Uniform Versions of Shafarevich Conjecture

Plawan Das

Chennai Mathematical Institute

Plawan Das (CMI)

Uniform Versions of Shafarevich Conjecture

(日)

Let *K* be a number field, \overline{K} be an alg. closure of *K* and $G_K := \operatorname{Gal}(\overline{K}/K)$. Let *g*, *n*, *m* be positive integers and ℓ be a prime number. Let $S \supset S_{\infty}$ be a finite set of places of *K*. Let $S_{\ell} := S \cup \{v|\ell\}$. Let *F* be a non-archimedean local field with Char(F)=0 and residue characteristic ℓ .

Theorem (Shafarevich Conjecture, proved by Faltings, 1983) Given K, g, S; there are only finitely many isomorphism classes of abelian varieties defined over K of dimension g with good reduction outside S.

Finiteness criteria for (potential) equivalence

Lemma (finiteness criteria) Given $K, S, F, \ell, n; \exists$ a finite set T of finite places of K ($S \cap T = \emptyset$) with the following property: suppose $\rho_1, \rho_2 : G_K \longrightarrow GL_n(F)$ are two continuous semisimple representations of G_K .

• (Faltings',1983) If they are unramified outside S_{ℓ} and satisfy

$$Tr \ \rho_1(F_v) = Tr \ \rho_2(F_v), \quad \text{for } v \in T;$$

Then $\rho_1 \cong \rho_2$.

(Rajan,—, 2023) If ∃ m > 0 s. t. for v ∉ S_ℓ, I_v acts by scalar matrices of order dividing m and the repns satisfy:

$$Tr
ho_1(F_v^m) = Tr
ho_2(F_v^m), \text{ for } v \in T.$$

Then ρ_1, ρ_2 are potentially isomorphic, i.e., $\rho_1|_{G_L} \cong \rho_2|_{G_L}$ for some finite extension L/K.

Plawan Das (CMI)

イロト 不得 トイヨト イヨト 二日

Theorem (Rajan,—,2023)

Fix K, S, ℓ, w, n, d, F . There are, up to pot. equiv., only fin. many cont., s.s. Gal. repns. $\rho: G_K \to GL_n(F)$, s. t. $I_v, v \notin S_\ell$ acts by scalar matrices, and pure of deg. at most d and wt. w.

Now using the following:

- (Faltings', 1983) $V_{\ell}(A)$ is semisimple and Hom $(A, B) \otimes \mathbb{Q}_{\ell} \simeq \operatorname{Hom}_{G_{\kappa}}(V_{\ell}(A), V_{\ell}(B))$; for any ab. var. A/K, B/K.
- (Faltings', 1983) Each K-isog. class of ab. var. over K only contains fin. many K-isom. classes.
- (Masser-Wüstholz, 1993; Bost, 1996) For any ab. var. A/K, there are only a fin. num. of K-isom. classes of ab. var. B/K and K-isog. to A.

We get

Theorem (—, Rajan, 2023) There are, up to \overline{K} -isomorphism, only fin. many ab. var. of dim. g defined over K, s. t. I_v , $v \notin S$ acts by scalars $\{\pm 1\}$ on $V_{\ell}(A)$ for ℓ coprime to the res. char. at v.

Plawan Das (CMI)

Totally Bad Reduction of abelian varieties **Definition**

An ab. var. A_v over K_v is said to have totally bad reduction (resp. purely additive reduction) if $\tilde{\mathcal{A}}_v^0$ (connected component containing identity of the special fibre $\tilde{\mathcal{A}}_v$ of the Néron model \mathcal{A}_v at v) is an affine group scheme (resp. unipotent group scheme) over k_v .

Chevalley decomposition over k_v :

$$0 \to T \times U \to \tilde{\mathcal{A}}_{v}^{0} \to B \to 0.$$

Suppose A is an elliptic curve, then A has good red. at v (resp. semi-stable red., additive red.) if and only if \tilde{A}_v is an elliptic curve (resp. $\tilde{A}_v^0 \cong \mathbb{G}_m$, $\tilde{A}_v^0 \cong \mathbb{G}_a$). Hence tot. bad red. is same as bad red. and purely additive red. is same as additive red.

• If A_v has tot. bad red. and acquires good red. over a quad. extn of K_v then for ℓ coprime to the res. char. of K_v , I_v acts via scalars $\{\pm 1\}$ on $V_{\ell}(A_v)$.

Plawan Das (CMI)

Summary

Fix K, g, $S \supseteq S_{\infty}$. For any fin. set of places S' of K containing S, let $\mathcal{X}(K, g, S')$ and $\overline{\mathcal{X}}(K, g, S')$ denote the K-isomor. classes and \overline{K} -isomor. classes of the ab. var. A/K of dim. g resp., satisfying the following:

- (a) for any place $v \notin S'$, A has good red. at v,
- (b) for any place $v \in S' \setminus S$, A_v has either good red. or tot. bad red. and acquires good red. over a quad. extn of K_v .

For fixed K, g and S, the union

$$ar{\mathcal{Y}}(\mathcal{K}, \mathcal{g}, \mathcal{S}) := igcup_{\mathcal{S}' \supseteq \mathcal{S}} ar{\mathcal{X}}(\mathcal{K}, \mathcal{g}, \mathcal{S}')$$

is finite.

Motivated by a question of Ihara (1986,1991), Rasmussen-Tamagawa considered the set of K-isomorphism classes [A] of ab. var. A/K,

$$\begin{split} \mathcal{A}(K,g,\ell) &:= \{[A]: \dim A = g, \ A \text{ has good red. outside } \ell \text{ and} \\ & K(A[\ell])/K(\mu_\ell) \text{ is an } \ell\text{-extn} \}. \end{split}$$

Conjecture (Rasmussen-Tamagawa Conjecture, 2008, 2016) Given a num. field K, and a pos. int. g; the set $\mathcal{A}(K, g, \ell) = \emptyset$ for sufficiently large ℓ . In particular, $\mathcal{A}(K, g) := \bigcup_{\ell} \mathcal{A}(K, g, \ell)$ is finite.

- (Rasmussen-Tamagawa 2008, 2016) proved assuming GRH, gave unconditional proof for $K = \mathbb{Q}$ and g = 1, 2, 3.
- (uniform version, 2016) ∃N = N(g, n) > 0 s. t. A(K, g, ℓ) = Ø for K with [K : Q] = n for ℓ > N and assuming GRH they proved it for n is odd. For any n, Bourdon (2015) and Lombardo (2018) proved it for CM ell. curves and ab. var. of CM type resp.
- (Ozeki, 2013) for A/K when the image of $\rho_{A,\ell}$ is abelian.
- (Rasmussen-Tamagawa, 2016) proved that $\mathcal{A}^{ss}(\mathcal{K}, g) := \bigcup_{\ell} \mathcal{A}^{ss}(\mathcal{K}, g, \ell)$ is finite.

Plawan Das (CMI)

- ロ ト - (四 ト -) 三 ト -) 三 三

Definition

Let $\mathcal{Z}(K,g)$ be the set of K-isom. classes of ab. var. A/K of dim. g s.t. for any finite place v of K, A_v has either good red., or tot. bad red. and acquires good red. over a quad. extn. of K_v .

Definition

Let $\mathscr{M}(K, g, \ell)$ be a subset of $\mathscr{Z}(K, g)$ consisting of K-isom. classes of those ab. var. A/K for which $K_A(A[\ell])$ is an ℓ -extn. of $K_A(\mu_\ell)$, where $K_A = K(A[12])$. Let $\overline{\mathscr{M}}(K, g, \ell)$ denotes the \overline{K} -isom. classes of such ab. varieties.

Note that if a smooth proper var. X/K has semistable red. at u dividing ℓ then the ℓ -adic cohomology group $H^r_{\text{ét}}(X_{\bar{K}}, \mathbb{Q}_{\ell})$ and its dual are 'semistable' at u. For an ab. var. A/K, by Raynaud's criteria, A has semistable red. everywhere over K(A[12]).

イロト 不得 トイヨト イヨト 二日

Theorem (Sarkar, —) Let K be a number field and g be a positive integer. For sufficiently large prime numbers ℓ , the set $\mathcal{M}(K, g, \ell) = \emptyset$.

Corollary

For a given number field K and a positive integer g, the set $\overline{\mathscr{M}}(K,g) := \bigcup_{\ell} \overline{\mathscr{M}}(K,g,\ell)$ is finite.

Consider $\mathcal{A}^{\text{pot}}(K, g, \ell) := \mathcal{A}(K, g, \ell) \cap \mathcal{Z}(K, g)$. In fact, $\mathcal{A}^{\text{pot}}(K, g, \ell) \subset \mathcal{M}(K, g, \ell)$ and hence we have

Corollary

For sufficiently large prime numbers ℓ , the set $\mathcal{A}^{pot}(K, g, \ell) = \emptyset$. In particular, $\mathcal{A}^{pot}(K, g) := \bigcup_{\ell} \mathcal{A}^{pot}(K, g, \ell)$ is finite.

Plawan Das (CMI)

Definition

An E-rational (E-integral) strictly *m*-compatible system $(\rho_{\lambda})_{\lambda}$ of *n*-dimensional λ -adic representations of G_{K} with defect set *T* and finite *m*-ramification set *S* is a family of continuous (semisimple) representations $\rho_{\lambda} : G_{K} \to GL_{n}(E_{\lambda})$ such that for any finite place λ of *E* not in *T*, ρ_{λ} satisfy the following conditions:

- 1. the group $\rho_{\lambda}(I_{v})$ has order dividing m for finite places $v \notin S_{\ell_{\lambda}}$;
- 2. for a finite place v of K not in S, there exists a monic polynomial $f_v[X] \in E[X]$ (resp. $f_v(X) \in \mathcal{O}_E[X]$) such that for all finite places $\lambda \notin T$ of E coprime to the residue characteristic of v, the characteristic polynomial of $\rho_\lambda(F_v^m)$ is equal to $f_v(X)$.

By Raynaud's semistability criteria, A/K has everywhere semistable red. over K(A[12]). For any g > 0, put $D_g = |GL_{2g}(\mathbb{Z}/3\mathbb{Z})| \cdot |GL_{2g}(\mathbb{Z}/4\mathbb{Z})|$. The degree $[K(A[12]) : K] | D_g$.

Plawan Das (CMI)

Let S be s. t. outside S, A has pot. good red. Take any ℓ and v ∉ S_ℓ. Let L = K(A[12]). Since L/K Galois and [L : K] | D_g, D_g/f_L is an integer. We get

$$\det(XI_{2g} - \rho_{A,\ell}(F_v^{D_g})) = \det(XI_{2g} - \rho_{A,\ell}(F_{v_L}^{D_g/f_L})).$$

So $(\rho_{A,\ell})_{\ell}$ give a D_g -compatible system with D_g -ram. set S and defect set empty.

• To any pair (ℓ, A) , $A \in \Gamma$ (a fixed \overline{K} -isogeny class of ab. varieties A/K of $\dim = g$) attach the ℓ -adic repn $\rho_{\ell} := \rho_{A,\ell}$. Then $(\rho_{\ell})_{\ell}$ give a D_g^2 -compatible system with D_g^2 -ram. set S (take as above) and defect set empty. For $A, B \in \Gamma$, L = K(A[12], B[12]). By Silverberg, A and B are isogenous over L, hence for $v \notin S_{\ell\ell'}$,

$$\begin{split} \det(XI_{2g} - \rho_{A,\ell}(F_{v_L})) = & \det(XI_{2g} - \rho_{B,\ell}(F_{v_L})) \\ = & \det(XI_{2g} - \rho_{B,\ell'}(F_{v_L})) \in \mathbb{Z}[X]. \end{split}$$

$$\begin{split} \det(XI_{2g} - \rho_{\ell}(F_{\nu}^{D_{g}^{2}})) = &\det(XI_{2g} - \rho_{A,\ell}(F_{\nu_{L}}^{D_{g}^{2}/f_{L}})) \\ = &\det(XI_{2g} - \rho_{B,\ell'}(F_{\nu_{L}}^{D_{g}^{2}/f_{L}})) \\ = &\det(XI_{2g} - \rho_{\ell'}(F_{\nu_{L}}^{D_{g}^{2}})). \end{split}$$

Plawan Das (CMI)

Uniform Versions of Shafarevich Conjecture

Lemma

Let $(\rho_{\ell})_{\ell}$ be an \mathbb{Q} -integral strictly m-compatible system of n-dimensional continuous, pure semisimple ℓ -adic representations $\rho_{\ell} : G_{K} \to GL_{n}(\mathbb{Q}_{\ell})$ with m-ramification set S whose Weil weights are bounded by w. Suppose there exists an infinite set of rational primes Λ satisfying the following conditions:

For any $\ell \in \Lambda$, there exists a Galois extension L^{ℓ} of K (depending on ℓ) such that $[L^{\ell} : K] \mid m$ and ρ_{ℓ} satisfies the following:

- 1. $\rho_{\ell}|_{G_{L^{\ell}}}$ is unramified at all finite places outside the places of L^{ℓ} lying above places in S_{ℓ} ,
- 2. (Hodge-Tate) there exists integers $w_1 \le w_2$ and a place u_ℓ of L^ℓ lying above ℓ such that $\rho_\ell|_{G_{u_\ell}}$ is semistable at u_ℓ and the Hodge-Tate weights of ρ_ℓ at u_ℓ are in $[w_1, w_2]$ for any pair (ℓ, u_ℓ) ,
- 3. (Potentially Cyclotomic) $\bar{\rho}_{\ell}^{ss}|_{\mathcal{G}_{\ell}^{\ell}} \cong \bigoplus_{i=1}^{n} \bar{\chi}_{\ell}^{a_{\ell,i}}|_{\mathcal{G}_{\ell}^{\ell}}$, where $a_{\ell,i}$ are integers.

Then, there exists an integer c independent of ℓ such that ρ_{ℓ} and $\bigoplus_{i=1}^{n} \chi_{\ell}^{c}$ are potentially equivalent. In particular, the Weil weights of ρ_{ℓ} and $\bigoplus_{i=1}^{n} \chi_{\ell}^{c}$ are equal and independent of ℓ .

References

Das, P. and Rajan, C. S., Finiteness theorems for potentially equivalent Galois representations: extension of Faltings' finiteness criteria, Proc. Amer. Math. Soc. 151 (2023).

- Das, P. and Rajan, C. S., A Finiteness theorem for abelian varieties with totally bad reduction, https://arxiv.org/abs/2110.00870.
- Das, P. and Sarkar, S. A base change version of Rasmussen-Tamagawa Conjecture, https://arxiv.org/abs/2208.04170.
- C. Rasmussen and A. Tamagawa, A finiteness conjecture on abelian varieties with constrained prime power torsion, Math. Res, Lett. (2008)
- C. Rasmussen and A. Tamagawa, Arithmetic of abelian varieties with constrained torsion, Trans. Amer. Math. Soc.; 2016.
- Y. Ozeki and Y. Taguchi, On congruences of Galois representations of number fields, Publ. Res. Inst. Math. Sci. (2014).
- Ozeki, Yoshiyasu . Non-existence of certain CM abelian varieties with prime power torsion. Tohoku Math. J. (2013).

Plawan Das (CMI)