
1. Lattice polytopes, namely convex polytopes with vertices in the lattice M := Zn, can be used
to construct local/non-compact toric Calabi-Yau (n + 1)-folds (or more precisely, Gorenstein
singularities) and encode certain combinatorial data of CYn+1. Hence, they are also known as
toric diagrams1.

(a) Given a polytope P in the lattice M , the Ehrhart polynomial is

ehrP (k) := |kP ∩M | , (1)

which counts the number of lattice points within the k-dilation of P . Then we can define
the generating function called the Ehrhart series:

EhrP (t) =
∑
k≥0

ehrP (k)tk, (2)

for a formal variable t.

Let us consider the 2d polygon P whose vertices are (1, 0), (0, 1), (−1,−1) as an example.
Then ehrP (0) = 1 and ehrP (1) = 4 etc. Compute its Ehrhart series. What is the area of
P?

(b) The (polar) dual of a lattice polytope is defined as

P ◦ := {v ∈ Rn|u · v ≥ −1,∀u ∈ P}. (3)

What is the dual polytope P ◦ for the above example2? Compute its Ehrhart series and
area.

From the above two examples, we find that ehrP (k) = cnk
n + · · ·+ c1k+ c0 and EhrP (t) =

g(t)
(1−t)n+1 = g0+g1t+···+gntn

(1−t)n+1 . They actually hold in general for any lattice polytope. What are
the sums of gi in the above two examples?

(c) This part is a digression discussing more features of Ehrhart series in mathematics and
physics. One may skip this if he/she is more interested in the machine learning part.

Hilbert series is a generating function that enumerates invariant monomials/holomorphic
functions of given degrees. Physically, it counts gauge invariant operators. In our examples
here, Ehrhart series coincides with the Hilbert series of CYn+1 associated to the dual
polytope. We now check this with the above example. For instance, P in the above
example is associated to C3/Z3 with action (1, 1, 1). Compute its (unrefined) Hilbert
series.

(Hint: One way is to count the monomials at each degree directly. In particular, the action
acts on the coordinates z1,2,3 as zi ∼ ωzi where ω can be chosen as the primitive root such
that ω3 = 1. The invariant monomials are then of form za11 za22 za33 with a1 + a2 + a3 ≡ 0
(mod 3). The HS is then the sum of ta11 ta22 ta33 running over all possible ai. To compute the
sum, one method is to consider the map t1 = tx1, t2 = x2/x1, t3 = t/x2 and compare the

1By local, we mean that the local CY is a open neighbourhood in some compact CY. For more details on how
lattice polytopes represent toric CY cones, see for example [1]. In this question, we shall not worry about this.

2In this case, the dual polytope is again an integral polytope on the lattice. Such polytopes are called reflexive,
and there are only 16 of them for 2d polygons (including self-dual ones). In 2d, a polygon is reflexive if and only if it
has precisely one interior point. However, this is not true for higher dimensions (reflexivity implies one interior point,
but not vice versa). In fact, one may also associate a compact Fano n-fold to each polytope and reflexive duals give
mirror pairs of the Fano varieties. For non-reflexive lattice polytopes, their dual are rational polytopes and one may
also define certain Ehrhart series for them.
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terms with characters of SU(3) irreps3. The unrefinement (x1,2 = 1) then has dimension
of the irrep as the coefficient at each order of t. Do these coefficients look familiar?

The approach to compute this HS which makes use of the lattice polytope can be found
in [3]. There is also another method for this HS as discussed in [4].)

(d) As we can see, the Ehrhart series encodes the dimension of the polytope in both the
denominator and the numerator. Given a generating function, we sometimes do not have
its exact closed form but only have its perturbative expansion to some order. In the
attached file (data.db), we have data for randomly generated polytopes with “hilb”,
“dim” and “deg”, which are their Ehrhart series expansions up to order 30, dimensions
and (normalized) volumes respectively4. Now, use the Ehrhart expansions to predict the
dimensions. Try this with NN, SVM and random forest. How do you find the results?
Try to explain the performance.

(Hint: The data contains polytopes of dimensions from 1 to 6. One may use a classifier
with 6 classes. One may consult [5] for the reasoning of the performance.)

(e) The normalized volumes range from 1 to 6717479. Use linear regression to predict the
volume from Ehrhart expansions. Explain the result.

(Hint: Train an independent regressor for each dimension. Then check the coefficients in
the linear regressor and consider the observation in (1b).)

2. An amoeba AP is the set of points {(log |z|, log |w|)|P (z, w) = 0} for some Laurent polynomial
P (z, w) ∈ C[z±1, w±1] 5. The Laurent polynomial (aka Newton polynomial) can be associated
to lattice polygons (aka Newton polygons) as follows. For each monomial zmwn in P (z, w),
it corresponds to the lattice point (m,n) in the Newton polygon. For instance, the example
considered in (1a) yields the Newton polynomial c1z + c2w + c3 for some coefficients c1,2,3.
Amoeba has interesting applications in physics. See for example [6, 7, 8, 9].

(a) Consider the toric diagram with vertices (±1, 0), (0,±1). Choose several sets of coefficients
ci for the Newton polynomial and plot the amoebae. Check that the shape of the amoeba
is always the thickening of the dual graph of the toric diagram6. What is the genus g (i.e.,
the number of bounded complementary regions) of the amoeba?

(Hint: You may write an algorithm in Mathematica and use Monte Carlo method.)

(b) Using the columns “coeffs” and “genus” in the file dataf0.csv, build a machine learning
model with input {ci} and output g.

(c) Let us try to see why the model can have good performance. Apply principal component
analysis (PCA) and multi-dimensional scaling (MDS) manifold projection to plot the
distribution of the data points. What do the plots look like?

(Hint: You may find the Yellowbrick package in Python useful for MDS projection and
also spectral embedding in (2e) below7.)

3The SU(3) here should not be a coincidence. In particular, Z3 is a discrete subgroup of it. See [2] for more details.
4It is explained in (1c) why the Ehrhart expansion is named “hilb”. The normalized volume column is named

“deg” since it is equal to the degree of the toric variety polarized by the Cartier divisor DP .
5Most of the discussions in this question can be naturally extended to any dimension though we will only focus on

2-dimensional amoebae here.
6Such dual graph is known as the spine of the amoeba
7The webpage for Yellowbrick has some explanations of different manifold learnings.
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(d) Given a set of non-negative numbers, we say that it is lopsided if one of the numbers
is greater than the sum of all the others. Write the Newton polynomial as P (z, w) =
m1(z, w) + m2(z, w) + . . . , where mi(z, w) are monomials (whose coefficients are not nec-
essarily 1). Consider the set P{z, w} := {|mi(z, w)|}. Then we can define the lopsided
amoeba as LAP := {(log(z), log(w))|P{z, w} is not lopsided}. It was shown in [10] that
a point (log |z0|, log |w0|) is in LAP iff P{z0, w0} is not lopsided. Moreover, AP ⊆ LAP

8.
Use this fact to show that9

g =

{
0, |c5| ≤ 2|c1c3|1/2 + 2|c2c4|1/2

1, |c5| > 2|c1c3|1/2 + 2|c2c4|1/2
, (4)

where P (z, w) = c1z + c2w + c3z
−1 + c4w

−1 + c5. Use this to explain the PCA and MDS
plots. Verify that the hole emerges from the centre of the (lopsided) amoeba.

(e) Try spectral embedding using Yellowbrick, and try to explain the distribution of the
plot.

(f) By virtue of (4), we can use the absolute values of coefficients as input (the column
“coeffsabs” in dataf0.csv). Train a new model and check that this improves the behaviour
of neural network. Notice that this is not the case for more general polygons.

(g) A set of two-dimensional points (x, y) from MDS projection of the input vectors are given
in the column “reduced”. What does the c5-x plot look like? Is there a similar plot for y
(with a different horizontal axis)?

(Hint: One may try to find a fit of y in terms of |c1,2,3,4|. It is also a useful fact that√
m ≈ (0.1k + 1.2)× 10n for any real k ∈ [1, 100) and n ∈ Z such that m = k × 102n.)

3. For interested readers, various neural networks may have correspondences with different con-
texts in mathematics and physics. For instance, optimal transport was applied to GAN in
[11]. Its relation to Hessian manifolds can be found in the handout. NN was studied using the
context of Wilsonian effective field theory in [12]. The holographic duality was related to NN
in [13]. Category theory has also been applied to machine learning in [14]. This list is never
exhaustive, and more examples can be found in literature.
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