Novel quantum dynamics with superconducting qubits (35+5 min)

January 2025

Pedram Roushan (Google Quantum AI)

Two Paradigms: Erorr correction and NISQ

" Tell me something I didn't know before " -a theoretical physicist

Discoveries made by NISQ processors, which could also been made in theory or by using classical computing resources.

PR and Leigh Martin, under review (2025)

Dynamics of magnetization at infinite temperture in a Heisenberg spin chain

prob. of $\bigcirc e^{\mu} / (e^{\mu} + e^{-\mu})$ prob. of $\bigcirc e^{\mu} / (e^{\mu} + e^{-\mu})$

1D XXZ Hamiltonian:

 $\sum_{i} (X_i X_{i+1} + Y_i Y_{i+1}) + \Delta Z_i Z_{i+1}$ $\mathcal{H} =$

1D XXZ Floquet :

Domain wall dynamics in a Heisenberg spin chain of 46 qubits

Kardar-Parisi-Zhang (KPZ) Universality Class

Mean and Variance of M

 \rightarrow consistent with KPZ

al. PRB (2020), M. Dupont et al. PRL (2021), E. Ilievski et al. PRX (2021), A. Scheie et al. Nat. Phys. (2021)

Mean, $\langle \mathcal{M} \rangle$

Higher moments of the transferred magnetization

I usually do not study universality classes

Significance of studying higher moments in

determining dynamic universality classes ?

Realizing topologically ordered states on a quantum processor

$$\mathcal{H}_{\mathsf{Kitaev}} = -\sum_{p} \prod_{i \in p} X_i - \sum_{v} \prod_{i \in v} Z_i = -\sum_{p \mid \mathsf{aquettes}} B_p - \sum_{v \text{ ertices}} A_v$$

$$\overset{\mathsf{plaquette}}{\underset{x \land B_p \land x}{\overset{x}}} \overset{\mathsf{vertex}}{\underset{z}{\overset{z}}} \overset{\mathsf{vertex}}{\underset{z}{\overset{z}}} \overset{\mathsf{plaquette}}{\underset{z}{\overset{vertex}}} \overset{\mathsf{vertex}}{\underset{z}{\overset{vertex}}}$$

Satzinger *et al.* Science 374, 1237-1241 (2021)

A. Y. Kitaev, Ann. Phys. (N. Y). 303, 2 (2003).

Gate sequence to create ground-states

$S_{\rm topo} = S_A + S_B + S_C - S_{AB} - S_{BC} - S_{AC} + S_{ABC}$

Randomized measurement: Tiff *et al.*, Science (2019), Vermersch *et al.*, PRA (2018)

Non-Abelian braiding of graph vertices in a superconducting processor

 $\left\{ \text{ } S_{1}^{}, \text{ } S_{2}^{}, \text{ } S_{3}^{}, \ldots, \text{ } S_{N-1}^{}, \text{ } S_{N}^{} \right\} \rightarrow \text{Stabilizer set}$

e and m on different sublattices \rightarrow can never "meet"

Unitarily modifying wavefunctions to have "defects"

Unitarily modifying wavefunctions to have "defects"

Recipe to modifying wavefunctions to have Degree-3 vertices

$$U = \exp(\pi/8 [S',S]) = \exp(i \pi/4 X_{i,j} Z_{i,j+1})$$

Move the D3Vs \triangle with 2-qubit gates \rightarrow deform the stabilizer graph !

Experimentally verifying the fusion rules

Experimentally verifying the fusion rules

Experimentally verifying the fusion rules

Fermion can fuse into a D3V

Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories

$$\mathcal{H}_{\mathsf{LGT}} = -\sum_{\substack{p \mid aq. \\ magnetic flux}} B_p - \sum_{\substack{\mathsf{links} \\ \mathsf{electric field}}} Z_l - \sum_{\substack{\mathsf{links} \\ \mathsf{matter-field coupling}}} \tau_v^Z + \sum_{\substack{\mathsf{vert.} \\ \mathsf{mass / charge}}} T_v^X + S_p = \prod_{i \in p} X_i \\ B_p = \prod_{i \in p} X_i \\ G_v = A_v \tau_v^X \rightarrow [\mathcal{H}_{\mathsf{LGT}}, G_v] = 0, \forall v$$

Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories

Phase diagram of the LGT

E. Fradkin and S. H. Shenker, PRD (1979), S. Trebst et al., PRL(2007), J. Vidal et al., PRB (2009).

Confinement of electric excitations

Confinement of electric excitations

Dynamics of the string connecting two fixed electric particles

Dynamics of the string connecting two fixed electric particles

Google Quantum AI, Santa Barbara, California

Quantum residency program for PhD students

Jesse Hoke (Stanford)

Eliott Rosenberg (Cornell)

Gaurav Gyawali (Cornell)

"I have a feeling we are not in Kansas anymore"

Improvement in fidelities from Sycamore to Willow

Theoretical properties vs. physical properties

$$\hat{H}_{BH} = \sum_{i} h_{i} a_{i} a_{i}^{\dagger} + \sum_{\langle i,j \rangle} J_{i,j} (a_{i} a_{j}^{\dagger} + a_{i}^{\dagger} a_{j}) + \frac{U}{2} \sum_{i} a_{i} a_{i}^{\dagger} (a_{i} a_{i}^{\dagger} - 1) + h.o.t$$

Sycamore Quantum Computer

Subsystem	Number of parts
Quantum processor	1
Package + mount	1,000
Dilution refrigerator	1
Amplifiers & filters	1,000
Attenuators	1,000
Wiring	4,000
Control hardware	2,000

Quantum Al

What are the possible phases of quantum information in space-time ?

