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Strongly repulsive bosons and spinless
fermions in a lineland . . .



The many-body Hamiltonian (for bosons)

H =
∑

i

− ~2

2m
∂2

∂x2
i

+ V (xi) + g
∑
i<j

δ(xi − xj)

Lieb-Liniger model (1963) with external potential

integrable if V (xi) = 0

not integrable if V (xi) 6= 0 for a generic g

integrable for a generic V (xi) if g →∞
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The Tonks-Girardeau regime

. . . in the strongly repulsive regime
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The Tonks-Girardeau regime

. . . in the strongly repulsive regime
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2 TG-bosons cannot be at the same place (at the same time) in their
lineworld...



The boson-fermion mapping
[M. Girardeau, J. Math. Phys. 1, 516 (1960)]

x1 x2

ψ(x1 − x2) = ψ(x2 − x1)

∞
δ x

1
,x

2
↔ P

au
li

!

x1 x2

ψ(x1 − x2)

= −ψ(x2 − x1)

B-F mapping : ψB(x1, x2, . . . , xN) = AψF (x1, x2, . . . , xN)

Consequences:

nB(x) = nF (x)

ρ2,B(x , x ′) = ρ2,F (x , x ′)
SB(k , ω) = SF (k , ω)
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The boson-fermion mapping (at T = 0)
The two particles example in a harmonic trap

The free fermions many-body wavefunction is

ψF (x1, x2) =
1√
2

∣∣∣∣ φ1(x1) φ1(x2)
φ2(x1) φ2(x2)

∣∣∣∣ =
1√
πaho

e−(x2
1 +x2

2 )/2a2
ho (x2 − x1)

thus the TG many-body wavefunction is

ψB(x1, x2) = (πaho)−1/2e−(x2
1 +x2

2 )/2a2
ho |x2 − x1|

namely

ψB(x1, x2) =

{
+θ(x1 < x2)ψF (x1, x2)
−θ(x2 < x1)ψF (x1, x2)

ψF (x2, x1) = −ψF (x1, x2) and ψB(x2, x1) = ψB(x1, x2)



The boson-fermion mapping (at T = 0)
The two particles example in a harmonic trap

The free fermions many-body wavefunction is

ψF (x1, x2) =
1√
2

∣∣∣∣ φ1(x1) φ1(x2)
φ2(x1) φ2(x2)

∣∣∣∣ =
1√
πaho

e−(x2
1 +x2

2 )/2a2
ho (x2 − x1)

thus the TG many-body wavefunction is

ψB(x1, x2) = (πaho)−1/2e−(x2
1 +x2

2 )/2a2
ho |x2 − x1|

namely

ψB(x1, x2) =

{
+θ(x1 < x2)ψF (x1, x2)
−θ(x2 < x1)ψF (x1, x2)

ψF (x2, x1) = −ψF (x1, x2) and ψB(x2, x1) = ψB(x1, x2)



Spinless fermions vs strongly interacting spinless
bosons (TG)

(in a harmonic trap)

nF (p)

I a “potato”shape (a
step-function in a ring)
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limp→∞ nB(p) = Cp−4

A. Minguzzi, P.V., M. Tosi, PLA 294, 222 (2002)

M. Olshanii, V. Dunjko, PRL 91, 090401(2003)
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The contact C
boom!

interplay of interactions & symmetry!

n(p)p→∞ → Cp−4

I in 1D for any value of γ
[JS Caux, P Calabrese, NA Slavnov (2007)]
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in 3D too! for particles in the unitary regime [S. Tan (2008); Debby Jin’s

experiment] and in the weak interaction limit [David Clément experiment]

... not only in the momentum distribution!

C ∝ gEint with Eint = g
∫

dR〈Ψ†Ψ†ΨΨ(R)〉

C ∝ − dE
d(1/g)

, E being the total energy

Tan’s relations in 1D [S. Tan (2008), M. Barth, W. Zwerger (2011)]
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The contact C in the strongly interacting limit
boom!

ATTENTION: g →∞, Eint → 0 BUT gEint = C 6= 0

lim
g→∞

gEint = − lim
g→∞

∂E
∂1/g

= g2
∑
i<j

∫
ψ2δ(xi − xj ) dx1 . . . dxN

can be evaluatued by exploiting the cusp condition:

lim
g→∞

gψ(xi = xj ) = − ~2

2m

(
∂ψ

∂xi

∣∣∣∣
xi=xj +0+

− ∂ψ

∂xi

∣∣∣∣
xi=xj +0−

)
(1)

C ∝ to the number of cusps
(symmetric exchanges)
and to the slopes of the cusps
(how particles brush against)
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Strongly repulsive mixtures

Exact solutions for mixtures & symmetry considerations



Example: 1D two-component mixtures
Bosonic mixtures



Example: 1D two-component mixtures
Bosonic mixtures or Fermionic mixtures



Example: 1D two-component mixtures
Bosonic mixtures or Fermionic mixtures⇒ spinless fermions



Example: 1D two-component mixtures
Mapping on spinless fermions: the right nodes



Example: 1D two-component mixtures
spinless fermions: the right exchange rules for fermions



Example: 1D two-component mixtures
spinless fermions: symmetrized” exchange rules for bosons



Example: 1D two-component mixtures
spinless fermions: What is it missing?

the interspecies exchange rules!

Large ground-state degeneracy:
N!

N1!N2! . . .Nκ!
(for κ components)



Exact wavefunction in the fermionized regime

Generalization of Girardeau’s wavefunction for impenetrable
bosons [Volosniev et al., Nat. Phys. 2015]

Ψ(x1, . . . , xN) =
∑

P∈SN

aPθ(xP(1) < · · · < xP(N))ΨF (x1, . . . , xN)

x1

x2

x2 < x1

x1 < x2

a1ΨA(x1, x2)

a2ΨA(x1, x2)

the coefficients aP are determined minimizing the energy:

g−1 expansion: E = E∞ +
1
g
∂E
∂g−1 = E∞ −

K
g

the coefficients aP maximize the
“contact” K ∝ C

K = −(∂E/∂g−1)
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Exact wavefunction in the fermionized regime

More in details, in order to obtain the aP ’s for all the states of the
lowest-energy manifold, that are degenerate at g →∞, but that
are not degenerate at large finite g, we diagonalize the
effective Hamiltonian

Hn` = E∞δn,` −
1
g

∑
i<j

lim
g→∞

∫
g2φ∗nφ`δ(xi − xj)

written on the snippet (spin configurations) basis
{↑↑↓↓, ↑↓↑↓, ↑↓↓↑, ↓↑↑↓, ↓↑↓↑, ↓↓↑↑}

The effective Hamiltonian Hn.` can be mapped on a spin-chain
Hamiltonian and each eigenstate has a well-defined symmetry
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How to determine the wavefunction symmetry?
Use the class-sum operators [Katriel, J. Phys. A, 26, 135 (1993]

Γ(k) =
∑

i1<...ik

(i1 . . . ik )

(i1 . . . ik ) being the cyclic permutation of k elements

There is a corrispondence between the eigenvalues of Γ(k) and
the Young tableaux

Our main symmetry witness is Γ(2) =
∑
i<j

Pi,j

[Decamp et al, New J. Phys. 18 055011 (2016)]
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Ground-state and symmetry for SU(2) Hamiltonians
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2+2 SU(2) fermions 2+2 SU(2) bosons

All quantum states have well defined symmetry
(are eigenstates of Γ(2)) and different contacts

E = E∞ −
K
g

C =
m2

π~4 K



Ground-state and symmetry for SU(2) Hamiltonians
All quantum states have well defined symmetry
(are eigenstates of Γ(2)) and different momentum distributions

For 2+2 SU(2) bosons

n`(k) = 〈ξ`|n̂(k)|ξ`〉

|ξ`〉 eiegenstates of Γ(2)



Breaking the symmetry

Ground-state properties

[G. Aupetit-Diallo, G. Pecci, C. Pignol, F. Hébert, A. Minguzzi, M. Albert, and P.V. Phys. Rev. A 106, 033312 (2022)]



Boson-boson mixtures

Ĥ =
∑
σ=↑,↓

Nσ∑
i

− ~2

2m
∂2

∂x2
i,σ

+ gσσ
Nσ∑
j>i

δ(xi,σ − xj,σ)


+ g↑↓

N↑∑
i

N↓∑
j

δ(xi,↑ − xj,↓)

Let’s consider two cases:

SU(2) case
g↑↑ = g↓↓ = g↑↓ = g →∞
mapping on a XXX spin-chain Hamiltonian

the Symmetry Breaking (SB) case
g↑↑ = g↓↓ = g →∞, BUT g↑↓ 6= g, with 1/g↑↓ � 1

mapping on a XXZ spin-chain Hamiltonian
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Boson-boson mixtures
Results

ground-state symmetry

I 2+2 SU(2) bosons:
I 2+2 SB bosons: ( 8

9 ) but also ( 1
9 )

the contact C
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Breaking the symmetry: dynamical
effects

Symmetry oscillations!
[S. Musolino, M. Albert, A. Minguzzi, and P.V., Phys. Rev. Lett. 133, 183402 (2024)]



Dynamical evolution in the strong repulsive limit

An almost “exact” solution for the dynamics (in 1/g)

generally

Ψ(x1, . . . , xN ; t) =
∑

P∈SN

aP(t)θ(xP(1) < · · · < xP(N))ΨF (x1, . . . , xN ; t)

but in 1D, with g →∞, one can have only a spin excitation!

Ψ(x1, . . . , xN ; t) =
∑

P∈SN

aP(t)θ(xP(1) < · · · < xP(N))ΨF (x1, . . . , xN)

The aP(t) evolve under the action of the effective Hamiltonian that
can be mapped on a spin-chain Hamiltonian

(XXX for the SU(2) mixture, XXZ for the SB one)
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What do we expect?
Symmetry conservation in the SU(κ) case

Symmetry oscillations in the SB case

Particle states of given permutation sym-
metry are not diagonal in the basis of HSB

During time evolution, the many-body
wavefunction evolves from one symmetry
to another

m

Neutrino oscillations

Neutrino states of given flavour are not diag-
onal in the basis of their dynamical evolution
During time evolution, neutrinos evolve from
one flavour to another

From M.A. Thomson Part. Phys.

lecture note



What do we expect?
Symmetry conservation in the SU(κ) case

Symmetry oscillations in the SB case

Particle states of given permutation sym-
metry are not diagonal in the basis of HSB

During time evolution, the many-body
wavefunction evolves from one symmetry
to another

m

Neutrino oscillations

Neutrino states of given flavour are not diag-
onal in the basis of their dynamical evolution
During time evolution, neutrinos evolve from
one flavour to another

From M.A. Thomson Part. Phys.

lecture note



What do we expect?
Symmetry conservation in the SU(κ) case

Symmetry oscillations in the SB case

Particle states of given permutation sym-
metry are not diagonal in the basis of HSB

During time evolution, the many-body
wavefunction evolves from one symmetry
to another

m

Neutrino oscillations

Neutrino states of given flavour are not diag-
onal in the basis of their dynamical evolution
During time evolution, neutrinos evolve from
one flavour to another

From M.A. Thomson Part. Phys.

lecture note



Permutation symmetry oscillations

How to observe symmetry oscillations?

momentum distribution & symmetry

The momentum distribution depends on the symmetry state |ξ`〉

n`(k) = 〈ξ`|n̂(k)|ξ`〉
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The initial state

↑ ↑ ↓ ↓
spin oscillations in real space (but this is another story . . . )
What about the momentum distribution?



Dynamics in momentum space



Symmetry oscillations!
Focussing on the dynamics of n(k = 0) and of the contact C . . .

SU(2) results, SB results

Same oscillations than γ(2) = 〈ψ(t)|Γ(2)|ψ(t)〉,
the symmetry witness!



Conclusions

in a lineworld .... x1 x2

ψ(x1 − x2) = ψ(x2 − x1)

∞
δ x

1
,x

2

↔

P
au

li
!

x1 x2

ψ(x1 − x2)

= −ψ(x2 − x1)

the fermionization of the system allows to solve exactly
bosons and fermion strongly-correlated mixtures

strong signature of the symmetry in n(k)

the fermionization of the system allows to solve “exactly” (at
the order 1/g) the dynamics at zero temperature
This has allowed us to observe that, for a case of a spin
excitation,
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Symmetry analysis

[Γ̂(2), n̂(k)] = 0

[Γ̂(2), ĤSU ] = 0

BUT [n̂(k), ĤSU ] 6= 0 in general

Let |ξ`(k)〉 the basis that diagonalizes simultaneously Γ̂(2) and , n̂(k)

SU(2): coupling within states of the same symmetry sectors

SB: coupling within states belonging to different symmetry sectors
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Boson-boson mixtures

we start from the many-body wavefunction

Ψ(x1, . . . , xN) =
∑

P∈SN

aPθP(x1, . . . , xN)ΨB(x1, . . . , xN)

where ΨB = AΨF

in order to find the aP ’s (the spin configurations), we minimize the

energy up to the 1/g order: E = E∞ +
1
g

dE
d(1/g)

this ends up to find the eigenstates of the Hamiltonian (written on
the snippet basis {↑↑↓↓, ↑↓↑↓, ↑↓↓↑, ↓↑↑↓, ↓↑↓↑, ↓↓↑↑})

Hn` = E∞δn,` −
1
g

∑
i<j

lim
g→∞

∫
g2φ∗nφ`δ(xi − xj )

This Hamiltonian is different for the SU(2) and the SB cases!
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Boson-boson mixtures

SU(2)

ĤSU = E∞ − NJ − J
N∑

j=1

P̂j,j+1

= E∞ − 2J
N∑

j=1

~S(j)~S(j+1) − 3
2

NJ

mapping on the XXX model

SB

ĤSB = E∞ − NJ − J
N∑

j=1

P̂j,j+1 + 2J
N∑

j=1

|s〉〈s|P̂j,j+1|s〉〈s|

= E∞ − 2J
N∑

j=1

(S(j)
x S(j+1)

x + S(j)
y S(j+1)

y − S(j)
z S(j+1)

z )− 1
2

NJ

mapping on the XXZ model
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Dynamics of strongly interacting
mixtures



Momentum distribution: decomposition in symmetry
sectors

At strong interactions, spin and orbital part of the wavefunction
decouple→ momentum density operator: [Deuretzbacher et al. 2014]

n̂tot (k) =
∑
i,j

P̂i,i+1,i+2,...jRi,j(k)

particle permutation cycle, orbital contribution

Crucial property: [n̂tot (k), Γ̂(2)] = 0 (Γ̂(2) =
∑

i<j P̂i,j )

Time-dependent momentum distribution - on the common
basis of n̂(k) and Γ̂(2)

n(k , t) =
∑
`

|〈ψ(t)|γ`〉|2n`(k)

with n`(k) = 〈γ`|n̂tot (k)|γ`〉.



Symmetry-resolved momentum distribution

n`(k) = 〈γ`|n̂tot (k)|γ`〉
The most symmetric state has the

highest peak!

n`(k) =
∑

i,j(k)〈γ`|Pi→j |γ`〉 The momentum distribution probes
particle exchange permutation cycles!

Two importants limits:
At large momenta, only 2-particle permutations contribute
j = i + 1→ Tan’s contact
At small momenta, all permutation cycles i → j contribute:
to probe large distance coherence you need to go through
all particles→ quasi ODLRO!



Spin-mixing dynamics
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Exact magnetization dynamics at any time!

. . . and its barycenter d(t) =
1
N
∫ +∞
−∞ m(z, t)z dz



Early-time dynamics

δj(t) ∼ tη with η = 0.638

integrated spin-current density δj(t) =
∫ t

0 dt ′j(0, t ′)

spin-current density j(z, t) = 1
2

∑N−1
j=1 Jj (σ

x
j σ

y
j+1−σ

y
j σ

x
j+1)[ρj (z)+ρj+1(z)]

y = n/(ω0t)1/z , with z = 3/2

superdiffusion in agreement with KPZ theory



KPZ universality in magnets
What was already known

the dynamics of the 1D isotropic Heisenberg model shows a
superdiffusive behaviour

the domain-wall relaxation is governed by the KPZ dynamical
exponent [M. Ljubotina, M. Znidaric and T. Prosen, Phys. Rev. Lett. 122, 210602 (2019); Immanuel

Bloch’s group experiment, Science 376, 6594 (2022)]

superdiffusion desappears in 2D or breaking SU(2) (the model is
no more integrable) [ Immanuel Bloch’s group experiment, Science 376, 6594 (2022)]

What is new

we observe superdiffusion and domain-wall relaxation governed
by a dynamical exponent in agreement with the KPZ one,

even if

our system is anisotropic (and the model is no more integrable)



Analysis of our system
Our model is no more integrable, but . . .

W (∆ε) Level spacing distribution: not integrable system but
“close” to an integrable one . . .



Intermediate-time dynamics

d(t) = d(t = 0)e−γt cos(ΩN t + φ)
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universal spin-drag scaling



Long-time dynamics

R(t) = |ρ↑(t)− ρ↑,MC | “thermalization” to a MC ensemble state


