Adaptive Measurements for Profit and Pleasure

Howard M. Wiseman, Raisa I. Karasik, and Prahlad Warszawski

Queensland Quantum and Advanced Technologies Research Institute

A B > A B >

Quantum Measurement and Control

Howard M. Wiseman and Gerard J. Milburn

• The obvious reason to combine measurement and control is feedback, to purposefully **change** the average system evolution.

• Non-trivial even classically.

- *cf.* adaptive measurement controlling future measurements on the basis of the results of past ones, to obtain better data, leaving the average system evolution unchanged.
- Classically, a non-problem if measurements can be perfect, but non-trivial in the quantum case.

Wiseman (Griffith)

Adaptive Measurements

ICTS, Bangalore, 2025 2/46

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LETTER

Real-time quantum feedback prepares and stabilizes photon number states

Clément Sayrin¹, Igor Dotsenko¹, Xingxing Zhou¹, Bruno Peaudecert¹, Théo Rybarczyk¹, Sébastien Gleyzes¹, Pierre Rouchon², Mazyar Mirrahimi¹, Hadis Amini², Michel Brune¹, Jean-Michel Raimond¹ & Serge Haroche^{1,4}

• The obvious reason to combine measurement and control is feedback, to purposefully **change** the average system evolution.

• Non-trivial even classically.

- *cf.* adaptive measurement controlling future measurements on the basis of the results of past ones, to **obtain better data**, leaving the average system evolution **unchanged**.
- Classically, a non-problem if measurements can be perfect, but non-trivial in the quantum case.

LETTER

Real-time quantum feedback prepares and stabilizes photon number states

Clément Sayrin¹, Igor Dotsenko¹, Xingxing Zhou¹, Bruno Peaudecert¹, Théo Rybarczyk¹, Sébastien Gleyzes¹, Pierre Rouchon², Mazyar Mirrahimi¹, Hadis Amini², Michel Brune¹, Jean-Michel Raimond¹ & Serge Haroche^{1,4}

- The obvious reason to combine measurement and control is feedback, to purposefully **change** the average system evolution.
- Non-trivial even classically.
- *cf.* adaptive measurement controlling future measurements on the basis of the results of past ones, to **obtain better data**, leaving the average system evolution **unchanged**.
- Classically, a non-problem if measurements can be perfect, but non-trivial in the quantum case.

Howard M. Wiseman and Gerard J. Milburn

- The obvious reason to combine measurement and control is feedback, to purposefully **change** the average system evolution.
- Non-trivial even classically.
- *cf.* adaptive measurement controlling future measurements on the basis of the results of past ones, to **obtain better data**, leaving the average system evolution **unchanged**.

• Classically, a non-problem if measurements can be perfect, but non-trivial in the quantum case.

Howard M. Wiseman and Gerard J. Milburn

- The obvious reason to combine measurement and control is feedback, to purposefully **change** the average system evolution.
- Non-trivial even classically.
- *cf.* adaptive measurement controlling future measurements on the basis of the results of past ones, to **obtain better data**, leaving the average system evolution **unchanged**.
- Classically, a non-problem if measurements can be perfect, but non-trivial in the quantum case.

A = A = A = A = A = A

1 Formally Defining Adaptive Measurements

Adaptive Measurements for Profit

- Doing some things better
- Doing some things *much* better
- Doing some things *perfectly*
- Doing some things uniquely

B How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

Conclusion

Summary and Questions

General Quantum Measurements

- For simplicity, restrict to *efficient* measurements (those that take pure states to pure states).
- A measurement \mathfrak{M} is described by a set $\{(r, \hat{M}_r) : r\}$ of *outcomes* and *measurement operators*.
- The unnormalized state *conditioned* on outcome r is $\tilde{\rho}'_r = \hat{M}_r \rho \hat{M}_r^{\dagger}$.
- The probability for result *r* is $P_r = \text{Tr}[\hat{\rho}_r'] = \text{Tr}[\rho \hat{M}_r^{\dagger} \hat{M}_r].$
- The only other restriction on \mathfrak{M} is $\sum_r \hat{M}_r^{\dagger} \hat{M}_r = I$.
- The unconditioned post-measurement state is $\rho' = \mathcal{T}\rho$, where $\mathcal{T} \bullet = \sum_r \hat{M}_r \bullet \hat{M}_r^{\dagger}$ is a CPTP map.
- A measurement is called *complete* if $\forall r \ \hat{M}_r = \hat{U}_r \hat{\pi}_r$, where $\hat{\pi}_r$ is a rank-one projector.

Adaptive Measurements

• For a complete measurement, $\tilde{\rho}'_r = M_r \rho M_r^{\dagger} \propto U_r \pi_r U_r^{\dagger}$, is determined solely by *r*.

 \implies later measurements give no more information about ρ .

- For *incomplete* measurements, making a second measurement may yield more information. And so on
- If the experimenter has:
 - **(**) The ability to perform a *sequence* $\{\mathfrak{M}_n\}$ of *incomplete* measurements.
 - 2 Restrictions on the class of each measurement,
 - Sut still with some *choice* as to what measurement to make at step *n* then the optimal choice for the second measurement will depend in

general on the *result* of the first measurement, and so on.

- Making this so realizes an adaptive measurement.
- If the restrictions on \mathfrak{M}^n includes that \mathcal{T}^n is *fixed*, then the protocol is **purely** an adaptive measurement, as $\rho^N = \mathcal{T}^N \cdots \mathcal{T}^1 \rho^0$.

Formally Defining Adaptive Measurements

Adaptive Measurements for Profit

• Doing some things better

- Doing some things *much* better
- Doing some things *perfectly*
- Doing some things *uniquely*

B) How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

4 Conclusion

• Summary and Questions

Adaptive Measurements for Profit Doing some things better

Adaptive Homodyne on Coherent States

- single-shot *estimation of a fixed phase*
 - **Theory** [HMW, *PRL* (1995)]: predicted improvement offered by adaptive measurement in V (*i.e.*, MSE):

50% reduction in $V(\phi)$.

• Expt [Armen *et al.*, *PRL* (2002)]: measured 40% reduction in *V*.

 continuous *tracking of a diffusing phase* Theory [Berry & HMW, *PRA* (2002)]: predicted improvement

30% reduction in $V(\phi)$.

• Expt [Wheatley *et al.*, *PRL* (2010)]: measured 20% reduction in *V*.

Adaptive Homodyne on Coherent States

- single-shot estimation of a fixed phase
 - **Theory** [HMW, *PRL* (1995)]: predicted improvement offered by adaptive measurement in V (*i.e.*, MSE):

50% reduction in $V(\phi)$.

- Expt [Armen *et al.*, *PRL* (2002)]: measured 40% reduction in V.
- continuous *tracking of a diffusing phase* Theory [Berry & HMW, *PRA* (2002)]: predicted improvement

30% reduction in $V(\phi)$.

• Expt [Wheatley *et al.*, *PRL* (2010)]: measured 20% reduction in *V*.

Adaptive Measurements for Profit Doing some things better

Adaptive Single-photon Multipass Interferometry

- Fix N = # photon-passes.
- **Theory** and **Expt** [Higgins, Berry, Bartlett, HMW & Pryde, *Nature* (2007); *NJP* (2009)].
- Heisenberg limit:

$$V \approx 10/N^2$$

• Best known nonadaptive scheme (2009)

$$V \approx 20/N^2$$
.

• Best known adaptive scheme (2007)

$$V \approx 15/N^2$$
.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

I= nac

Formally Defining Adaptive Measurements

Adaptive Measurements for Profit

- Doing some things better
- Doing some things *much* better
- Doing some things *perfectly*
- Doing some things *uniquely*

B) How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

4 Conclusion

• Summary and Questions

Adaptive Homodyne Tracking on Squeezed States

- Allow *arbitrary squeezing* on a coherent beam, on which is imprinted a *diffusing phase* which is continuously *tracked*.
- **Theory** [Berry & HMW, *PRA* (2006, Erratum 2013)]:

$$V_{
m heterodyne} = O((\mathcal{N}/\kappa)^{-1/2})$$

 $V_{
m adaptive} = O((\mathcal{N}/\kappa)^{-2/3})$

Here κ = diffusion rate, \mathcal{N} = photon flux (including flux due to squeezing).

 Expt [Yonezawa et al., Science (2012)]: measured 15% reduction in V below the coherent-state-limit (for given N), at optimal degree of squeezing.

Wiseman (Griffith)

Adaptive Measurements

Formally Defining Adaptive Measurements

Adaptive Measurements for Profit

- Doing some things better
- Doing some things *much* better

• Doing some things *perfectly*

• Doing some things *uniquely*

B) How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

4 Conclusion

• Summary and Questions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Helstrom-Limited Nonorthogonal State Discrimination

1 single-shot discrimination of $|\alpha\rangle$, $|0\rangle$ with minimal (Helstrom) error.

- *Restricting* to photon counting and displacement, adaptive displacement is necessary & sufficient.
- Theory: Dolinar, IBM (1973)
- Expt: Cook, Martin & Geremia, Nature (2007).
- 2 Helstrom-limit discrim. of *n*-qubit product states $|\theta\rangle^{\otimes n}$, $|-\theta\rangle^{\otimes n}$.
 - Restricting to single-qubit operations, adaptive measurements is necessary & sufficient.
 - **Theory**: Acin *et al.*, *PRA* (2005)
 - Expt: Higgins et al., PRL (2009). < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

315

12/46

Adaptive Measurements for Profit Doing some things perfectly

Heisenberg-Limited Interferometry using Multiphoton Entanglement and Multipasses

- Fix the total number of photon-passes *N*.
- **Theory** [HMW *et al.*, *IEEE* (2009), based on Griffiths and Niu, *PRL* (1996)]:

Asymptotically achieves $V_{\rm HL} = \pi^2 / N^2$.

For N = 3:

$$V_{
m adaptive} = V_{
m HL} pprox 0.53$$

 $V_{
m nonadaptive} pprox 0.65$

• Expt [Daryanoosh, Slussarenko, Berry, HMW, Pryde, *Nature Comms.* (2018)]:

$$V_{\rm adaptive} \approx 0.55$$

Adaptive Measurements for Profit Doing some things perfectly

Perfect Phase Measurement in $\{|0\rangle, |1\rangle\}$ subspace

- Aim: projection onto canonical phase states $|\varphi\rangle = (|0\rangle + e^{i\varphi}|1\rangle)/\sqrt{2}$, using only homodyne measurement.
- **Theory** [HMW, *PRL* (1995)]:

$$2\pi P_{\text{rnd-homodyne}}(\varphi) = 0.80 |\langle \varphi | \psi \rangle|^2 + 0.20$$
$$2\pi P_{\text{heterodyne}}(\varphi) = 0.88 |\langle \varphi | \psi \rangle|^2 + 0.12$$
$$2\pi P_{\text{adaptive}}(\varphi) = 1.00 |\langle \varphi | \psi \rangle|^2 + 0.00.$$

• Experiment [Martin, Livingston, Hacohen-Gourgy, HMW & Siddiqi, *Nature Phys.* (2020)]: measured 15% reduction in V below the measured heterodyne limit.

▲ ∃ ▶ ∃ | = √ Q ∩

Formally Defining Adaptive Measurements

Adaptive Measurements for Profit

- Doing some things better
- Doing some things *much* better
- Doing some things *perfectly*

• Doing some things *uniquely*

How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

4 Conclusion

• Summary and Questions

Measurement-Based Quantum Computing

- Theory: Raussendorf and Briegel, PRL (2001).
- Experiment: Prevedel *et al.* (Vienna), *Nature* (2007).
- Industry: Ψ -Quantum, Xanadu, others.

Adaptive Measurements for Profit Doing some things uniquely

Tracking an Open Quantum System with a Finite Classical Memory

Theory: Karasik and HMW, *PRL* (2011); *ibid. PRA* (2011). Warszawski and HMW, *NJP* (2019); *ibid.*, *Quantum* (2019).

But this is for Pleasure ...

Wiseman (Griffith)

Adaptive Measurements

- **D** Formally Defining Adaptive Measurements
- 2 Adaptive Measurements for Profit
 - Doing some things better
 - Doing some things *much* better
 - Doing some things *perfectly*
 - Doing some things *uniquely*

B How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

4 Conclusion

• Summary and Questions

The First Quantum Dynamics (Einstein, 1917)

On the quantum theory of Radiation A. Einstein, Phys. Z. 18, 121 (1917).

2. Hypotheses on the radiative exchange of energy

Let Z_n and Z_m be two quantum-theoretically possible states of the gas molecule, whose energies are ε_n and ε_m , respectively, and satisfy the inequality $\varepsilon_m > \varepsilon_n$. Let us assume that the molecule is capable of a transition from state Z_n into state Z_m with an absorption of radiation energy $\varepsilon_m - \varepsilon_n$; that, similarly, the transition from state Z_m to state Z_n is possible, with emission of the same radiative energy. Let the radiation absorbed or emitted by the molecule have frequency ν which is characteristic for the index combination (m, n) that we are considering.

For the laws governing this transition, we introduce a few hypotheses which are obtained by carrying over the known situation for a Planck resonator in classical theory to the as yet unknown one in quantum theory.

(a) Emission of radiation. According to Hertz, an oscillating Planck resonator radiates energy in the well-known way, regardless of whether or not it is excited by an external field. Correspondingly, let us assume that a molecule may go from state Z_m to a state Z_n and emit radiation energy $\varepsilon_m - \varepsilon_n$ with frequency μ , without excitation from external causes. Let the probability dW for this to happen during the time interval d_r , be

$$dW = A_m^n dt, \tag{A}$$

where $A^{\,n}_{\,m}$ is a constant characterising the index combination under consideration.

$$P(Z_m, t + dt | Z_n, t) = \kappa_{mn} dt$$

$$\kappa_{mn} = (N_m^n + 1)A_m^n \text{ for } \varepsilon_m > \varepsilon_n$$

$$\kappa_{mn} = N_m^n A_m^n \text{ for } \varepsilon_m < \varepsilon_n$$

$$N_{mn} = N_{\text{Planck}}(\varepsilon_m - \varepsilon_n)$$

Classical master equation:

$$\dot{p}_m = \sum_n \kappa_{mn} (p_n - p_m).$$

Ergodic (unique steady state):

$$\lim_{t \to \infty} p_n(t) = p_{\text{Boltzmann}}(\varepsilon_n)$$

Wiseman (Griffith)

ICTS, Bangalore, 2025 19/46

Bohr's and Einstein's Quantum Jumps

"The passing of the systems between different stationary states ... cannot be treated [using] ordinary mechanics ... [and] is followed by the emission of a homogeneous radiation, for which $[\Delta E = h\nu]$. [This] is in obvious contrast to the ordinary ideas of electrodynamics, but appears necessary in order to account for the experimental facts. (Bohr, 1913).

"The weakness of the theory [is] that it leaves the moment and direction of the elementary processes to 'chance'." (Einstein, 1917).

- The transitions may be stochastic, but they correspond to physical events: absorption from, or emission into, the radiation bath.
- Thus the state Z_n of the atom at any time is knowable in principle by monitoring the bath.
- If the atom can be approximated as having finitely many (*D*) levels, then a finite (*D*-state) classical memory is all that is required to keep track of the atomic state.

- Formally Defining Adaptive Measurements
- 2 Adaptive Measurements for Profit
 - Doing some things better
 - Doing some things *much* better
 - Doing some things *perfectly*
 - Doing some things *uniquely*

B How Big a Brain does it take to Track an Open Quantum System?

• Quantum Jumps: The Old Quantum Theory

• Quantum Jumps: The Modern Understanding

- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

4 Conclusion

• Summary and Questions

Unravelling Quantum Master Equations

• If we ignore the bath then even if both system and bath are initially pure, the system state will decohere:

$$\begin{split} |\Psi(0)\rangle &= |\phi(0)\rangle_{\text{env}} \otimes |\psi(0)\rangle_{\text{sys}} \to |\Psi(t)\rangle = \exp\left(-i\hat{H}_{\text{tot}}t\right)|\Psi(0)\rangle\\ (\text{pure}) |\psi(0)\rangle_{\text{sys}} \to \rho_{\text{sys}}(t) = \text{Tr}_{\text{env}}[|\Psi(t)\rangle\langle\Psi(t)|] \text{ (mixed)} \end{split}$$

• If the Born-Markov approximation is valid, $\rho_{sys}(t)$ obeys a master equation of the Lindblad form:

$$\dot{\rho}(t) = \mathcal{L}\rho(t) \equiv [-i\hat{H}, \rho] + \sum_{\ell=1}^{L} \mathcal{D}[\hat{c}_{\ell}]\rho.$$

- *If* it is valid *then* it is also the case that the bath can be measured repeatedly, on a time scale which is short compared to the interesting system evolution, *without invalidating the master equation*.
- This is called monitoring the system. If the monitoring is perfect, then this produces a stochastic *pure* conditioned system state |ψ_c(t)⟩:

$$\mathbb{E}[|\psi_{c}(t)\rangle\langle\psi_{c}(t)|] = \rho(t) = \exp(\mathcal{L}t)|\psi(0)\rangle\langle\psi(0)|.$$

Rediscovering quantum jumps

• Consider the master equation with a single decoherence channel:

$$\rho(t+dt) = \rho(t) - i[\hat{H}, \rho(t)]dt + [\hat{c}\rho(t)\hat{c}^{\dagger} - \frac{1}{2}\hat{c}^{\dagger}\hat{c}\rho(t) - \frac{1}{2}\rho(t)\hat{c}^{\dagger}\hat{c}]dt.$$

• If $\rho(t) = |\psi(t)\rangle\langle\psi(t)|$ then this can be rewritten to O(dt) as

$$P_0(dt)|\psi_0(t+dt)\rangle\langle\psi_0(t+dt)|+P_1(dt)|\psi_1(t+dt)\rangle\langle\psi_1(t+dt)|,$$

where

$$\begin{aligned} |\psi_0(t+dt)\rangle &= \left(1 - i\hat{H}dt - \frac{1}{2}\hat{c}^{\dagger}\hat{c}dt\right)|\psi(t)\rangle/\sqrt{P_0(dt)}\\ |\psi_1(t+dt)\rangle &= \sqrt{dt}\,\hat{c}|\psi(t)\rangle/\sqrt{P_1(dt)}\\ P_1(dt) &= 1 - P_0(dt) = \langle\psi(t)|\hat{c}^{\dagger}\sqrt{dt}\,\sqrt{dt}\,\hat{c}|\psi(t)\rangle \end{aligned}$$

• $P_1(dt) = O(dt) \implies$ "1" events are non-null "detections".

 $|\psi_0(t+dt)\rangle \approx |\psi(t)\rangle$ (no detection \implies smooth evolution) $|\psi_1(t+dt)\rangle \approx |\psi(t)\rangle$ (detection \implies quantum jump).

General Properties of Conditional Evolution

Unlike the quantum jumps in Einstein's thermal equilibrium model,

- The post-jump $|\psi_1(t+dt)\rangle$ depends on the pre-jump $|\psi(t)\rangle$
- **2** Jumps don't take you to an orthogonal state: $\langle \psi_1(t+dt)|\psi(t)\rangle \neq 0$
- Solution Even with no jump, you don't stay fixed: $|\psi_0(t+dt)\rangle \neq |\psi(t)\rangle$

In general, the long-time *conditioned state* $|\psi_c(t)\rangle$ explores some manifold within Hilbert space, so

$$ho_{
m ss} = \int d\mu_{
m ss}(\phi) |\phi
angle \langle \phi |.$$

Thus, even for a *D*-dimensional Hilbert space, a classical memory of *infinite* size would be required to keep track of which $|\phi\rangle$ pertains.

Question

Can we control the way the system jumps (*without changing the average evolution*), so that it is restricted to **finitely many states**?

Wiseman (Griffith)

Adaptive Measurements

General Properties of Conditional Evolution

Unlike the quantum jumps in Einstein's thermal equilibrium model,

- The post-jump $|\psi_1(t+dt)\rangle$ depends on the pre-jump $|\psi(t)\rangle$
- **2** Jumps don't take you to an orthogonal state: $\langle \psi_1(t+dt)|\psi(t)\rangle \neq 0$
- **3** Even with no jump, you don't stay fixed: $|\psi_0(t+dt)\rangle \neq |\psi(t)\rangle$

In general, the long-time *conditioned state* $|\psi_c(t)\rangle$ explores some manifold within Hilbert space, so

$$ho_{
m ss} = \int d\mu_{
m ss}(\phi) |\phi
angle \langle \phi|.$$

Thus, even for a *D*-dimensional Hilbert space, a classical memory of *infinite* size would be required to keep track of which $|\phi\rangle$ pertains.

Question

Can we control the way the system jumps (without changing the average evolution), so that it is restricted to **finitely many states**?

Wiseman (Griffith)

General Properties of Conditional Evolution

Unlike the quantum jumps in Einstein's thermal equilibrium model,

- The post-jump $|\psi_1(t+dt)\rangle$ depends on the pre-jump $|\psi(t)\rangle$
- **2** Jumps don't take you to an orthogonal state: $\langle \psi_1(t+dt)|\psi(t)\rangle \neq 0$
- **9** Even with no jump, you don't stay fixed: $|\psi_0(t+dt)\rangle \neq |\psi(t)\rangle$

In general, the long-time *conditioned state* $|\psi_c(t)\rangle$ explores some manifold within Hilbert space, so

$$ho_{
m ss} = \int d\mu_{
m ss}(\phi) |\phi
angle \langle \phi|.$$

Thus, even for a *D*-dimensional Hilbert space, a classical memory of *infinite* size would be required to keep track of which $|\phi\rangle$ pertains.

Question

Can we control the way the system jumps (*without changing the average evolution*), so that it is restricted to finitely many states?

Wiseman (Griffith)

Adaptive Monitoring

- Because the dynamics is Markovian, the average system dynamics

 ρ = *L*ρ is unchanged by any processing of the system output fields prior to detection (it is just a change of basis).
- In quantum optics terms, we can put the output fields through a passive interferometer, also introducing local oscillator fields.
- To attain all possible unravellings, it is necessary to process the output fields adaptively. That is, the monitoring scheme chosen at time *t* is determined by the record prior to time *t*.

Adaptive Monitoring

- Because the dynamics is Markovian, the average system dynamics

 ρ = *L*ρ is unchanged by any processing of the system output fields prior to detection (it is just a change of basis).
- In quantum optics terms, we can put the output fields through a passive interferometer, also introducing local oscillator fields.
- To attain all possible unravellings, it is necessary to process the output fields adaptively. That is, the monitoring scheme chosen at time *t* is determined by the record prior to time *t*.

★ ∃ > < ∃ >

Adaptive Monitoring

- Because the dynamics is Markovian, the average system dynamics

 ρ = *L*ρ is unchanged by any processing of the system output fields prior to detection (it is just a change of basis).
- In quantum optics terms, we can put the output fields through a passive interferometer, also introducing local oscillator fields.
- To attain all possible unravellings, it is necessary to process the output fields adaptively. That is, the monitoring scheme chosen at time *t* is determined by the record prior to time *t*.

25/46

Formally Defining Adaptive Measurements

2) Adaptive Measurements for Profit

- Doing some things better
- Doing some things *much* better
- Doing some things *perfectly*
- Doing some things *uniquely*

B) How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

4 Conclusion

• Summary and Questions

Not all Ensembles are Physically Realizable

- Restrict to *ergodic* master equations: $\rho_{ss} = \lim_{t\to\infty} e^{\mathcal{L}t} \rho(0)$.
- We say that an ensemble $\{|\phi_k\rangle\}_{k=1}^K$ represents ρ_{ss} iff

 \exists positive weights $\{\wp_k\}$ such that $\rho_{ss} = \sum_{k=1}^K \wp_k |\phi_k\rangle \langle \phi_k|$.

- We say that an ensemble $\{|\phi_k\rangle\}_{k=1}^K$ is **physically realizable** (PR) in steady-state if there exists a way (which could be adaptive) to monitor the bath such that, *for all long times t*, $|\psi_c(t)\rangle = |\phi_k\rangle$ for some *k*.
- **Theorem** (Wiseman & Vaccaro, *PRL* (2001)): the ensemble $\{|\phi_k\rangle\}_{k=1}^K$ is physically realizable in s.s. iff there exists $\kappa_{jk} > 0$:

$$\mathcal{L}|\phi_j\rangle\langle\phi_j| = \sum_k \kappa_{jk} \left(|\phi_k\rangle\langle\phi_k| - |\phi_j\rangle\langle\phi_j|\right).$$

- For a typical \mathcal{L} , many ensembles $\{|\phi_k\rangle\}_{k=1}^{K}$ that represent ρ_{ss} are **not** PR.
- In particular, for a typical master equation, the K = D diagonal ensemble $\rho_{ss} |\phi_k\rangle = \wp_k |\phi_k\rangle$ is **not** a PRE.

Wiseman (Griffith)
Not all Ensembles are Physically Realizable

- Restrict to *ergodic* master equations: $\rho_{ss} = \lim_{t\to\infty} e^{\mathcal{L}t} \rho(0)$.
- We say that an ensemble $\{|\phi_k\rangle\}_{k=1}^K$ represents ρ_{ss} iff

 \exists positive weights $\{\wp_k\}$ such that $\rho_{ss} = \sum_{k=1}^K \wp_k |\phi_k\rangle \langle \phi_k|$.

- We say that an ensemble $\{|\phi_k\rangle\}_{k=1}^{K}$ is **physically realizable** (PR) in steady-state if there exists a way (which could be adaptive) to monitor the bath such that, *for all long times t*, $|\psi_c(t)\rangle = |\phi_k\rangle$ for some *k*.
- **Theorem** (Wiseman & Vaccaro, *PRL* (2001)): the ensemble $\{|\phi_k\rangle\}_{k=1}^K$ is physically realizable in s.s. iff there exists $\kappa_{jk} > 0$:

$$\mathcal{L}|\phi_j\rangle\langle\phi_j| = \sum_k \kappa_{jk} \left(|\phi_k\rangle\langle\phi_k| - |\phi_j\rangle\langle\phi_j|\right).$$

- For a typical \mathcal{L} , many ensembles $\{|\phi_k\rangle\}_{k=1}^{K}$ that represent ρ_{ss} are **not** PR.
- In particular, for a typical master equation, the K = D diagonal ensemble $\rho_{ss} |\phi_k\rangle = \wp_k |\phi_k\rangle$ is **not** a PRE.

• Recap: For a *D*-dim system with Markovian ergodic evolution $\dot{\rho} = \mathcal{L}\rho$, an ensemble $\{|\phi_k\rangle\}_{k=1}^{K}$ is PR in s.s. if there exist rates $\kappa_{jk} > 0$:

$$\forall j \,\mathcal{L} |\phi_j\rangle\langle\phi_j| = \sum_{k=1}^K \kappa_{jk} \left(|\phi_k\rangle\langle\phi_k| - |\phi_j\rangle\langle\phi_j| \right).$$

Question

- The number of unknown real parameters is K(2D 2) for the states, and $K^2 K$ for the rates, giving K(2D + K 3) in total.
- The number of real constraints is $K(D^2 1)$, since both sides are automatically Hermitian and traceless.
- Thus for $K 1 \ge (D 1)^2$ we expect there will be solutions.
- This type of problem scales badly (NP-complete) with D, and very difficult even for small D. We begin by considering D = 2

• Recap: For a *D*-dim system with Markovian ergodic evolution $\dot{\rho} = \mathcal{L}\rho$, an ensemble $\{|\phi_k\rangle\}_{k=1}^{K}$ is PR in s.s. if there exist rates $\kappa_{jk} > 0$:

$$\forall j \,\mathcal{L} |\phi_j\rangle\langle\phi_j| = \sum_{k=1}^K \kappa_{jk} \left(|\phi_k\rangle\langle\phi_k| - |\phi_j\rangle\langle\phi_j| \right).$$

Question

- The number of unknown real parameters is K(2D 2) for the states, and $K^2 K$ for the rates, giving K(2D + K 3) in total.
- The number of real constraints is $K(D^2 1)$, since both sides are automatically Hermitian and traceless.
- Thus for $K 1 \ge (D 1)^2$ we expect there will be solutions.
- This type of problem scales badly (NP-complete) with D, and very difficult even for small D. We begin by considering D = 2

• Recap: For a *D*-dim system with Markovian ergodic evolution $\dot{\rho} = \mathcal{L}\rho$, an ensemble $\{|\phi_k\rangle\}_{k=1}^{K}$ is PR in s.s. if there exist rates $\kappa_{jk} > 0$:

$$\forall j \,\mathcal{L} |\phi_j\rangle \langle \phi_j| = \sum_{k=1}^K \kappa_{jk} \left(|\phi_k\rangle \langle \phi_k| - |\phi_j\rangle \langle \phi_j| \right).$$

Question

- The number of unknown real parameters is K(2D 2) for the states, and $K^2 K$ for the rates, giving K(2D + K 3) in total.
- The number of real constraints is $K(D^2 1)$, since both sides are automatically Hermitian and traceless.
- Thus for $K 1 \ge (D 1)^2$ we expect there will be solutions.
- This type of problem scales badly (NP-complete) with D, and very difficult even for small D. We begin by considering D = 2

• Recap: For a *D*-dim system with Markovian ergodic evolution $\dot{\rho} = \mathcal{L}\rho$, an ensemble $\{|\phi_k\rangle\}_{k=1}^{K}$ is PR in s.s. if there exist rates $\kappa_{jk} > 0$:

$$\forall j \,\mathcal{L} |\phi_j\rangle \langle \phi_j| = \sum_{k=1}^K \kappa_{jk} \left(|\phi_k\rangle \langle \phi_k| - |\phi_j\rangle \langle \phi_j| \right).$$

Question

- The number of unknown real parameters is K(2D 2) for the states, and $K^2 K$ for the rates, giving K(2D + K 3) in total.
- The number of real constraints is $K(D^2 1)$, since both sides are automatically Hermitian and traceless.
- Thus for $K 1 \ge (D 1)^2$ we expect there will be solutions.
- This type of problem scales badly (NP-complete) with D, and very difficult even for small D. We begin by considering D = 2

• Recap: For a *D*-dim system with Markovian ergodic evolution $\dot{\rho} = \mathcal{L}\rho$, an ensemble $\{|\phi_k\rangle\}_{k=1}^{K}$ is PR in s.s. if there exist rates $\kappa_{jk} > 0$:

$$\forall j \,\mathcal{L} |\phi_j\rangle\langle\phi_j| = \sum_{k=1}^K \kappa_{jk} \left(|\phi_k\rangle\langle\phi_k| - |\phi_j\rangle\langle\phi_j| \right).$$

Question

- The number of unknown real parameters is K(2D 2) for the states, and $K^2 K$ for the rates, giving K(2D + K 3) in total.
- The number of real constraints is $K(D^2 1)$, since both sides are automatically Hermitian and traceless.
- Thus for $K 1 \ge (D 1)^2$ we expect there will be solutions.
- This type of problem scales badly (NP-complete) with D, and very difficult even for small D. We begin by considering D = 2

• Recap: For a *D*-dim system with Markovian ergodic evolution $\dot{\rho} = \mathcal{L}\rho$, an ensemble $\{|\phi_k\rangle\}_{k=1}^{K}$ is PR in s.s. if there exist rates $\kappa_{jk} > 0$:

$$\forall j \,\mathcal{L} |\phi_j\rangle\langle\phi_j| = \sum_{k=1}^K \kappa_{jk} \left(|\phi_k\rangle\langle\phi_k| - |\phi_j\rangle\langle\phi_j| \right).$$

Question

- The number of unknown real parameters is K(2D 2) for the states, and $K^2 K$ for the rates, giving K(2D + K 3) in total.
- The number of real constraints is $K(D^2 1)$, since both sides are automatically Hermitian and traceless.
- Thus for $K 1 \ge (D 1)^2$ we expect there will be solutions.
- This type of problem scales badly (NP-complete) with D, and very difficult even for small D. We begin by considering D = 2

• Recap: For a *D*-dim system with Markovian ergodic evolution $\dot{\rho} = \mathcal{L}\rho$, an ensemble $\{|\phi_k\rangle\}_{k=1}^{K}$ is PR in s.s. if there exist rates $\kappa_{jk} > 0$:

$$\forall j \,\mathcal{L} |\phi_j\rangle\langle\phi_j| = \sum_{k=1}^K \kappa_{jk} \left(|\phi_k\rangle\langle\phi_k| - |\phi_j\rangle\langle\phi_j| \right).$$

Question

- The number of unknown real parameters is K(2D 2) for the states, and $K^2 K$ for the rates, giving K(2D + K 3) in total.
- The number of real constraints is $K(D^2 1)$, since both sides are automatically Hermitian and traceless.
- Thus for $K 1 \ge (D 1)^2$ we expect there will be solutions.
- This type of problem scales badly (NP-complete) with D, and very difficult even for small D. We begin by considering D = 2.

Outline

- Formally Defining Adaptive Measurements
- 2 Adaptive Measurements for Profit
 - Doing some things better
 - Doing some things *much* better
 - Doing some things *perfectly*
 - Doing some things *uniquely*

B How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

Conclusion

• Summary and Questions

The Bloch Representation

• For a qubit we use the Bloch or SU(2) representation,

$$\rho = \frac{1}{2} \left(I + x \hat{\sigma}_x + y \hat{\sigma}_y + z \hat{\sigma}_z \right).$$

• Then defining $\mathbf{r} = (x, y, z)^{\top}$, $\dot{\rho} = \mathcal{L}\rho$ becomes

$$\dot{\mathbf{r}} = A\mathbf{r} + \mathbf{b},$$

where we require A to be Hurwitz so that $\mathbf{r}_{ss} = -A^{-1}\mathbf{b}$.

• We seek a PR ensemble $\{\mathbf{r}_k\}_{k=1}^K$. That is $K^2 - K$ rates $\kappa_{jk} > 0$ and K 3-vectors \mathbf{r}_k satisfying

$$\forall k \ \mathbf{r}_k \cdot \mathbf{r}_k = 1$$

$$\forall j \ A\mathbf{r}_j + \mathbf{b} = \sum_{k=1}^K \kappa_{jk}(\mathbf{r}_k - \mathbf{r}_j).$$

• This is 4K quadratic equations in $K^2 + 2K$ unknowns. Solutions may exist for $K \ge 2$ but for arbitrary K it is still NP-complete.

Wiseman (Griffith)

Adaptive Measurements

ICTS, Bangalore, 2025 30/46

Two-State Jumping (K = 2)

• For K = 2 the dynamical constraints imply

$$A(\mathbf{r}_1 - \mathbf{r}_2) = -(\kappa_{12} + \kappa_{21})(\mathbf{r}_1 - \mathbf{r}_2).$$

- Lemma If A is 3×3 and Hurwitz then it has at least one real, negative eigenvalue. That is, $\exists \mathbf{u} : A\mathbf{u} = -\lambda \mathbf{u}, \lambda < 0$.
- Theorem There always exists a two-state jumping solution

$$\mathbf{r}_{1} = \mathbf{r}_{ss} + \varepsilon_{1}\mathbf{u}$$
$$\mathbf{r}_{2} = \mathbf{r}_{ss} - \varepsilon_{2}\mathbf{u}$$
$$\kappa_{12} = \wp_{2}|\lambda| ; \quad \wp_{2} = \frac{\varepsilon_{1}}{\varepsilon_{1} + \varepsilon_{2}}$$
$$\kappa_{21} = \wp_{1}|\lambda| ; \quad \wp_{1} = \frac{\varepsilon_{2}}{\varepsilon_{1} + \varepsilon_{2}}$$

• This hold regardless of the number of jump operators $\{\hat{c}_l\}_{l=1}^L$.

Example: Resonance Fluorescence $\mathcal{L}\rho = \mathcal{D}[\frac{\hat{\sigma}_x - i\hat{\sigma}_y}{2}]\rho - i[\frac{\Omega}{2}\hat{\sigma}_x, \rho]$ $\Omega = 1$ • $\forall \Omega, \mathbf{r}_{ss}$ is the x = 0 plane and

$$A\left(\begin{array}{c}1\\0\\0\end{array}\right) = -\frac{1}{2}\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

• Thus there is a symmetric solution

$$\mathbf{r}_{\pm} = \mathbf{r}_{\rm ss} \pm \epsilon \left(\begin{array}{c} 1\\ 0\\ 0 \end{array} \right)$$

- For $|\Omega| < 0.25$, other K = 2 ensembles exist.
- And also K = 3 ensembles.

z

 $\mathcal{L}\rho = \mathcal{D}[\frac{\hat{\sigma}_x - i\hat{\sigma}_y}{2}]\rho - i[\frac{\Omega}{2}\hat{\sigma}_x, \rho]$ $\Omega = 0.2, h = 1$

•
$$\forall \Omega, \mathbf{r}_{ss}$$
 is the $x = 0$ plane and

$$A\left(\begin{array}{c}1\\0\\0\end{array}\right) = -\frac{1}{2}\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

• Thus there is a symmetric solution

$$\mathbf{r}_{\pm} = \mathbf{r}_{\rm ss} \pm \epsilon \left(\begin{array}{c} 1\\ 0\\ 0 \end{array} \right)$$

- For $|\Omega| < 0.25$, other K = 2
- And also K = 3 ensembles.

$$\mathcal{L}\rho = \mathcal{D}[\frac{\hat{\sigma}_x - i\hat{\sigma}_y}{2}]\rho - i[\frac{\Omega}{2}\hat{\sigma}_x, \rho]$$

\Omega=0.4, h=1 • \forall \Omega, \mathbf{r}_{ss} is the x = 0 plane and

$$A\left(\begin{array}{c}1\\0\\0\end{array}\right) = -\frac{1}{2}\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

• Thus there is a symmetric solution

$$\mathbf{r}_{\pm} = \mathbf{r}_{\rm ss} \pm \epsilon \left(\begin{array}{c} 1\\ 0\\ 0 \end{array} \right)$$

- For $|\Omega| < 0.25$, other K = 2 ensembles exist.
- And also K = 3 ensembles.

Example: Resonance Fluorescence $i\hat{\sigma}_{1}$

 $\mathcal{L}\rho = \mathcal{D}[\frac{\hat{\sigma}_x - i\hat{\sigma}_y}{2}]\rho - i[\frac{\Omega}{2}\hat{\sigma}_x, \rho]$ $\Omega = 1, h = 1 \qquad \bullet \ \forall \ \Omega, \mathbf{r}_{ss} \text{ is the } x = 0 \text{ plane and}$

• Thus there is a symmetric solution

$$\mathbf{r}_{\pm} = \mathbf{r}_{\rm ss} \pm \epsilon \left(\begin{array}{c} 1\\ 0\\ 0 \end{array} \right)$$

- For $|\Omega| < 0.25$, other K = 2 ensembles exist.
- And also K = 3 ensembles.

z

 $\mathcal{L}\rho = \mathcal{D}[\frac{\hat{\sigma}_x - i\hat{\sigma}_y}{2}]\rho - i[\frac{\Omega}{2}\hat{\sigma}_x, \rho]$ **\Omega=5, h=1** • \forall \Omega, \mathbf{r}_{ss} is the x = 0 plane and

• Thus there is a symmetric solution

$$\mathbf{r}_{\pm} = \mathbf{r}_{\rm ss} \pm \epsilon \left(\begin{array}{c} 1\\ 0\\ 0 \end{array} \right)$$

- For $|\Omega| < 0.25$, other K = 2 ensembles exist.
- And also K = 3 ensembles.

$$\mathcal{L}\rho = \mathcal{D}[\frac{\hat{\sigma}_x - i\hat{\sigma}_y}{2}]\rho - i[\frac{\Omega}{2}\hat{\sigma}_x, \rho]$$

\Omega=0.2, h=0.03

• $\forall \Omega$, \mathbf{r}_{ss} is the x = 0 plane and

$$A\left(\begin{array}{c}1\\0\\0\end{array}\right) = -\frac{1}{2}\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

• Thus there is a symmetric solution

$$\mathbf{r}_{\pm} = \mathbf{r}_{\rm ss} \pm \epsilon \left(\begin{array}{c} 1\\ 0\\ 0 \end{array} \right)$$

- For |Ω| < 0.25, other K = 2 ensembles exist.
- And also K = 3 ensembles.

< 口 > < 同

EL OQA

• • = • • = •

$$\mathcal{L}\rho = \mathcal{D}[\frac{\hat{\sigma}_x - i\hat{\sigma}_y}{2}]\rho - i[\frac{\Omega}{2}\hat{\sigma}_x, \rho]$$

\Omega=0.2, h=0.0822

•
$$\forall \Omega$$
, \mathbf{r}_{ss} is the $x = 0$ plane and

$$A\left(\begin{array}{c}1\\0\\0\end{array}\right) = -\frac{1}{2}\left(\begin{array}{c}1\\0\\0\end{array}\right).$$

• Thus there is a symmetric solution

$$\mathbf{r}_{\pm} = \mathbf{r}_{\rm ss} \pm \epsilon \left(\begin{array}{c} 1\\ 0\\ 0 \end{array} \right)$$

- For $|\Omega| < 0.25$, other K = 2 ensembles exist.
- And also K = 3 ensembles.

z

Stability. (Karasik & Wiseman, PRA, 2011.)

• We have *analytically proven* the *mean square stability* of *all* the K = 2 and K = 3 schemes presented. That is,

 $\lim_{t\to\infty} \operatorname{Expected} \left[|\langle \psi_{\rm c}(t) | \phi_{k(t)} \rangle|^2 \right] = 1,$

with k(t) a function of the record alone.

- However, *some* of these schemes have deterministically *unstable* stages.
- Even those that are piecewise deterministically stable can suffer a drop in fidelity upon a jump.
- Proving the stability of *all* finite-*K* schemes for an arbitrary system is an open problem.

< 口 > < 同

A = A = A = E = OQO

Outline

Formally Defining Adaptive Measurements

2 Adaptive Measurements for Profit

- Doing some things better
- Doing some things *much* better
- Doing some things *perfectly*
- Doing some things *uniquely*

B How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

Conclusion

• Summary and Questions

Revisiting the Counting Argument

• Recall: finding a PRE means solving the "Wiseman–Vaccaro equation"

$$\forall j \,\mathcal{L} |\phi_j\rangle\langle\phi_j| = \sum_{k=1}^K \kappa_{jk} \left(|\phi_k\rangle\langle\phi_k| - |\phi_j\rangle\langle\phi_j| \right).$$

for an ensemble $\{|\phi_k\rangle\}_{k=1}^K$ and positive rates $\{\kappa_{jk}\}$.

- Karasik–Wiseman: $K_{\min} = (D-1)^2 + 1$ to expect solutions.
- Warszawsiki & HMW, *Quantum* (2019) revisited this, but now taking into account the number *L* of Lindblad operators.
- By a much more complicated parameter-counting argument, we claim that, iff L < D 1, there is a correction to Karasik–Wiseman:

$$K_{\min} = (D-1)^2 + 1 + (2D - 2L - 1).$$

- Note that still $(D-1)^2 + 1 \le K_{\min} \le D^2 1$.
- But if \mathcal{L} has dynamical symmetries, this may reduce K_{\min} .

Revisiting the Counting Argument

• Recall: finding a PRE means solving the "Wiseman–Vaccaro equation"

$$\forall j \,\mathcal{L} |\phi_j\rangle\langle\phi_j| = \sum_{k=1}^K \kappa_{jk} \left(|\phi_k\rangle\langle\phi_k| - |\phi_j\rangle\langle\phi_j| \right).$$

for an ensemble $\{|\phi_k\rangle\}_{k=1}^K$ and positive rates $\{\kappa_{jk}\}$.

- Karasik–Wiseman: $K_{\min} = (D-1)^2 + 1$ to expect solutions.
- Warszawsiki & HMW, *Quantum* (2019) revisited this, but now taking into account the number *L* of Lindblad operators.
- By a much more complicated parameter-counting argument, we claim that, iff L < D 1, there is a correction to Karasik–Wiseman:

$$K_{\min} = (D-1)^2 + 1 + (2D - 2L - 1).$$

- Note that still $(D 1)^2 + 1 \le K_{\min} \le D^2 1$.
- But if \mathcal{L} has dynamical symmetries, this may reduce K_{\min} .

Questions we posed

- Q1 Are there MEs for which K > D is provably necessary for a PRE?
- Q2 Is an ensemble size of $K = (D 1)^2 + 1$ (as suggested by Karasik–Wiseman) provably inadequate for some systems?
- Q3 Does the refined parameter counting heuristic reliably predict whether PREs are feasible for a ME of a given form?
 - Q3a Does the heuristic accurately predict the impossibility of PREs when the number of parameters is less than the number of constraints? (i.e. for ensembles smaller than the determined threshold?)
 - Q3b Does the heuristic accurately predict the possibility of PREs when the number of parameters is equal to the number of constraints?
 - Q3c Does the heuristic accurately predict the necessity of PREs when the number of parameters is equal to the number of constraints?

Q1 Are there MEs for which K > D is provably necessary for a PRE?Yes.

- Hence open quantum systems can be harder to track than open classical systems.
- Our investigation was done for a random selection of 20 MEs in D = 3.
- For each of these MEs, we obtained a computational proof that K = D PREs cannot exist.
- This was in the form of a Hilbert Nullstellensatz certificate of infeasibility for the equations governing PREs¹.
- This was expected from the Karasik–Wiseman argument that $K \ge (D-1)^2 + 1$ is required.

taking up to 2.5 days of cluster computation each

JOC IL

- Q1 Are there MEs for which K > D is provably necessary for a PRE?Yes.
 - Hence open quantum systems can be harder to track than open classical systems.
 - Our investigation was done for a random selection of 20 MEs in D = 3.
 - For each of these MEs, we obtained a computational proof that K = D PREs cannot exist.
 - This was in the form of a Hilbert Nullstellensatz certificate of infeasibility for the equations governing PREs¹.
 - This was expected from the Karasik–Wiseman argument that $K \ge (D-1)^2 + 1$ is required.

taking up to 2.5 days of cluster computation each

ELE DOG

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Q1 Are there MEs for which K > D is provably necessary for a PRE?
 - Yes.
 - Hence open quantum systems can be harder to track than open classical systems.
 - Our investigation was done for a random selection of 20 MEs in D = 3.
 - For each of these MEs, we obtained a computational proof that K = D PREs cannot exist.
 - This was in the form of a Hilbert Nullstellensatz certificate of infeasibility for the equations governing PREs¹.
 - This was expected from the Karasik–Wiseman argument that $K \ge (D-1)^2 + 1$ is required.

¹taking up to 2.5 days of cluster computation each

ELE DOG

- Q2 Is an ensemble size of $K = (D 1)^2 + 1$ (as suggested by Karasik–Wiseman) provably inadequate for some systems?
 - Yes.
 - Our investigation was carried out for a random selection of 10 MEs in D = 3 with L = 1 Lindblad.
 - For each of these MEs, we obtained a computational proof (Hilbert Nullstellensatz) that PREs with K = 5 cannot exist.
 - This is as expected from Warszawski–Wiseman's refined parameter counting argument, which says that, in this case, $K_{\min} = 8$, in contrast to Karasik–Wiseman's $K_{\min} = 5$.
 - Hence our refined parameter counting argument is supported.

- Q2 Is an ensemble size of $K = (D 1)^2 + 1$ (as suggested by Karasik–Wiseman) provably inadequate for some systems?
 - Yes.
 - Our investigation was carried out for a random selection of 10 MEs in D = 3 with L = 1 Lindblad.
 - For each of these MEs, we obtained a computational proof (Hilbert Nullstellensatz) that PREs with K = 5 cannot exist.
 - This is as expected from Warszawski–Wiseman's refined parameter counting argument, which says that, in this case, $K_{\min} = 8$, in contrast to Karasik–Wiseman's $K_{\min} = 5$.
 - Hence our refined parameter counting argument is supported.

- Q2 Is an ensemble size of $K = (D 1)^2 + 1$ (as suggested by Karasik–Wiseman) provably inadequate for some systems?
 - Yes.
 - Our investigation was carried out for a random selection of 10 MEs in D = 3 with L = 1 Lindblad.
 - For each of these MEs, we obtained a computational proof (Hilbert Nullstellensatz) that PREs with K = 5 cannot exist.
 - This is as expected from Warszawski–Wiseman's refined parameter counting argument, which says that, in this case, $K_{\min} = 8$, in contrast to Karasik–Wiseman's $K_{\min} = 5$.
 - Hence our refined parameter counting argument is supported.

Q3 Does the refined (Warszawsi–Wiseman) parameter counting heuristic reliably predict whether PREs are feasible for a ME of a given form?

- It seems that way.
- Q3a The non-existence of PREs when $K < K_{\min}$ is supported (Q2).
- Q3b To look for PREs when $K = K_{min}$ beyond D = 2 we have to simplify our system by introducing *symmetry*.
 - Restricting to **re3its**, our argument says $K_{\min} = 4$ (which is < 5).
 - From 80 randomly selected MEs, we found K = 4 PREs for 6 of them, using extended polynomial homotopy continuation methods.
- Q3c We were able to find PREs in 100% of cases with $K > K_{min}$.
 - But we were restricted to D = 2, because the difficulty of finding PREs scales $\sim \exp(D^4)$.
 - Hence our refined parameter counting argument is supported.

- Q3 Does the refined (Warszawsi–Wiseman) parameter counting heuristic reliably predict whether PREs are feasible for a ME of a given form?
 - It seems that way.
- Q3a The non-existence of PREs when $K < K_{\min}$ is supported (Q2).
- Q3b To look for PREs when $K = K_{min}$ beyond D = 2 we have to simplify our system by introducing *symmetry*.
 - Restricting to **re3its**, our argument says $K_{\min} = 4$ (which is < 5).
 - From 80 randomly selected MEs, we found K = 4 PREs for 6 of them, using extended polynomial homotopy continuation methods.
- Q3c We were able to find PREs in 100% of cases with $K > K_{\min}$.
 - But we were restricted to D = 2, because the difficulty of finding PREs scales $\sim \exp(D^4)$.
 - Hence our refined parameter counting argument is supported.

- Q3 Does the refined (Warszawsi–Wiseman) parameter counting heuristic reliably predict whether PREs are feasible for a ME of a given form?
 - It seems that way.
- Q3a The non-existence of PREs when $K < K_{\min}$ is supported (Q2).
- Q3b To look for PREs when $K = K_{min}$ beyond D = 2 we have to simplify our system by introducing *symmetry*.
 - Restricting to **re3its**, our argument says $K_{\min} = 4$ (which is < 5).
 - From 80 randomly selected MEs, we found K = 4 PREs for 6 of them, using extended polynomial homotopy continuation methods.
- Q3c We were able to find PREs in 100% of cases with $K > K_{\min}$.
 - But we were restricted to D = 2, because the difficulty of finding PREs scales $\sim \exp(D^4)$.
 - Hence our refined parameter counting argument is supported.

Wiseman (Griffith)

Outline

I Formally Defining Adaptive Measurements

2 Adaptive Measurements for Profit

- Doing some things better
- Doing some things *much* better
- Doing some things *perfectly*
- Doing some things *uniquely*

B) How Big a Brain does it take to Track an Open Quantum System?

- Quantum Jumps: The Old Quantum Theory
- Quantum Jumps: The Modern Understanding
- Physically Realizable Ensembles
- For a qubit, a two-state classical memory is all it takes ...
- A Fuller Answer

Conclusion

Summary and Questions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

Adaptive Measurements for Profit

- Adaptive measurements comprise a form of measurement-based control, which is distinct from feedback and which has no analogue classically for perfect measurements.
- They have countless quantum applications, and many experimental demonstrations, including
 - Phase estimation
 - static phase for fixed mean photon number \bar{n} (coherent or squeezed)
 - static phase for fixed maximum photon number n (especially n = 1)
 - dynamic (diffusing) phase for fixed photon flux over diffusion rate \mathcal{N}/κ (coherent or squeezed)
 - static interferometric phase for fixed photon-passes *M* (single photon or entangled)
 - State discrimination of a fixed number of non-orthogonal states.
 - Measurement-based quantum computing.

Adaptive Monitoring for Pleasure

- In semiclassical models (e.g. Einstein's) a *D*-level open quantum system jumps between the *D* levels. That is, an observer can keep track of the state using a *K*-state classical memory with K = D.
- For a general ergodic Markovian open quantum system:
 - With a generic monitoring scheme, it is necessary to store real numbers (i.e. the classical memory size $K \to \infty$).
 - By allowing for all possible (in particular, adaptive) monitoring schemes, a finite *K* should always be sufficient.
 - But by a counting argument, typically $K_{\min} = O(D^2)$.
- For D = 2 (a qubit), K = 2 (one classical bit) is always sufficient.
- For D = 3 we have proven that K = 3 is insufficient in general.
 ⇒ To keep track of an open quantum system you need a bigger brain than you would for an open classical system of the same size.

Any Questions?

- *e.g.* Given a physically realizable ensemble, can you explicitly construct the (adaptive) monitoring scheme that realizes it?
- *e.g.* Does this generalize to discrete-time evolution (CP-maps)?
- *e.g.* What does it mean to consider all adaptive monitorings?
- *e.g.* What about the Schrödinger-HJW theorem?
- e.g. Do these finite-state PREs by adaptive unravellings have any uses?
The Controllable Parameters

• The master equation $\dot{\rho} = \sum_{l=1}^{L} \mathcal{D}[\hat{c}_l] \rho - \mathcal{C}[i\hat{H}]\rho$ is invariant under $\{\hat{c}_l\} \rightarrow \{\hat{c}'_m\}$ and $\hat{H} \rightarrow \hat{H}'$,

$$\hat{c}'_m = \sum_{l=1}^L S_{ml} \hat{c}_l + \beta_m , \ \hat{H}' = \hat{H} - \frac{i}{2} \sum_{m=1}^M \frac{1}{2} (\beta_m^* \hat{c}'_m - \beta_m \hat{c}'_m^{\dagger}).$$

Here S is a semi-unitary matrix i.e. $\sum_{m=1}^{M} S_{l'm}^* S_{ml} = \delta_{l',l}$.

• Unravelling the master equation $\dot{\rho} = \mathcal{L}\rho$ as

$$\rho + d\rho = dt \sum_{m=1}^{M} \mathcal{J}[\hat{c}'_{m}]\rho + \left(1 - dt \mathcal{C}[i\hat{H}' + \frac{1}{2}\sum_{m=1}^{M} \hat{c}'_{m}\hat{c}'_{m}^{\dagger}]\right)\rho$$

gives different conditional evolution, with the same average ρ_{ss} .

- In quantum optics, S_{ml} describes an interferometer, while β_m describes adding local oscillators before detection.
- For K-state jumping we need K of these: S_{ml}^k and β_m^k , with k chosen adaptively, and with $M \le \max\{K-1, L\}$.

44/46

• Schrödinger-HJW theorem: If $\rho_{ss} = \text{Tr}_{\text{bath}}[|\Psi_{\text{entangled}}\rangle\langle\Psi_{\text{entangled}}|]$ then for all pure state weighted ensembles (*not* necessarily orthogonal)

$$\{\wp_b | \phi_b \rangle \langle \phi_b | \}_{b=1}^B$$
 such that $\rho_{ss} = \sum_{b=1}^B \wp_b | \phi_b \rangle \langle \phi_b |$,

there exists a bath POVM $\{\hat{E}_b\}_{b=1}^B$ such that for

$$\wp_b |\phi_b\rangle \langle \phi_b | = \text{Tr}_{\text{field}}[|\Psi_{\text{entangled}}\rangle \langle \Psi_{\text{entangled}}|\hat{E}_b].$$

- Does this mean that if one can attain all possible monitorings, one can attain all possible ensembles representing ρ_{ss} , including the diagonal one $\rho_{ss}|\phi_b\rangle = \wp_b|\phi_b\rangle$, b = 1...D? No!
- Monitoring means keeping track of the state $|\psi_{c}(t)\rangle$ for all *t*.
- The Schrödinger-HJW theorem applies to finding the system to be in a state |φ_b⟩ at one particular long-time t.

• Schrödinger-HJW theorem: If $\rho_{ss} = \text{Tr}_{\text{bath}}[|\Psi_{\text{entangled}}\rangle\langle\Psi_{\text{entangled}}|]$ then for all pure state weighted ensembles (*not* necessarily orthogonal)

$$\{\wp_b | \phi_b \rangle \langle \phi_b | \}_{b=1}^B$$
 such that $\rho_{ss} = \sum_{b=1}^B \wp_b | \phi_b \rangle \langle \phi_b |$,

there exists a bath POVM $\{\hat{E}_b\}_{b=1}^B$ such that for

$$\wp_b |\phi_b\rangle \langle \phi_b | = \text{Tr}_{\text{field}}[|\Psi_{\text{entangled}}\rangle \langle \Psi_{\text{entangled}}|\hat{E}_b].$$

- Does this mean that if one can attain all possible monitorings, one can attain all possible ensembles representing ρ_{ss} , including the diagonal one $\rho_{ss}|\phi_b\rangle = \wp_b|\phi_b\rangle$, b = 1...D? No!
- Monitoring means keeping track of the state $|\psi_{c}(t)\rangle$ for all *t*.
- The Schrödinger-HJW theorem applies to finding the system to be in a state |φ_b⟩ at one particular long-time t.

• Schrödinger-HJW theorem: If $\rho_{ss} = \text{Tr}_{\text{bath}}[|\Psi_{\text{entangled}}\rangle\langle\Psi_{\text{entangled}}|]$ then for all pure state weighted ensembles (*not* necessarily orthogonal)

$$\{\wp_b | \phi_b \rangle \langle \phi_b | \}_{b=1}^B$$
 such that $\rho_{ss} = \sum_{b=1}^B \wp_b | \phi_b \rangle \langle \phi_b |$,

there exists a bath POVM $\{\hat{E}_b\}_{b=1}^B$ such that for

$$\wp_b |\phi_b\rangle \langle \phi_b | = \text{Tr}_{\text{field}}[|\Psi_{\text{entangled}}\rangle \langle \Psi_{\text{entangled}}|\hat{E}_b].$$

- Does this mean that if one can attain all possible monitorings, one can attain all possible ensembles representing ρ_{ss} , including the diagonal one $\rho_{ss}|\phi_b\rangle = \wp_b |\phi_b\rangle$, $b = 1 \dots D$? No!
- Monitoring means keeping track of the state $|\psi_c(t)\rangle$ for all *t*.
- The Schrödinger-HJW theorem applies to finding the system to be in a state |φ_b⟩ at one particular long-time t.

• Schrödinger-HJW theorem: If $\rho_{ss} = \text{Tr}_{\text{bath}}[|\Psi_{\text{entangled}}\rangle\langle\Psi_{\text{entangled}}|]$ then for all pure state weighted ensembles (*not* necessarily orthogonal)

$$\{\wp_b | \phi_b \rangle \langle \phi_b | \}_{b=1}^B$$
 such that $\rho_{ss} = \sum_{b=1}^B \wp_b | \phi_b \rangle \langle \phi_b |$,

there exists a bath POVM $\{\hat{E}_b\}_{b=1}^B$ such that for

$$\wp_b |\phi_b\rangle \langle \phi_b | = \text{Tr}_{\text{field}}[|\Psi_{\text{entangled}}\rangle \langle \Psi_{\text{entangled}}|\hat{E}_b].$$

- Does this mean that if one can attain all possible monitorings, one can attain all possible ensembles representing ρ_{ss} , including the diagonal one $\rho_{ss}|\phi_b\rangle = \wp_b |\phi_b\rangle$, $b = 1 \dots D$? No!
- Monitoring means keeping track of the state $|\psi_c(t)\rangle$ for all *t*.
- The Schrödinger-HJW theorem applies to finding the system to be in a state |φ_b⟩ at one particular long-time t.

The Quantum Optical Theory of Radiation

• Master equation in the Interaction Frame:

$$\dot{\rho} = \sum_{n,m=1}^{D} \kappa_{mn} \left\{ \mathcal{J}[|\varepsilon_n\rangle\langle\varepsilon_m|] - \mathcal{C}[\frac{1}{2}|\varepsilon_m\rangle\langle\varepsilon_m|] \right\} \rho.$$
where $\mathcal{J}[\hat{a}]\rho \equiv \hat{a}\rho\hat{a}^{\dagger}$, $\mathcal{C}[\hat{b}]\rho \equiv \hat{b}\rho - \rho\hat{b}^{\dagger}$

$$\implies \rho_{ss} = \sum_{m=1}^{D} p_{\text{Boltzmann}}(\varepsilon_m)|\varepsilon_m\rangle\langle\varepsilon_m|$$
, where $\langle\varepsilon_m|\varepsilon_n\rangle = 0.$

$$\bullet \text{ Say } \rho(t) = |\varepsilon_o\rangle\langle\varepsilon_o|.$$
 Then
$$\rho(t+dt) = \rho(t) + dt\dot{\rho}(t)$$

$$= \sum_{n,m=1}^{D} \kappa_{mn}dt\mathcal{J}[|\varepsilon_n\rangle\langle\varepsilon_m|]\rho(t) + \left[1 - \sum_{n,m=1}^{D} \kappa_{mn}dt\mathcal{C}[\frac{1}{2}|\varepsilon_m\rangle\langle\varepsilon_m|]\right]\rho(t)$$

$$= \sum_{n=1}^{D} \kappa_{on}dt|\varepsilon_n\rangle\langle\varepsilon_n| + \left[1 - \sum_{n=1}^{D} \kappa_{on}dt\right]|\varepsilon_o\rangle\langle\varepsilon_o|$$

$$= \sum_{n=1}^{D} dP_{jump}(o \to n)|\varepsilon_n\rangle\langle\varepsilon_n| + \left[1 - \sum_{n=1}^{D} dP_{jump}(o \to n)\right]|\varepsilon_o\rangle\langle\varepsilon_o|.$$

Wiseman (Griffith)