small neutrino mass can be addressed through Type-I seesaw mechanism.
- Fukugita and Yanagida(1986) Baryogenesis via Leptogenesis
- But the Right-handed neutrino mass scale is at High scale
- Resonant Leptogenesis, singlet scalar extension, Leptogenesis in the scotogenic model of radiative neutrino masses-terrestrial laboratories.
- Difficult to probe at the current experimental setups.

- Within the Standard Model $(SU(3)_c \times SU(2)_L \times U(1)_Y)$, the neutrinos are massless particles.
- Neutrino Oscillation experiments confirmed non-zero but small neutrino masses.
- By introducing right-handed neutrinos (RHN), the small neutrino mass can be addressed through Type-I seesaw mechanism.
- Fukugita and Yanagida(1986) Baryogenesis via Leptogenesis
- But the Right-handed neutrino mass scale is at High scale
- Resonant Leptogenesis, singlet scalar extension, Leptogenesis in the scotogenic model of radiative neutrino masses-terrestrial laboratories.
- Difficult to probe at the current experimental setups.
- We need to look at the Cosmological prospective...

• This discovery of Gravitational Waves from Black Hole mergers detected by LIGO and Virgo Collaboration triggered several to put efforts to detect Gravitational Waves of primordial origins.

- This discovery of Gravitational Waves from Black Hole mergers detected by LIGO and Virgo Collaboration triggered several to put efforts to detect Gravitational Waves of primordial origins.
- First order phase transition, topological defects, Cosmic strings, primordial black holes, etc.,

- This discovery of Gravitational Waves from Black Hole mergers detected by LIGO and Virgo Collaboration triggered several to put efforts to detect Gravitational Waves of primordial origins.
- First order phase transition, topological defects, Cosmic strings, primordial black holes, etc.,
- We consider GW that are produced from First Order Phase Transition

- This discovery of Gravitational Waves from Black Hole mergers detected by LIGO and Virgo Collaboration triggered several to put efforts to detect Gravitational Waves of primordial origins.
- First order phase transition, topological defects, Cosmic strings, primordial black holes, etc.,
- We consider GW that are produced from First Order Phase Transition
- We assume after the phase transition, a heavy scalar ϕ dominates the energy budget of the Universe.

Gravitational Waves From FOPT

4 Results-GW as a probe of Leptogenesis

5 Summary

• The heavy singlet scalar field ϕ couples to a pair of right-handed neutrinos

• The heavy singlet scalar field ϕ couples to a pair of right-handed neutrinos

$$\mathcal{L} \supset \lambda \ \phi \ \overline{N^c} N$$

• After the transition, the ϕ decays to radiation and pair of right-handed neutrinos.

• The heavy singlet scalar field ϕ couples to a pair of right-handed neutrinos

- After the transition, the ϕ decays to radiation and pair of right-handed neutrinos.
- The subsequent decay of right-handed neutrinos generates lepton asymmetry (by satisfying Sakharov conditions**), which is then transfers to the baryon asymmetry via the sphaleron processes.

• The heavy singlet scalar field ϕ couples to a pair of right-handed neutrinos

- After the transition, the ϕ decays to radiation and pair of right-handed neutrinos.
- The subsequent decay of right-handed neutrinos generates lepton asymmetry (by satisfying Sakharov conditions**), which is then transfers to the baryon asymmetry via the sphaleron processes.
- We assume the reheating temperature $T_{RH} < M_N$

• The heavy singlet scalar field ϕ couples to a pair of right-handed neutrinos

- After the transition, the ϕ decays to radiation and pair of right-handed neutrinos.
- The subsequent decay of right-handed neutrinos generates lepton asymmetry (by satisfying Sakharov conditions**), which is then transfers to the baryon asymmetry via the sphaleron processes.
- We assume the reheating temperature $T_{RH} < M_N$
- As the T_{RH} of the Universe passes mass scale of right-handed neutrino M_N , *i.e.*, $T_{RH} < M_N$, it behaves as a non-relativistic.

• The heavy singlet scalar field ϕ couples to a pair of right-handed neutrinos

- After the transition, the ϕ decays to radiation and pair of right-handed neutrinos.
- The subsequent decay of right-handed neutrinos generates lepton asymmetry (by satisfying Sakharov conditions**), which is then transfers to the baryon asymmetry via the sphaleron processes.
- We assume the reheating temperature $T_{RH} < M_N$
- As the T_{RH} of the Universe passes mass scale of right-handed neutrino M_N , *i.e.*, $T_{RH} < M_N$, it behaves as a non-relativistic.
- **Sakharov conditions:(i)B (or L) number violation, (ii) C and CP violation, (iii) Departure from thermal equilibrium.

Boltzmann Equations-Leptogenesis

$$\begin{aligned} \frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} &= -\Gamma_{\phi}^{NN} \rho_{\phi} - \Gamma_{\phi}^{R} \rho_{\phi} \\ \frac{d\rho_{R}}{dt} + 4H\rho_{R} &= \Gamma_{\phi}^{R} \rho_{\phi} + \Gamma_{N}(\rho_{N} - \rho_{N}^{eq}) \\ \frac{d\rho_{N}}{dt} + 3H\rho_{N} &= \Gamma_{\phi}^{NN} \rho_{\phi} - \Gamma_{N}(\rho_{N} - \rho_{N}^{eq}) \\ \frac{dn_{B-L}}{dt} + 3H n_{B-L} &= \frac{\epsilon}{M_{N}} \Gamma_{N}(\rho_{N} - \rho_{N}^{eq}) - \Gamma_{\text{ID}} n_{B-L} \\ \Gamma_{\phi}^{NN} &= \frac{|\lambda|^{2}}{4\pi} M_{\phi} \left(1 - \frac{4M_{N}^{2}}{M_{\phi}^{2}}\right)^{\frac{3}{2}}, \\ \Gamma_{\phi}^{R} = \frac{|\lambda_{R}|^{2}}{4\pi M_{\phi}}, \\ \Gamma_{(N \to L+H)} = \frac{|Y|^{2}}{8\pi} M_{N} \end{aligned}$$

The total decay width $\Gamma_{\phi} \equiv \Gamma_{\phi}^{NN} + \Gamma_{\phi}^{R}$ The CP-asymmetry:

$$\epsilon = \sum_{i} \epsilon_{i} = \frac{3}{16\pi (Y^{\dagger}Y)_{ii}} \sum_{j \neq i} \operatorname{Im}\left[(Y^{\dagger}Y)_{ji}^{2}\right] \left(\frac{M_{i}}{M_{j}}\right).$$

Light neutrino mass-Type-I seesaw

The relevant Lagrangian for Type-I seesaw:

$$-\mathcal{L} \supset Y \overline{N} \widetilde{H}^{\dagger} L + M \overline{N^{c}} N + h.c.$$

where Y is the Yukawa coupling, H and L are SM-Higgs and lepton doublets.

The light neutrino mass matrix:

$$m_{
u} \simeq m_D M^{-1} m_D^T$$

where $m_D = Yv/\sqrt{2}$, with v = 246 GeV being the SM Higgs VEV. We can diagonalize this matrix by a unitary transformation

$$D_{\nu} = \operatorname{diag}(m_1, m_2, m_3) = U^T m_{\nu} U,$$

where U is the PMNS matrix. The Yukawa coupling matrix in terms of Casas-Ibarra parametrization

$$Y = \frac{\sqrt{2}}{v} U \sqrt{D_{\nu}} R^{T} \sqrt{M},$$

where R is a complex orthogonal matrix.

Redefinitions-Leptogenesis

Redefined variables,

$$\begin{split} E_{\phi} &= \rho_{\phi} a^3, \qquad R = \rho_R a^4, \\ E_N &= \rho_N a^3, \qquad \widetilde{N}_{B-L} = n_{B-L} a^3 \end{split}$$

Ratio of the scale factor to its initial value,

$$y = \frac{a}{a_l}$$

With redefinitions, the Hubble parameter

$$H = \sqrt{\frac{8\pi}{3M_{Pl}^2} \frac{(a_l E_{\phi} y + a_l E_N y + R)}{a_l^4 y^4}}$$

dimensionless variable,

$$z = \frac{M_{N_1}}{T} = M_{N_1} \left[\frac{\pi^2 g_*}{30 R} \right]^{1/4} a_I y$$

Re-expressed Boltzmann Equations-Leptogenesis

The equilibrium density in terms of z

$$E_{N}^{eq} = \rho_{N}^{eq} a^{3} = \frac{M_{N}^{4}}{\pi^{2}} \left[\frac{3}{z^{2}} K_{2}(z) + \frac{1}{z} K_{1}(z) \right] a_{I}^{3} y^{3}$$

In terms of newly defined rescaled quantities the set of Boltzmann equations

$$\frac{dE_{\phi}}{dy} = -\frac{\Gamma_{\phi}^{NN}}{Hy}E_{\phi} - \frac{\Gamma_{\phi}^{R}}{Hy}E_{\phi}$$
$$\frac{dR}{dy} = \frac{\Gamma_{\phi}^{R}}{H}a_{I}E_{\phi} + \frac{\Gamma_{N}}{H}a_{I}(E_{N} - E_{N}^{eq})$$
$$\frac{dE_{N}}{dy} = \frac{\Gamma_{\phi}^{NN}}{Hy}E_{\phi} - \frac{\Gamma_{N}}{Hy}(E_{N} - E_{N}^{eq})$$
$$\frac{d\widetilde{N}_{B-L}}{dy} = \frac{\Gamma_{N}}{Hy}\frac{\epsilon}{M_{N}}(E_{N} - E_{N}^{eq}) - \frac{\Gamma_{ID}}{Hy}\widetilde{N}_{B-L}$$

Initial conditions-Leptogenesis

The initial energy density of the heavy scalar field obtained from the condition $\Gamma_{\phi} = H(a_I)$:

$$\rho_{\phi_I} = \frac{3M_{PI}^2}{8\pi}M_{\phi}^2.$$

The initial conditions at $a = a_I$: $R(a_I) = 0, E_N(a_I) = 0, \widetilde{N}_{B-L}(a_I) = 0$ and $E_{\phi}(a_I) \equiv E_{\phi_I} = (3/8\pi)M_{PI}^2M_{\phi}^2a_I^3$. The \widetilde{N}_{B-I} asymmetry is related to the total N_{B-I} via,

$$N_{B-L} = \frac{n_{B-L}}{n_{\gamma}} = \left(\frac{\pi^4}{30\,\zeta(3)}\right) \left(\frac{30}{\pi^2}\right)^{1/4} \frac{g_*^{3/4}}{g_{\gamma}} R^{-3/4} \widetilde{N}_{B-L}.$$

$$g_{\gamma}\zeta(3) = \pi^3 \qquad \pi^2 g_{\gamma} = \pi^4 \qquad \pi^2 g_{\ast} = \pi^4$$

$$n_{\gamma} = \frac{\beta\gamma\varsigma(3)}{\pi^2}T^3$$
, $\rho_{\gamma} = \frac{\pi}{30}\frac{\beta\gamma}{7}T^4$, $\rho_R = \frac{\pi}{30}\frac{\beta\kappa}{7}T^4$

BAU via Leptogenesis

The predicted N_{B-L} is related to the η_B measured at recombination given as

$$\eta_B = \left(\frac{a_{sph}}{f}\right) N_{B-L}\,,$$

where $a_{sph}=28/79$, and $f=N_{\gamma}^{\rm rec}/N_{\gamma}^{*}=2387/86$.

BAU via Leptogenesis

The predicted N_{B-L} is related to the η_B measured at recombination given as

$$\eta_B = \left(\frac{a_{sph}}{f}\right) N_{B-L}\,,$$

where $a_{sph} = 28/79$, and $f = N_{\gamma}^{rec}/N_{\gamma}^* = 2387/86$.

3 Gravitational Waves From FOPT

4 Results-GW as a probe of Leptogenesis

5 Summary

Gravitational Waves From FOPT

The total GW abundance come from the Bubble collision, Sound waves and Turbulence (Ellis, et.al):

$$\Omega_{col,*}h^{2}(f) = 2.3 \times 10^{3} (R_{*}H_{*})^{2} \left(\frac{\kappa_{col}\alpha}{1+\alpha}\right)^{2} \left[1 + \left(\frac{f}{f_{d}}\right)^{-1.61}\right] \times \left(\frac{f}{f_{col}}\right)^{2.54} \left[1 + 1.13 \left(\frac{f}{f_{col}}\right)^{2.08}\right]^{-2.3}$$

$$\Omega_{sw,*}h^{2}(f) = 0.384 (R_{*}H_{*}) (\tau_{sw}H_{*}) \left(\frac{\kappa_{sw}\alpha}{1+\alpha}\right)^{2} \left(\frac{f}{f_{sw}}\right)^{3} \left[1 + \frac{3}{4} \left(\frac{f}{f_{sw}}\right)^{2}\right]^{-7/2},$$

$$\Omega_{turb,*}h^{2}(f) = 6.85 \left(R_{*}H_{*}\right) \left(1 - \tau_{sw}H_{*}\right) \left(\frac{\kappa_{sw}\alpha}{1 + \alpha}\right)^{3/2} \left(\frac{f}{f_{turb}}\right)^{3} \frac{\left[1 + \left(\frac{f}{f_{turb}}\right)\right]^{-11/3}}{1 + 8\pi f/H_{*}},$$

$$\begin{split} f_d &\simeq \left(\frac{0.044}{R_*}\right), \quad f_{col} \simeq \left(\frac{0.28}{R_*}\right), \quad f_{sw} \simeq \left(\frac{3.4}{R_*}\right), \quad f_{turb} \simeq \left(\frac{5.1}{R_*}\right), \\ \tau_{sw} &= \frac{R_*}{U_f} \ , U_f \simeq \sqrt{\frac{3}{4}} \frac{\alpha_{\text{eff}}}{1 + \alpha_{\text{eff}}} \kappa_{sw}, \\ \kappa_{sw} &= \frac{\alpha_{\text{eff}}}{\alpha} \frac{\alpha_{\text{eff}}}{0.73 + 0.083 \sqrt{\alpha_{\text{eff}}} + \alpha_{\text{eff}}}, \\ \alpha_{\text{eff}} &= \alpha (1 - \kappa_{col}). \end{split}$$

Gravitational Waves-Redshift

- Once the gravitational waves produced propagates from the phase transition until today.
- The ratio of the scale factor at the transition to the scale factor today

$$f_{0} = f_{*}\left(\frac{a_{*}}{a_{0}}\right) = 1.65 \times 10^{-5} Hz\left(\frac{f_{*}}{H_{*}}\right) \left(\frac{T_{*}}{100 \text{ GeV}}\right) \left(\frac{g_{*}}{100}\right)^{1/6}$$
$$\Omega_{GW,0} = \left(\frac{a_{*}}{a_{0}}\right)^{4} \left(\frac{H_{*}}{H_{0}}\right)^{2} \Omega_{GW,*} = 1.67 \times 10^{-5} h^{-2} \left(\frac{100}{g_{*}}\right)^{1/3} \Omega_{GW,*}$$

After production the GWs redshift in the same way as radiation.

A period of matter-domination modifies the GW abundance observed today. The GW spectrum redshifts as:

$$\Omega_{\mathrm{GW},0}(f) = \begin{cases} \left(\frac{a_*}{a_0}\right)^4 \left(\frac{H_*}{H_0}\right)^2 \Omega_{\mathrm{GW},*} \left(\frac{a_0}{a_*}f\right) & \text{for } f > f_*, \\ \\ \left(\frac{a_f}{a_0}\right)^4 \left(\frac{H_f}{H_0}\right)^2 \Omega_{\mathrm{GW},*} \left(\frac{a_0}{a_*}f_*\right) \left(\frac{f}{f_*}\right)^3 & \text{for } f < f_*, \end{cases}$$

The GW amplitude redshift factor:

$$\left(\frac{a}{a_0}\right)^4 \left(\frac{H}{H_0}\right)^2 = 1.67 \times 10^{-5} h^{-2} \left(\frac{100}{g_{eff}(T_{\rm reh})}\right) \left(\frac{a}{a_{\rm reh}}\right)^4 \left(\frac{H}{H_{\rm reh}}\right)^2$$

and the frequency redshift factor:

$$\frac{a_*}{a_0} = 7.96 \times 10^{-16} \left(\frac{100 \,\text{GeV}}{T_{\text{reh}}}\right) \left(\frac{100}{g_{\text{eff}}}\right)^{\frac{1}{3}} \left(\frac{a_*}{a_{\text{reh}}}\right)$$

The evolution of the energy densities

$$\frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} = -\Gamma_{\phi}^{NN}\rho_{\phi} - \Gamma_{\phi}^{R}\rho_{\phi}$$
$$\frac{d\rho_{R}}{dt} + 4H\rho_{R} = \Gamma_{\phi}^{R}\rho_{\phi} + \Gamma_{N}(\rho_{N} - \rho_{N}^{eq})$$
$$H^{2} = \frac{\rho_{\phi} + \rho_{R}}{3M_{p}^{2}}$$

By approximating the solution of the above system,

$$H(a) = H_* \left(\frac{a_*}{a_{reh}}\right)^{\frac{3}{2}} \left(\frac{a_{reh}}{a}\right)^2 \left[1 + \left(\frac{a_{reh}}{a}\right)^2\right]^{-\frac{1}{4}}$$

Expansion is dominated by ϕ field from H_* ,

$$t_{reh} - t_* = \tau_{\phi} = \int_{a_*}^{a_{reh}} \frac{da}{aH} = \frac{2}{3} \frac{1}{H_*} \left[\left(\frac{a_{reh}}{a_*} \right)^{\frac{3}{2}} - 1 \right]$$

Duration of the ϕ domination $\tau_{\phi} = \frac{1}{\Gamma_{\phi}}$ and assuming $\Gamma_{\phi} \ll H_*$,

$$\Rightarrow \quad \frac{a_{reh}}{a_*} = \left(\frac{3H_*}{2\Gamma_{\phi}}\right)^{\frac{2}{3}}$$

Using Hubble expansion approximation, the evolution of the scale factor, $(2\pi f_{H_{reh}} = a_{reh}H(a_{reh}), 2\pi f_* = a_*H(a_*))$

$$rac{a}{a_{
m reh}} = \sqrt{rac{\chi(f)}{2} - rac{1}{2}}\,, \quad ext{ where } \quad \chi(f) = \sqrt{8\left(rac{f_{ extsf{H}_{ extsf{reh}}}}{f}
ight)^4 + 1}$$

The redshifting up to a_{reh} ,

$$\left(\frac{a}{a_{\rm reh}}\right)^4 \left(\frac{H}{H_{\rm reh}}\right)^2 \approx \begin{cases} 1 & \text{for } f < f_{H_{\rm reh}}, \\ \sqrt{\frac{\chi(f)-1}{\chi(f)+1}} & \text{for } f_{H_{\rm reh}} < f < f_*, \\ \sqrt{\frac{\chi(f_*)-1}{\chi(f_*)+1}} & \text{for } f > f_* \end{cases} .$$

$$\begin{aligned} \alpha &= 100, \ \beta/H_* = 10, \ \kappa_{\rm col} = 0.9, \\ H_* &= 10^{-8}, \ f_* = 10^{-3}, \\ M_\phi &= 10^{12} \ {\rm GeV}, \\ M_{N_1} &= 10^{10} \ {\rm GeV}, \ \lambda = 10^{-10} \\ & \because \ \Gamma_\phi^{NN} = \frac{|\lambda|^2}{4\pi} M_\phi \left(1 - \frac{4M_N^2}{M_\phi^2}\right)^{\frac{3}{2}} \end{aligned}$$

$$\begin{split} &\alpha = 100, \, \beta/H_* = 10, \, \kappa_{\rm col} = 0.9, \\ &H_* = 10^{-8}, \, f_* = 10^{-3}, \\ &M_\phi = 10^{13} \, {\rm GeV}, ({\rm solid}), \\ &M_\phi = 10^{12} \, {\rm GeV} \, ({\rm dashed}), \\ &M_{\phi} = 10^{11} \, {\rm GeV} \, ({\rm dotted}), \\ &M_{N_1} = 10^{10} \, {\rm GeV}, \, \lambda = 10^{-10} \end{split}$$

4 Results-GW as a probe of Leptogenesis

GW as a probe of Leptogenesis

Signal-to-Noise Ratio

 To quantify the detection probability of the GW signal, we compute the signal-to-noise ratio (SNR) for a given experimental sensitivity Ω_{sens}(f)h²:

$$\mathsf{SNR} \equiv \sqrt{ au \int_{f_{min}}^{f_{max}} \left[rac{\Omega_{\mathsf{GW}}(f)h^2}{\Omega_{\mathsf{sens}}(f)h^2}
ight]^2 df}$$

where

$$h^2 \Omega_{\text{Sens}}(f) = rac{2\pi^2}{3H_0^2} f^3 S_h(f).$$

where $\tau = 4$ years is the observation time, $H_0 = 100h \text{ km } s^{-1} \text{Mpc}^{-1}$ with $h = 0.678 \pm 0.009$, $S_h(f)$ is the power spectral density (PSD).

• The signal can be claimed to be detectable if SNR reaches a threshold SNR \geq 10 of a detector.

GW as a probe of Leptogenesis

- Gravitational Waves From FOPT
- 4 Results-GW as a probe of Leptogenesis

Summary

- To explain the baryon asymmetry of the Universe via Leptogenesis while addressing the non-zero light neutrino masses through Type-I Seesaw mechanism, we require the mass scale of RHN to be very high.
- Such high scale of Leptogenesis challenging to probe in lab experiments, therefore we may require to see for the GW signals as an alternative pathways to test Leptogenesis.
- We observe that LISA, DECIGO, BBO and ET may hint towards the successful Leptogenesis at the high scale in the near future.

Thank you for you attention!