Symmetry oscillations in strongly interacting one-dimensional mixtures

Patrizia Vignolo

Institut de Physique de Nice, UCA, CNRS, Nice & Institut Universitaire de France

ICTS, 16*th* December 2024

institut universitaire de France

Symmetry oscillating people

and symmetry people

• Introduction

 \triangleright strongly repulsive bosons and spinless fermions in 1D

• Introduction

 \triangleright strongly repulsive bosons and spinless fermions in 1D

Exact solution for strongly interacting trapped mixtures **If** spectrum & contact & symmetries for $SU(\kappa)$ mixtures

• Introduction

 \triangleright strongly repulsive bosons and spinless fermions in 1D

• Exact solution for strongly interacting trapped mixtures

- **If** spectrum & contact & symmetries for $SU(\kappa)$ mixtures
- \triangleright Ground-state properties for bosonic mixtures with SU(2) broken symmetry

• Introduction

 \triangleright strongly repulsive bosons and spinless fermions in 1D

- Exact solution for strongly interacting trapped mixtures
	- **If** spectrum & contact & symmetries for $SU(\kappa)$ mixtures
	- \triangleright Ground-state properties for bosonic mixtures with SU(2) broken symmetry
- "Exact"solution for the dynamics

Strongly repulsive bosons and spinless fermions in a lineland . . .

The many-body Hamiltonian (for bosons)

$$
\mathcal{H} = \sum_i -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_i^2} + V(x_i) + g \sum_{i < j} \delta(x_i - x_j)
$$

Lieb-Liniger model (1963) with external potential

The many-body Hamiltonian (for bosons)

$$
\mathcal{H} = \sum_i -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_i^2} + V(x_i) + g \sum_{i < j} \delta(x_i - x_j)
$$

Lieb-Liniger model (1963) with external potential

• integrable if $V(x_i) = 0$

• not integrable if $V(x_i) \neq 0$ for a generic g

The many-body Hamiltonian (for bosons)

$$
\mathcal{H} = \sum_i -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_i^2} + V(x_i) + g \sum_{i < j} \delta(x_i - x_j)
$$

Lieb-Liniger model (1963) with external potential

• integrable if $V(x_i) = 0$

- not integrable if $V(x_i) \neq 0$ for a generic *g*
- integrable for a generic $V(x_i)$ if $g \to \infty$

The Tonks-Girardeau regime

. . . in the strongly repulsive regime

The Tonks-Girardeau regime

. . . in the strongly repulsive regime

The Tonks-Girardeau regime

2 TG-bosons cannot be at the same place (at the same time) in their lineworld...

The boson-fermion mapping

[M. Girardeau, J. Math. Phys. 1, 516 (1960)]

The boson-fermion mapping

[M. Girardeau, J. Math. Phys. 1, 516 (1960)]

B-F mapping : $\psi_B(x_1, x_2, \dots, x_N) = A \psi_F(x_1, x_2, \dots, x_N)$

The boson-fermion mapping

[M. Girardeau, J. Math. Phys. 1, 516 (1960)]

B-F mapping : $\psi_B(x_1, x_2, \dots, x_N) = A \psi_F(x_1, x_2, \dots, x_N)$

Consequences:

$$
\bullet \; n_B(x) = n_F(x)
$$

 $\rho_{2,B}(x,x') = \rho_{2,F}(x,x')$ \bullet *S_B*(*k*, ω) = *S_F*(*k*, ω)

 \bullet ...

The boson-fermion mapping (at $T = 0$)

The two particles example in a harmonic trap

The free fermions many-body wavefunction is

$$
\psi_{\mathcal{F}}(x_1, x_2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_1(x_1) & \phi_1(x_2) \\ \phi_2(x_1) & \phi_2(x_2) \end{vmatrix} = \frac{1}{\sqrt{\pi a_{ho}}} e^{-(x_1^2 + x_2^2)/2 a_{ho}^2}(x_2 - x_1)
$$

thus the TG many-body wavefunction is

$$
\psi_B(x_1, x_2) = (\pi a_{ho})^{-1/2} e^{-(x_1^2 + x_2^2)/2 a_{ho}^2} |x_2 - x_1|
$$

The boson-fermion mapping (at $T = 0$)

The two particles example in a harmonic trap

The free fermions many-body wavefunction is

$$
\psi_{\mathcal{F}}(x_1, x_2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_1(x_1) & \phi_1(x_2) \\ \phi_2(x_1) & \phi_2(x_2) \end{vmatrix} = \frac{1}{\sqrt{\pi a_{ho}}} e^{-(x_1^2 + x_2^2)/2a_{ho}^2}(x_2 - x_1)
$$

thus the TG many-body wavefunction is

$$
\psi_B(x_1, x_2) = (\pi a_{ho})^{-1/2} e^{-(x_1^2 + x_2^2)/2 a_{ho}^2} |x_2 - x_1|
$$

namely

$$
\psi_B(x_1, x_2) = \begin{cases} +\theta(x_1 < x_2)\psi_F(x_1, x_2) \\ -\theta(x_2 < x_1)\psi_F(x_1, x_2) \end{cases}
$$

 $\psi_F(x_2, x_1) = -\psi_F(x_1, x_2)$ and $\psi_B(x_2, x_1) = \psi_B(x_1, x_2)$

Spinless fermions vs strongly interacting spinless bosons (TG)

(in a harmonic trap)

 $n_F(p)$

 \blacktriangleright a "potato" shape (a step-function in a ring)

 \bullet $n_B(p)$

► a large pic $n_B(p = 0) \propto \sqrt{N}$ \blacktriangleright large tails!

 $\lim_{p\to\infty}$ *n*_{*B*}(*p*) = *Cp*^{−4}

A. Minguzzi, P.V., M. Tosi, PLA **294**, 222 (2002)

M. Olshanii, V. Dunjko, PRL **91**, 090401(2003)

The contact C

interplay of interactions & symmetry!

n(*p*)*p*→∞ → C*p* −4

in 1D for any value of γ

[JS Caux, P Calabrese, NA Slavnov (2007)]

in 3D too! for particles in the unitary regime *[S. Tan (2008); Debby Jin's experiment]* and in the weak interaction limit *[David Clement experiment] ´*

The contact C

interplay of interactions & symmetry!

n(*p*)*p*→∞ → C*p* −4

in 1D for any value of γ

[JS Caux, P Calabrese, NA Slavnov (2007)]

in 3D too! for particles in the unitary regime *[S. Tan (2008); Debby Jin's experiment]* and in the weak interaction limit *[David Clement experiment] ´* ... not only in the momentum distribution!

$$
\bullet \ \mathcal{C} \propto g E_{int} \ \ \text{with} \ E_{int} = g \int dP \langle \Psi^{\dagger} \Psi^{\dagger} \Psi \Psi (P) \rangle
$$

•
$$
C \propto -\frac{dE}{d(1/g)}
$$
, *E* being the total energy

Tan's relations in 1D *[S. Tan (2008), M. Barth, W. Zwerger (2011)]*

$\frac{1}{2}$ The contact $\mathcal C$ in the strongly interacting limit $\stackrel{\text{\it b. b. b. b. c.m. }}{\sim}$

ATTENTION: $g \to \infty$, $E_{int} \to 0$ BUT $gE_{int} = C \neq 0$

The contact $\mathcal C$ in the strongly interacting limit $\stackrel{\text{\it b. b. b. b. c.m. }}{\sim}$

ATTENTION:
$$
g \to \infty
$$
, $E_{int} \to 0$ BUT $gE_{int} = C \neq 0$
\n
$$
\lim_{g \to \infty} gE_{int} = -\lim_{g \to \infty} \frac{\partial E}{\partial 1/g} = g^2 \sum_{i < j} \int \psi^2 \delta(x_i - x_j) dx_1 ... dx_N
$$

can be evaluatued by exploiting the cusp condition:

$$
\lim_{g\to\infty} g\psi(x_i = x_j) = -\frac{\hbar^2}{2m} \left(\frac{\partial \psi}{\partial x_i}\bigg|_{x_i = x_j + 0^+} - \frac{\partial \psi}{\partial x_i}\bigg|_{x_i = x_j + 0^-} \right) \tag{1}
$$

The contact $\mathcal C$ in the strongly interacting limit $\ddot{\cdot}$

ATTENTION:
$$
g \to \infty
$$
, $E_{int} \to 0$ BUT $gE_{int} = C \neq 0$
\n
$$
\lim_{g \to \infty} gE_{int} = -\lim_{g \to \infty} \frac{\partial E}{\partial 1/g} = g^2 \sum_{i < j} \int \psi^2 \delta(x_i - x_j) dx_1 ... dx_N
$$

can be evaluatued by exploiting the cusp condition:

$$
\lim_{g \to \infty} g \psi(x_i = x_j) = -\frac{\hbar^2}{2m} \left(\frac{\partial \psi}{\partial x_i} \bigg|_{x_i = x_j + 0^+} - \frac{\partial \psi}{\partial x_i} \bigg|_{x_i = x_j + 0^-} \right) \tag{1}
$$

 $\mathscr{C}^{\mathscr{A}}$ α is $^{\mathscr{A}^{\mathscr{A}}}$ α to the number of cusps (symmetric exchanges) and to the slopes of the cusps (how particles brush against)

boom!

Strongly repulsive mixtures

Exact solutions for mixtures & symmetry considerations

Bosonic mixtures

$$
\bullet \bullet \quad 8 \bullet \bullet \quad 9
$$

Example: 1D two-component mixtures **Bosonic mixtures** or **Fermionic mixtures**

$$
\begin{array}{r} \bullet \bullet \quad 8 \quad \bullet \quad 8 \
$$

Example: 1D two-component mixtures **Bosonic mixtures** or **Fermionic mixtures** ⇒ **spinless fermions**

Mapping on **spinless fermions**: **the right nodes**

spinless fermions: **the right exchange rules for fermions**

spinless fermions: **symmetrized" exchange rules for bosons**

Example: 1D two-component mixtures **spinless fermions**: **What is it missing?**

the interspecies exchange rules! Large ground-state degeneracy: *^N*! *N*1!*N*2! . . . *N*κ! (for κ components)

Generalization of Girardeau's wavefunction for impenetrable **bosons** [Volosniev et al., Nat. Phys. 2015]

$$
\Psi(x_1,\ldots,x_N) = \sum_{P \in S_N} a_P \theta(x_{P(1)} < \cdots < x_{P(N)}) \Psi_F(x_1,\ldots,x_N)
$$

Generalization of Girardeau's wavefunction for impenetrable **bosons** [Volosniev et al., Nat. Phys. 2015]

$$
\Psi(x_1,\ldots,x_N)=\sum_{P\in S_N}a_P\theta(x_{P(1)}<\cdots
$$

• the coefficients a_P are determined minimizing the energy: g^{-1} expansion: $E = E_{\infty} + \frac{1}{g}$ *g* ∂*E* $\frac{\partial E}{\partial g^{-1}}=E_{\infty}-\frac{\mathcal{K}}{g}$ *g*

Generalization of Girardeau's wavefunction for impenetrable **bosons** [Volosniev et al., Nat. Phys. 2015]

$$
\Psi(x_1,\ldots,x_N)=\sum_{P\in S_N}a_P\theta(x_{P(1)}<\cdots
$$

- **•** the coefficients a_P are determined minimizing the energy: g^{-1} expansion: $E = E_{\infty} + \frac{1}{g}$ *g* ∂*E* $\frac{\partial E}{\partial g^{-1}}=E_{\infty}-\frac{\mathcal{K}}{g}$ *g*
- the coefficients a_P maximize the "contact" *K* ∝ C

$$
K=-(\partial E/\partial g^{-1})
$$

More in details, in order to obtain the a_P 's for **all** the states of the lowest-energy manifold, that are **degenerate at** $q \rightarrow \infty$, but that **are not degenerate at large finite** *g*, we diagonalize the effective Hamiltonian

$$
H_{n\ell}=E_{\infty}\delta_{n,\ell}-\frac{1}{g}\sum_{i
$$

written on the snippet (spin configurations) basis {↑↑↓↓, ↑↓↑↓, ↑↓↓↑, ↓↑↑↓, ↓↑↓↑, ↓↓↑↑}
Exact wavefunction in the fermionized regime

More in details, in order to obtain the a_P 's for **all** the states of the lowest-energy manifold, that are **degenerate at** $q \rightarrow \infty$, but that **are not degenerate at large finite** *g*, we diagonalize the effective Hamiltonian

$$
H_{n\ell}=E_{\infty}\delta_{n,\ell}-\frac{1}{g}\sum_{i
$$

written on the snippet (spin configurations) basis {↑↑↓↓, ↑↓↑↓, ↑↓↓↑, ↓↑↑↓, ↓↑↓↑, ↓↓↑↑}

The effective Hamiltonian H_n can be mapped on a spin-chain Hamiltonian

Exact wavefunction in the fermionized regime

More in details, in order to obtain the a_P 's for **all** the states of the lowest-energy manifold, that are **degenerate at** $q \rightarrow \infty$, but that **are not degenerate at large finite** *g*, we diagonalize the effective Hamiltonian

$$
H_{n\ell}=E_{\infty}\delta_{n,\ell}-\frac{1}{g}\sum_{i
$$

written on the snippet (spin configurations) basis {↑↑↓↓, ↑↓↑↓, ↑↓↓↑, ↓↑↑↓, ↓↑↓↑, ↓↓↑↑}

The effective Hamiltonian H_n can be mapped on a spin-chain Hamiltonian and each eigenstate has a **well-defined symmetry**

How to determine the wavefunction symmetry?

Use the class-sum operators [Katriel, J. Phys. A, 26, 135 (1993]

$$
\Gamma^{(k)} = \sum_{i_1 < \ldots i_k} (i_1 \ldots i_k)
$$

 $(i_1 \ldots i_k)$ being the cyclic permutation of *k* elements

There is a corrispondence between the eigenvalues of Γ (*k*) *and the Young tableaux*

How to determine the wavefunction symmetry?

Use the class-sum operators [Katriel, J. Phys. A, 26, 135 (1993]

$$
\Gamma^{(k)} = \sum_{i_1 < \ldots i_k} (i_1 \ldots i_k)
$$

 $(i_1 \ldots i_k)$ being the cyclic permutation of k elements

There is a corrispondence between the eigenvalues of Γ (*k*) *and the Young tableaux*

Ground-state and symmetry for SU(2) Hamiltonians

All quantum states have well defined symmetry *(are eigenstates of* Γ⁽²⁾) and different contacts

$$
E=E_{\infty}-\frac{\mathcal{K}}{g}\qquad \qquad \mathcal{C}=\frac{m^2}{\pi\hbar^4}\mathcal{K}
$$

Ground-state and symmetry for SU(2) Hamiltonians

All quantum states have well defined symmetry *(are eigenstates of* Γ⁽²⁾) and different momentum distributions

For 2+2 SU(2) bosons

 $|\xi_{\ell}\rangle$ eiegenstates of $\Gamma^{(2)}$

Breaking the symmetry Ground-state properties

[G. Aupetit-Diallo, G. Pecci, C. Pignol, F. Hébert, A. Minguzzi, M. Albert, and P.V. Phys. Rev. A 106, 033312 (2022)]

$$
\hat{H} = \sum_{\sigma=\uparrow,\downarrow} \sum_{i}^{N_{\sigma}} \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_{i,\sigma}^2} + g_{\sigma\sigma} \sum_{j>i}^{N_{\sigma}} \delta(x_{i,\sigma} - x_{j,\sigma}) \right] + g_{\uparrow\downarrow} \sum_{i}^{N_{\uparrow}} \sum_{j}^{N_{\downarrow}} \delta(x_{i,\uparrow} - x_{j,\downarrow})
$$

$$
\hat{H} = \sum_{\sigma=\uparrow,\downarrow} \sum_{i}^{N_{\sigma}} \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_{i,\sigma}^2} + g_{\sigma\sigma} \sum_{j>i}^{N_{\sigma}} \delta(x_{i,\sigma} - x_{j,\sigma}) \right] + g_{\uparrow\downarrow} \sum_{i}^{N_{\uparrow}} \sum_{j}^{N_{\downarrow}} \delta(x_{i,\uparrow} - x_{j,\downarrow})
$$

Let's consider two cases:

• SU(2) case

 $g_{\uparrow\uparrow}=g_{\downarrow\downarrow}=g_{\uparrow\downarrow}=g\rightarrow\infty$

mapping on a XXX spin-chain Hamiltonian

$$
\hat{H} = \sum_{\sigma=\uparrow,\downarrow} \sum_{i}^{N_{\sigma}} \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_{i,\sigma}^2} + g_{\sigma\sigma} \sum_{j>i}^{N_{\sigma}} \delta(x_{i,\sigma} - x_{j,\sigma}) \right] + g_{\uparrow\downarrow} \sum_{i}^{N_{\uparrow}} \sum_{j}^{N_{\downarrow}} \delta(x_{i,\uparrow} - x_{j,\downarrow})
$$

Let's consider two cases:

• SU(2) case

 $g_{\uparrow\uparrow} = g_{\downarrow\downarrow} = g_{\uparrow\downarrow} = g \rightarrow \infty$

mapping on a XXX spin-chain Hamiltonian

• the Symmetry Breaking (SB) case $g_{\uparrow\uparrow} = g_{\downarrow\downarrow} = g \rightarrow \infty$, BUT $g_{\uparrow\downarrow} \neq g$, with $1/g_{\uparrow\downarrow} \ll 1$ *mapping on a XXZ spin-chain Hamiltonian*

Results

- ground-state symmetry
	- \triangleright 2+2 SU(2) bosons: \Box
	- ▶ 2+2 SB bosons: \Box \Box $(\frac{8}{9})$ but also \Box $(\frac{1}{9})$

Results

- ground-state symmetry
	- \triangleright 2+2 SU(2) bosons: \Box
	- ▶ 2+2 SB bosons: \Box \Box $(\frac{8}{9})$ but also \Box $(\frac{1}{9})$

very small effect: the symmetry is just slightly broken!

 \bullet the contact $\mathcal C$

Results

- ground-state symmetry
	- \triangleright 2+2 SU(2) bosons: \Box
	- ▶ 2+2 SB bosons: \Box \Box $(\frac{8}{9})$ but also \Box $(\frac{1}{9})$

0.9 0.92 0.94 0.96 0.98 $1\mathsf{F}$ 2 4 6 8 10 12 14 CSB /CSU $N = N_+ + N_+$ 1.2 1.4 1.6 $1.8₁$ 10 20 30 40 50
 $kL/2\pi$ $\frac{\pi}{\pi}$ l. \tilde{C}

very small effect: the symmetry is just slightly broken!

$$
\bullet \; n_{k=0}(N)
$$

Breaking the symmetry: dynamical effects

Symmetry oscillations!

[S. Musolino, M. Albert, A. Minguzzi, and P.V., Phys. Rev. Lett. **133**, 183402 (2024)]

• An almost "exact" solution for the dynamics (in $1/g$)

- An almost "exact" solution for the dynamics (in $1/g$)
- **o** generally

$$
\Psi(x_1,\ldots,x_N;t)=\sum_{P\in S_N}a_P(t)\theta(x_{P(1)}<\cdots
$$

- An almost "exact" solution for the dynamics (in $1/g$)
- **o** generally

$$
\Psi(x_1,\ldots,x_N;t)=\sum_{P\in S_N}a_P(t)\theta(x_{P(1)}<\cdots
$$

• but in 1D, with $q \rightarrow \infty$, one can have only a spin excitation!

$$
\Psi(x_1,\ldots,x_N;t)=\sum_{P\in S_N}a_P(t)\theta(x_{P(1)}<\cdots
$$

- An almost "exact" solution for the dynamics (in $1/g$)
- **o** generally

$$
\Psi(x_1,\ldots,x_N;t)=\sum_{P\in S_N}a_P(t)\theta(x_{P(1)}<\cdots
$$

• but in 1D, with $q \to \infty$, one can have only a spin excitation!

$$
\Psi(x_1,\ldots,x_N;t)=\sum_{P\in S_N}a_P(t)\theta(x_{P(1)}<\cdots
$$

The aP(*t*) *evolve under the action of the effective Hamiltonian that can be mapped on a spin-chain Hamiltonian (XXX for the SU(2) mixture, XXZ for the SB one)*

What do we expect?

Symmetry conservation in the SU(κ**) case**

What do we expect?

Symmetry conservation in the SU(κ**) case**

• Symmetry oscillations in the SB case

*Particle states of given permutation symmetry are not diagonal in the basis of H*_{SB} *During time evolution, the many-body wavefunction evolves from one symmetry to another*

What do we expect?

Symmetry conservation in the SU(κ**) case**

• Symmetry oscillations in the SB case

*Particle states of given permutation symmetry are not diagonal in the basis of H*_{SB} *During time evolution, the many-body wavefunction evolves from one symmetry to another*

 $\mathbb T$

Neutrino oscillations

Neutrino states of given flavour are not diagonal in the basis of their dynamical evolution During time evolution, neutrinos evolve from one flavour to another

From M.A. Thomson Part. Phys.

lecture note

Permutation symmetry oscillations

How to observe symmetry oscillations?

Permutation symmetry oscillations

How to observe symmetry oscillations?

momentum distribution & symmetry

The momentum distribution depends on the symmetry state $|\xi_{\ell}\rangle$

The initial state

- spin oscillations in real space (but this is another story ...)
- What about the momentum distribution?

Dynamics in momentum space

Symmetry oscillations!

Focussing on the dynamics of $n(k = 0)$ and of the contact $C \ldots$

SU(2) results, SB results

Same oscillations than $\gamma^{(2)} = \langle \psi(t) | \Gamma^{(2)} | \psi(t) \rangle$ *, the symmetry witness!*

 \bullet in a lineworld

 \bullet in a lineworld \ldots

• the fermionization of the system allows to solve exactly bosons and fermion strongly-correlated mixtures

 \bullet in a lineworld \ldots

- the fermionization of the system allows to solve exactly bosons and fermion strongly-correlated mixtures
- \bullet strong signature of the symmetry in $n(k)$

 \bullet in a lineworld \ldots

- the fermionization of the system allows to solve exactly bosons and fermion strongly-correlated mixtures
- \bullet strong signature of the symmetry in $n(k)$

• the fermionization of the system allows to solve "exactly" (at the order $1/g$) the dynamics at zero temperature

 \bullet in a lineworld \ldots

- the fermionization of the system allows to solve exactly bosons and fermion strongly-correlated mixtures
- \bullet strong signature of the symmetry in $n(k)$

- the fermionization of the system allows to solve "exactly" (at the order $1/g$) the dynamics at zero temperature
- This has allowed us to observe that, for a case of a spin excitation,

Symmetry analysis

- $[\hat{\Gamma}^{(2)}, \hat{n}(k)]=0$
- $[\hat{\Gamma}^{(2)}, \hat{H}_{SU}] = 0$

Symmetry analysis

- $[\hat{\Gamma}^{(2)}, \hat{n}(k)]=0$
- $[\hat{\Gamma}^{(2)}, \hat{H}_{SU}] = 0$
- $\overline{\mathsf{BUT}}~[\hat{n}(k),\hat{H}_{\mathcal{S}U}]\neq 0$ in general

Let $|\xi_{\ell}(k)\rangle$ the basis that diagonalizes simultaneously $\hat{\Gamma}^{(2)}$ and , $\hat{n}(k)$

- SU(2): coupling within states of the same symmetry sectors
- SB: coupling within states belonging to different symmetry sectors

• we start from the many-body wavefunction

$$
\Psi(x_1,\ldots,x_N)=\sum_{P\in S_N}a_P\theta_P(x_1,\ldots,x_N)\Psi_B(x_1,\ldots,x_N)
$$

where $\Psi_B = A \Psi_F$

- \bullet in order to find the a_P 's (the spin configurations), we minimize the energy up to the 1*∣g* order: $E = E_{\infty} + \frac{1}{\alpha}$ *g dE d*(1/*g*)
- **•** this ends up to find the eigenstates of the Hamiltonian (written on the snippet basis $\{\uparrow\uparrow\downarrow\downarrow, \uparrow\downarrow\uparrow, \downarrow\uparrow\uparrow\downarrow, \downarrow\uparrow\downarrow\uparrow, \downarrow\downarrow\uparrow\uparrow\}$

$$
H_{n\ell}=E_{\infty}\delta_{n,\ell}-\frac{1}{g}\sum_{i
$$

• we start from the many-body wavefunction

$$
\Psi(x_1,\ldots,x_N)=\sum_{P\in S_N}a_P\theta_P(x_1,\ldots,x_N)\Psi_B(x_1,\ldots,x_N)
$$

where $\Psi_B = A \Psi_F$

- \bullet in order to find the a_P 's (the spin configurations), we minimize the energy up to the 1*∣g* order: $E = E_{\infty} + \frac{1}{\alpha}$ *g dE d*(1/*g*)
- **•** this ends up to find the eigenstates of the Hamiltonian (written on the snippet basis $\{\uparrow\uparrow\downarrow\downarrow, \uparrow\downarrow\uparrow, \downarrow\uparrow\uparrow\downarrow, \downarrow\uparrow\downarrow\uparrow, \downarrow\downarrow\uparrow\uparrow\}$

$$
H_{n\ell}=E_{\infty}\delta_{n,\ell}-\frac{1}{g}\sum_{i
$$

This Hamiltonian is different for the SU(2) and the SB cases!
Boson-boson mixtures

 \bullet SU(2)

$$
\hat{H}^{SU} = E_{\infty} - NJ - J \sum_{j=1}^{N} \hat{P}_{j,j+1}
$$

$$
= \boxed{E_{\infty} - 2J \sum_{j=1}^{N} \vec{S}^{(j)} \vec{S}^{(j+1)} - \frac{3}{2}NJ}
$$

mapping on the XXX model

Boson-boson mixtures

 \bullet SU(2)

$$
\hat{H}^{SU} = E_{\infty} - NJ - J \sum_{j=1}^{N} \hat{P}_{j,j+1}
$$

$$
= \boxed{E_{\infty} - 2J \sum_{j=1}^{N} \vec{S}^{(j)} \vec{S}^{(j+1)} - \frac{3}{2}NJ}
$$

mapping on the XXX model

o SB

$$
\hat{H}^{SB} = E_{\infty} - NJ - J \sum_{j=1}^{N} \hat{P}_{j,j+1} + 2J \sum_{j=1}^{N} |s\rangle\langle s|\hat{P}_{j,j+1}|s\rangle\langle s|
$$

$$
= \boxed{E_{\infty} - 2J \sum_{j=1}^{N} (S_x^{(j)}S_x^{(j+1)} + S_y^{(j)}S_y^{(j+1)} - S_z^{(j)}S_z^{(j+1)}) - \frac{1}{2}NJ}
$$

mapping on the XXZ model

Dynamics of strongly interacting mixtures

Momentum distribution: decomposition in symmetry sectors

At strong interactions, spin and orbital part of the wavefunction decouple → **momentum density operator**: [Deuretzbacher et al. 2014]

$$
\hat{n}_{tot}(k)=\sum_{i,j}\hat{P}_{i,i+1,i+2,...j}R_{i,j}(k)
$$

particle permutation cycle, orbital contribution

 $\textsf{Crucial property: } [\hat{\mathsf{n}}_{\textsf{tot}}(\mathsf{k}), \hat{\mathsf{\Gamma}}^{(2)}] = \mathsf{0} \quad \text{ } (\hat{\mathsf{\Gamma}}^{(2)} = \sum_{i < j} \hat{\mathsf{P}}_{i,j})$

Time-dependent momentum distribution - on the common basis of $\hat{n}(k)$ and $\hat{\Gamma}^{(2)}$

$$
n(k,t)=\sum_{\ell}|\langle\psi(t)|\gamma_{\ell}\rangle|^2n_{\ell}(k)
$$

 $\textsf{with} \; n_\ell(k) = \langle \gamma_\ell | \hat{n}_{\textsf{tot}}(k) | \gamma_\ell \rangle.$

Symmetry-resolved momentum distribution

 $n_{\ell}(k) = \langle \gamma_{\ell} | \hat{n}_{tot}(k) | \gamma_{\ell} \rangle$

The most symmetric state has the highest peak!

 $n_{\ell}(k) = \sum_{i,j}(k)\langle\gamma_{\ell}|P_{i\rightarrow j}\rangle$ **The momentum distribution probes** *particle exchange permutation cycles!*

Two importants limits:

- At large momenta, only 2-particle permutations contribute $j = i + 1 \rightarrow$ **Tan's contact**
- At small momenta, all permutation cycles $i \rightarrow j$ contribute: to probe large distance coherence you need to go through all particles \rightarrow quasi ODLRO!

Spin-mixing dynamics

Exact magnetization dynamics at any time!

... and its barycenter $d(t) = \frac{1}{N}$ $\int_{-\infty}^{+\infty} m(z, t) z dz$

Early-time dynamics

 $\delta j(t) \sim t^{\eta}$ with $\eta = 0.638$

integrated spin-current density $\delta j(t) = \int_0^t dt' j(0,t')$

 $\textsf{spin-current } \text{density } j(z,t) = \frac{1}{2} \sum_{j=1}^{N-1} J_j(\sigma_j^x \sigma_{j+1}^y{-}\sigma_j^y)$ $\int_{j}^{y} \sigma_{j+1}^{x}$)[$\rho_{j}(z) + \rho_{j+1}(z)$] $y = n/(\omega_0 t)^{1/z}$, with $z = 3/2$

superdiffusion in agreement with KPZ theory

KPZ universality in magnets

What was already known

- **•** the dynamics of the 1D **isotropic** Heisenberg model shows a superdiffusive behaviour
- the domain-wall relaxation is governed by the KPZ dynamical exponent [M. Ljubotina, M. Znidaric and T. Prosen, Phys. Rev. Lett. 122, 210602 (2019); Immanuel Bloch's group experiment, Science 376, 6594 (2022)]
- superdiffusion desappears in 2D or breaking SU(2) (the model is no more integrable) [Immanuel Bloch's group experiment, Science 376, 6594 (2022)]

What is new

we observe superdiffusion and domain-wall relaxation governed by a dynamical exponent in agreement with the KPZ one,

even if

our system is anisotropic (and the model is no more integrable)

Analysis of our system

Our model is no more integrable, but ...

W($\Delta \epsilon$) Level spacing distribution: not integrable system but "close" to an integrable one . . .

Intermediate-time dynamics

$$
d(t) = d(t=0)e^{-\gamma t}\cos(\Omega_N t + \phi)
$$

 $\Omega_{\textit{N}}=\Omega_{\textit{univ}}/N^{1/4}~(\Omega_{\textit{univ}}\simeq 0.19\omega_0)$ $\qquad \gamma$ does not depend on N $\ddot{\theta} + \gamma \dot{\theta} + \Omega_N^2 \theta = 0 \Rightarrow \theta \simeq e^{-\Gamma_{SD} t}$ with $Γ_{SD} = Ω²_{univ}/(γN^{1/2})$

universal spin-drag scaling

Long-time dynamics

 $R(t) = |\rho_{\uparrow}(t) - \rho_{\uparrow,MC}|$ *"thermalization" to a MC ensemble state*