p-adic adelic metrics, p-adic heights, and rational points on curves

Amnon Besser, Steffen Mueller, Padmavathi Srinivasan

Boston University

Rational Points on Modular Curves, ICTS
September 20, 2023

Outline

(1) Introduction

(2) p-adic adelic metrics and a canonical p-adic height
(3) Alternate explanation for Q.C. for rational points
4. Computing local contributions h_{q} to p-adic heights using q-analytic methods

A brief history of Quadratic Chabauty

X / \mathbb{Q} nice curve. $b \in X(\mathbb{Q}) . \operatorname{rank}(J(\mathbb{Q}))=r=g$. p good prime.

Landmarks in applying Quadratic Chabauty
(1) Integral points on monic odd-degree hyperelliptic curves.

Balakrishnan-Besser-Mueller / $\mathbb{Q}, 2016$.
Balakrishnan-Besser-Bianchi-Mueller /number fields, 2020.
(2) Rational points for curves when $r<g+\operatorname{rank}(N S(J))-1$.

Balakrishnan-Dogra, 2016.
(Motivation: Chabauty-Kim method)
(3) Rational points on the cursed curve $X_{s}(13)$. Balakrishnan-Dogra-Mueller-Tuitman-Vonk, 2019.

Quadratic Chabauty wishlist

X / \mathbb{Q} nice curve. $b \in X(\mathbb{Q}) . \operatorname{rank}(J(\mathbb{Q}))=r=g$. p good prime.
Want:

$$
h=\sum h_{q}: J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p} \quad \text { such that }
$$

- h is a quadratic function. $r=g \Rightarrow h$ can be expanded in an explicit basis of products of single Coleman integrals.
- h_{p} is an (iterated) Coleman integral.
- For $q \neq p, h_{q}$ takes on finitely many values T on $X\left(\mathbb{Q}_{q}\right)$. Furthermore, $h_{q}=0$ if X has potential good reduction at q.
- $h-h_{p}$ (appropriately extended to a Coleman function) to be a locally non-constant function on $X\left(\mathbb{Q}_{p}\right)$.

A source of analytic functions vanishing on rational points

Balakrishnan-Dogra:
Using Chabauty-Kim theory, can satisfy Quadratic Chabauty wishlist using a function produced from a "nice" correspondence.

In practice: Need explicit non-abelian p-adic Hodge theory!

Balakrishnan-Dogra:
Using Chabauty-Kim theory, can satisfy Quadratic Chabauty wishlist using a function produced from a "nice" correspondence.

In practice: Need explicit non-abelian p-adic Hodge theory!

Question: Is there an Arakelov-theoretic explanation of the role of a "nice" correspondence?

Balakrishnan-Dogra:
Using Chabauty-Kim theory, can satisfy Quadratic Chabauty wishlist using a function produced from a "nice" correspondence.

In practice: Need explicit non-abelian p-adic Hodge theory!

Question: Is there an Arakelov-theoretic explanation of the role of a "nice" correspondence?

Answer: Yes!

p-adic heights for line bundles on abelian varieties

Theorem (Besser-Mueller-S., 2022)
Let $\mathcal{L} \in \operatorname{Pic}(J)$. There is a definition of a canonical p-adic height

$$
h_{\mathcal{L}}^{\text {can }}: J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p} .
$$

Assume that $[\mathcal{L}] \neq 0 \in \mathrm{NS}(J)$ and that $i^{*} \mathcal{L} \cong \mathcal{O}_{X}$. Then $h_{\mathcal{L}}^{\text {can }}$ satisfies the conditions in the Quadratic Chabauty wishlist.

p-adic heights for line bundles on abelian varieties

Theorem (Besser-Mueller-S., 2022)
Let $\mathcal{L} \in \operatorname{Pic}(J)$. There is a definition of a canonical p-adic height

$$
h_{\mathcal{L}}^{\mathrm{can}}: J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p} .
$$

Assume that $[\mathcal{L}] \neq 0 \in \operatorname{NS}(J)$ and that $i^{*} \mathcal{L} \cong \mathcal{O}_{X}$. Then $h_{\mathcal{L}}^{\text {can }}$ satisfies the conditions in the Quadratic Chabauty wishlist.

Strategy:

- Define a notion of a p-adic adelic metric associated to a line bundle \mathcal{L} on J equipped with a "curvature form".
- Identify a canonical metric for a given curvature form.
- Show Quadratic Chabauty wishlist is satisfied using properties of the canonical metric for \mathcal{L} with $[\mathcal{L}] \neq 0$ and $i^{*}(\mathcal{L}) \cong \mathcal{O}_{X}$.

History of various constructions of p-adic height pairings
NEW! One curvature form to rule them all!
Zarhin, 1987.
Schneider, 1982.
Mazur-Tate, 1983.
Coleman-Gross, 1989.
Nekovář, 1993.
Question: Why a new theory of canonical p-adic heights?

Zarhin, 1987.
Schneider, 1982.
Mazur-Tate, 1983.
Coleman-Gross, 1989.
Nekovář, 1993.
Question: Why a new theory of canonical p-adic heights?
Answer:

- Our construction parallels Zhang's construction of canonical \mathbb{R}-valued heights from \mathbb{R}-valued adelic metrics.
- Extends Quadratic Chabauty to number fields/bad primes p. Coleman integration \rightsquigarrow Vologodsky integration.
- It connects p-adic heights for various p.
- New way to construct and compute local contributions at finite places to canonical \mathbb{R}-valued heights!

Outline

(1) Introduction
(2) p-adic adelic metrics and a canonical p-adic height
(3) Alternate explanation for Q.C. for rational points
4. Computing local contributions h_{q} to p-adic heights using q-analytic methods

Canonical height machines on abelian varieties

Continuous idele class character

$$
\begin{gathered}
\chi: \mathbb{A}_{K}^{\times} / K^{\times} \rightarrow \mathbb{Q}_{p} \\
\operatorname{Curv}(\mathcal{L}) \in \Omega^{1}(A) \otimes H_{\mathrm{dR}}^{1}(A)
\end{gathered}
$$

$$
h_{\mathcal{L}}^{\text {can }, \mathbb{R}}: A(K) \rightarrow \mathbb{R}
$$

$$
h_{\mathcal{L}, \chi, \operatorname{Curv}(\mathcal{L})}^{\operatorname{can}, p}
$$

$$
h_{\mathcal{L}, \chi, \mathrm{Cur}}^{\mathrm{can}, p}
$$

If \mathcal{L} is symmetric, i.e., if $\mathcal{L} \cong[-1]^{*}(\mathcal{L})$, then $h_{\mathcal{L}}^{\text {can }}$ is quadratic:

$$
h_{\mathcal{L}}^{\mathrm{can}}(n P)=n^{2} h_{\mathcal{L}}^{\mathrm{can}}(P)
$$

If \mathcal{L} is anti-symmetric, i.e., if $\mathcal{L}^{-1} \cong[-1]^{*}(\mathcal{L})$, then $h_{\mathcal{L}}^{\text {can }}$ is linear:

$$
h_{\mathcal{L}}^{\mathrm{can}}(n P)=n^{1} h_{\mathcal{L}}^{\mathrm{can}}(P)
$$

\mathbb{Q}-valued metrics away from p

Let $v \nmid p$ be a finite place of K.
Let $\nu_{v}=\log \|\cdot\|_{v}$.
Let X / K_{v} be a projective variety.
Definition: (Inspired by Moret-Bailly, Zhang)
A $(\mathbb{Q}$-valued) metric on a line-bundle \mathcal{L} is a locally constant function (for the analytic topology)

$$
\nu: \operatorname{Tot}(\mathcal{L}) \backslash\{0\}=: \mathcal{L}^{\times} \rightarrow \mathbb{Q}
$$

such that

$$
\nu(\alpha w)=\nu_{v}(\alpha)+\nu(w) \quad \forall \alpha \in{\overline{K_{v}}}^{\times}, \forall w \in \mathcal{L}_{x}^{\times}, x \in X\left(\overline{K_{v}}\right)
$$

Examples:
Model metrics, admissible metrics (taking "eval.+norm" of fns.).

Curvature forms for line bundles at $v \mid p$

Key ingredient for defining local heights at pplace above p

Definition:

For a place $v \mid p$, a class $\operatorname{Curv}\left(\mathcal{L}_{v}\right) \in \Omega^{1}\left(A_{v}\right) \otimes H_{d R}^{1}\left(A_{v}\right)$ is a
curvature form for the line bundle if

$$
\begin{aligned}
\Omega^{1}\left(A_{v}\right) \otimes H_{\mathrm{dR}}^{1}\left(A_{v}\right) & \xrightarrow{\longrightarrow} H_{\mathrm{dR}}^{2}\left(A_{v}\right) \\
\operatorname{Curv}\left(\mathcal{L}_{v}\right) & \mapsto \operatorname{ch}_{1}\left(\mathcal{L}_{v}\right) .
\end{aligned}
$$

Example: Let X / K be a nice curve of genus $g \geq 1$.
Fix a complementary subspace W to $\Omega^{1}\left(X_{v}\right)$ in $H_{\mathrm{dR}}^{1}\left(X_{v}\right)$.
Let $\left\{\omega_{1}, \ldots, \omega_{g}\right\}$ be a basis for $\Omega^{1}\left(X_{v}\right)$.
If $\left\{\overline{\omega_{1}}, \ldots, \overline{\omega_{g}}\right\}$ be the unique dual basis in W (with respect to the cup product pairing). Then

$$
2 \sum_{i=1}^{g} \omega_{i} \otimes \overline{\omega_{i}}
$$

is a curvature form for the tangent bundle of X_{v}.

From curvature forms to metrics

Proposition: [Besser, p-adic Arakelov theory, 2005]
For every curvature form $\operatorname{Curv}\left(\mathcal{L}_{v}\right) \in \Omega^{1}\left(A_{v}\right) \otimes H_{d R}^{1}\left(A_{v}\right)$, there is an associated metric $\log _{\mathcal{L}} \in \mathcal{O}_{\mathrm{Col}}\left(\mathcal{L}_{v}^{\times}\right)$, such that, the function $\log _{\mathcal{L}}$ is fiberwise a p-adic logarithm, i.e.,

$$
\log _{\mathcal{L}}(\alpha w)=\log _{v}(\alpha)+\log _{\mathcal{L}}(w) \quad \text { for every } \alpha \in{\overline{K_{v}}}^{\times}, w \in \mathcal{L}_{x}^{\times} .
$$

The restriction to X is explicitly described by an iterated integral -
$\operatorname{Curv}\left(\mathcal{L}_{v}\right):=\sum \omega_{i} \otimes\left[\eta_{i}\right] \mapsto \sum \int \omega_{i}\left(\int \eta_{i}\right)+\int \gamma=:\left.\log _{\mathcal{L}}(s)\right|_{x}$,
where γ is an explicit form "correcting" for the zeroes/poles of $s .{ }^{1}$

[^0]
p-adic adelic-metrics and \mathbb{Q}_{p}-valued heights

Definition: An p-adic adelic metric on a line bundle \mathcal{L} on a projective variety X / K is a collection of metrics

$$
\left\{\nu_{v} \text { on } \mathcal{L}_{v} / X_{v} / K_{v}: \nu \nmid p \text { a place of } K\right\} \cup\left\{\log _{\mathcal{L}_{v}}: v \mid p\right\} .
$$

such that ν_{v} is a \mathbb{Q}-valued valuation for every $v \nmid p$ and in addition a model-metric for almost every place v.

Definition: The p-adic height function h associated to a p-adic adelic metric on a line bundle \mathcal{L} on X as above is

$$
\begin{aligned}
h: X(K) & \rightarrow \mathbb{Q}_{p} \\
x & \mapsto \sum_{v \nmid p} \nu_{v}(s(x)) \chi_{v}\left(\pi_{v}\right)+\sum_{v \mid p} \log _{\mathcal{L}}(s(x)),
\end{aligned}
$$

for some choice of section $s \in \mathcal{L}_{x}^{\times}$.

Outline

(1) Introduction

(2) p-adic adelic metrics and a canonical p-adic height
(3) Alternate explanation for Q.C. for rational points
4. Computing local contributions h_{q} to p-adic heights using q-analytic methods

Quadratic Chabauty wishlist $+p$-adic adelic metrics

Want:

(1) A p-adic adelic metric such that the associated height function h is a quadratic function on $J(K)$.
(2) For all $v \nmid p$, we want the pull-back of h_{v} to $X(K)$ under Abel-Jacobi map i to take on finitely many values.
(3) Want $h-h_{p}$ (appr. extd.) to be a locally non-constant Coleman function on $X\left(\mathbb{Q}_{p}\right)$.

Quadratic Chabauty wishlist $+p$-adic adelic metrics

Want:

(1) A p-adic adelic metric such that the associated height function h is a quadratic function on $J(K)$.
(2) For all $v \nmid p$, we want the pull-back of h_{v} to $X(K)$ under Abel-Jacobi map i to take on finitely many values.
(3) Want $h-h_{p}$ (appr. extd.) to be a locally non-constant Coleman function on $X\left(\mathbb{Q}_{p}\right)$.

Solution:

Choose a p-adic adelic metric h on $\mathcal{L} \in \operatorname{Pic}(J)$ such that ${ }^{\dagger}$
(1) h is a canonical p-adic adelic metric on \mathcal{L}.
(2) $i^{*}(\mathcal{L}) \cong \mathcal{O}_{X} \Rightarrow i^{*} h_{v}$ is an admissible metric on \mathcal{O}_{X}.
(3) $[\mathcal{L}]$ is nonzero in $\mathrm{NS}(J)$.

Quadratic Chabauty wishlist $+p$-adic adelic metrics

Want:

(1) A p-adic adelic metric such that the associated height function h is a quadratic function on $J(K)$.
(2) For all $v \nmid p$, we want the pull-back of h_{v} to $X(K)$ under Abel-Jacobi map i to take on finitely many values.
(3) Want $h-h_{p}$ (appr. extd.) to be a locally non-constant Coleman function on $X\left(\mathbb{Q}_{p}\right)$.

Solution:

Choose a p-adic adelic metric h on $\mathcal{L} \in \operatorname{Pic}(J)$ such that ${ }^{\dagger}$
(1) h is a canonical p-adic adelic metric on \mathcal{L}.
(2) $i^{*}(\mathcal{L}) \cong \mathcal{O}_{X} \Rightarrow i^{*} h_{v}$ is an admissible metric on \mathcal{O}_{X}.
(3) $[\mathcal{L}]$ is nonzero in $\mathrm{NS}(J)$.
\dagger Observe that these still work over a number field K.

Canonical metrics on line bundles on abelian varieties

A new construction [Besser-Mueller-S]

Step 1: Suffices to canonically metrize the Poincaré bundle.

Canonical metrics on line bundles on abelian varieties

A new construction [Besser-Mueller-S]

Step 1: Suffices to canonically metrize the Poincaré bundle. Any line bundle on A can be written as a pull-back of the Poincaré bundle. Metrics can be pulled back too.

Canonical metrics on line bundles on abelian varieties

A new construction [Besser-Mueller-S]

Step 1: Suffices to canonically metrize the Poincaré bundle. Any line bundle on A can be written as a pull-back of the Poincaré bundle. Metrics can be pulled back too.

Step 2: For $v \mid p$, exploit non-uniqueness of $\log _{\mathcal{P}}$.

Canonical metrics on line bundles on abelian varieties

A new construction [Besser-Mueller-S]

Step 1: Suffices to canonically metrize the Poincaré bundle. Any line bundle on A can be written as a pull-back of the Poincaré bundle. Metrics can be pulled back too.

Step 2: For $v \mid p$, exploit non-uniqueness of $\log _{\mathcal{P}}$. Any two metrics for \mathcal{P} with the same curvature differ by $\int \omega \Rightarrow$ there is a unique metric that makes $[2]^{*}(\mathcal{P}) \cong \mathcal{P}^{\otimes 4}$ an isometry.

Canonical metrics on line bundles on abelian varieties

A new construction [Besser-Mueller-S]

Step 1: Suffices to canonically metrize the Poincaré bundle.
Any line bundle on A can be written as a pull-back of the Poincaré bundle. Metrics can be pulled back too.

Step 2: For $v \mid p$, exploit non-uniqueness of $\log _{\mathcal{P}}$.
Any two metrics for \mathcal{P} with the same curvature differ by $\int \omega \Rightarrow$ there is a unique metric that makes $[2]^{*}(\mathcal{P}) \cong \mathcal{P}^{\otimes 4}$ an isometry.

Step 3: For $v \nmid p$, use the canonical \mathbb{Q}-valued valuation appearing in the canonical \mathbb{R}-valued Néron-Tate height.

Outline

(1) Introduction

(2) p-adic adelic metrics and a canonical p-adic height
(3) Alternate explanation for Q.C. for rational points
(4) Computing local contributions h_{q} to p-adic heights using q-analytic methods

Extending to bad primes p : replacing Coleman integrals in $\log _{\mathcal{L}, p}$ by Vologodsky integrals.

Goal of an integration theory: Define $\int_{b}^{x} \omega$ for ω closed. (More generally, solve a unipotent system of differential equations.)

	Coleman integration	Vologodsky integration
Domain	$V\left(\overline{\mathbb{Q}_{p}}\right), V \subset X^{\text {an }}$ is a wide open	$X(K)$
	Independent of reduction type of X	
Advantage	\exists algos. to compute	Natural extn. of abelian intn.

Structure of $X^{\text {an }}$:
It is a union of basic wide open subspaces, glued along annuli.
Comparison of integrals theorem (Besser-Zerbes, Katz-Litt)
"Vologodsky integrals are local Coleman integrals, patched along annuli, using "harmonic" correction constants"

Compute local height at q for the p-adic height from $\log _{\mathcal{L}, q}$

 One curvature form to rule them all!For simplicity, let $K=\mathbb{Q}$.
Let $h^{\ell}=\left(h_{v}^{\ell}\right)_{v}$ be the canonical \mathbb{Q}_{ℓ}-valued height.
Question: Is h_{p}^{ℓ} related to $\log _{\mathcal{L}, p}=: h_{p}^{p}$?

Compute local height at q for the p-adic height from $\log _{\mathcal{L}, q}$

 One curvature form to rule them all!For simplicity, let $K=\mathbb{Q}$.
Let $h^{\ell}=\left(h_{v}^{\ell}\right)_{v}$ be the canonical \mathbb{Q}_{ℓ}-valued height.
Question: Is h_{p}^{ℓ} related to $\log _{\mathcal{L}, p}=: h_{p}^{p}$?
Fact:
$\log _{\mathcal{L}, p}$ can be viewed as a polyl. in the variable $\log (p)$ of deg. ≤ 2

Compute local height at q for the p-adic height from $\log _{\mathcal{L}, q}$

 One curvature form to rule them all!For simplicity, let $K=\mathbb{Q}$.
Let $h^{\ell}=\left(h_{v}^{\ell}\right)_{v}$ be the canonical \mathbb{Q}_{ℓ}-valued height.
Question: Is h_{p}^{ℓ} related to $\log _{\mathcal{L}, p}=: h_{p}^{p}$?
Fact:
$\log _{\mathcal{L}, p}$ can be viewed as a polyl. in the variable $\log (p)$ of deg. ≤ 2

Theorem (Besser-Mueller-S., 2022)
Let $\log _{\mathcal{L}, p}$ be the local contribution at p to the canonical p-adic height. Then the function $\mathrm{val}_{\mathcal{L}, p}: \mathcal{L}^{\times}\left(\overline{\mathbb{Q}_{p}}\right) \rightarrow \overline{\mathbb{Q}_{p}}$ defined by

$$
\operatorname{val}_{\mathcal{L}, p}:=\left.\left(\frac{d}{d \log (p)} \log _{\mathcal{L}, p}\right)\right|_{\log (p)=0}
$$

is a \mathbb{Q}-valued valuation ("Vologodsky valuation") appearing in the local contribution at p to the Néron-Tate height.

Advantages of Vologodsky valuations

- Can compute the local contributions at all places starting from just the curvature form + Vologodsky integration.
- For a general \mathcal{L} on an abelian variety A, this gives a q-analytic way to compute contributions at finite places to the Néron-Tate height. ("Unified theory of heights")

Remark: Recovers the formula for local heights in Betts-Dogra, currently being implemented on a database of hyperelliptic curves by Betts-Duque-Rosero-Hashimoto-Spelier.

[^0]: ${ }^{1}$ Note: There are multiple metrics with the same curvature, but any two such metrics differ by the integral of a holomorphic form.

