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Measurement and Control

The obvious reason to combine
measurement and control is feedback,
to purposefully change the average
system evolution.

Non-trivial even classically.

cf. adaptive measurement —
controlling future measurements on
the basis of the results of past ones, to
obtain better data, leaving the
average system evolution unchanged.

Classically, a non-problem if
measurements can be perfect, but
non-trivial in the quantum case.
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Real-time quantum feedback prepares and stabilizes
photon number states
Clément Sayrin1, Igor Dotsenko1, Xingxing Zhou1, Bruno Peaudecerf1, Théo Rybarczyk1, Sébastien Gleyzes1, Pierre Rouchon2,
Mazyar Mirrahimi3, Hadis Amini2, Michel Brune1, Jean-Michel Raimond1 & Serge Haroche1,4

Feedback loops are central to most classical control procedures. A
controller compares the signalmeasured by a sensor (systemoutput)
with the target value or set-point. It then adjusts an actuator (system
input) to stabilize the signal around the target value. Generalizing
this scheme to stabilize a micro-system’s quantum state relies on
quantum feedback1–3, which must overcome a fundamental dif-
ficulty: the sensor measurements cause a random back-action on
the system. An optimal compromise uses weak measurements4,5,
providing partial information withminimal perturbation. The con-
troller should include the effect of this perturbation in the computa-
tion of the actuator’s operation, which brings the incrementally
perturbed state closer to the target. Although some aspects of this
scenario have been experimentally demonstrated for the control of
quantum6–9 or classical10,11micro-system variables, continuous feed-
back loop operations that permanently stabilize quantum systems
around a target state have not yet been realized. Here we have imple-
mented such a real-time stabilizing quantum feedback scheme12 fol-
lowing a method inspired by ref. 13. It prepares on demand photon
number states (Fock states) of a microwave field in a superconduct-
ing cavity, and subsequently reverses the effects of decoherence-
induced field quantum jumps14–16. The sensor is a beam of atoms
crossing the cavity, which repeatedly performs weak quantum non-
demolitionmeasurements of the photon number14. The controller is
implemented in a real-time computer commanding the actuator,
which injects adjusted small classical fields into the cavity between
measurements.Themicrowave field is a quantumoscillatorusableas
a quantum memory17 or as a quantum bus swapping information
between atoms18. Our experiment demonstrates that active control
can generate non-classical states of this oscillator and combat their
decoherence15,16, and is a significant step towards the implementa-
tion of complex quantum information operations.
A Fock state with n photons is hard to generate and very fragile.

Prepared in a cavity of damping time Tc, it survives on average for
Tc/n before undergoing a quantum jump towards the jn2 1æ Fock state.
In contrast, classical Glauber states19, which are coherent superpositions
of Fock states with an average photon number !n and a Poisson photon
number probability distribution P(n)5 exp(2!n) (!nn/n!), are much
easier to prepare and more robust. Glauber states are easily obtained
by coupling the initially empty cavity to a classical field source for a fixed
amount of time. This operation amounts to the translation of the field in
its phase space from the vacuum(!n5 0 coherent state) to a final coherent
state having an amplitude a5

ffiffiffiffiffi
!n0

p
with a mean photon number !n0.

After the source is switched off, the field remains in a coherent state with
an exponentially decaying amplitude, !n becoming !n(t)5 !n0exp(2t/Tc).
Experimentalmethods to prepare Fock states in a cavity C start from a

coherent state and exploit the coupling of the field to two-level
qubits14,20,21. A deterministic procedure feeds quanta one at a time into
the field initially in vacuum by swapping its energy with a qubit
periodically re-pumped into its excited state21. This method, which has

been generalized to synthesize arbitrary superpositions of Fock states22,
cannot counteract decoherence because it does not provide real time
information on the actual field stateinC. Fock states can also be prepared
by a quantum non-demolition (QND) measurement performed on an
initial coherent state with !n0? 0 (ref. 14). Atomic qubits probe the field
one at a time and the photon number is progressively pinned down to an
inherently randomvalue, theprobabilityP(n) for findingnbeingthevalue
corresponding to the initial coherent field. This QND method provides
real time information about the field statehistoryduring theprocess. This
information can be used for a deterministic steering of the field towards a
target Fock state jntæ, aswell as for detection and subsequent correction of
quantum jump events. We have performed a quantum feedback experi-
ment by combining the detection of successive atoms with field phase-
space translations of controlled amplitudes. We thus prepare Fock states
jntæ on demand and, on average, stabilize them by bringing the field back
into them after decoherence-induced quantum jumps.
The experiment is performed in a superconducting cavity C with

Tc5 65ms cooled to 0.8K (see Fig. 1 and SupplementaryMethods). It
is initially fed by the source Swhichprepares a coherent statewith a real
amplitude at5

ffiffiffiffi
nt

p
. The quantum sensors are circular Rydberg atoms

prepared in B at regular time intervals (Ta5 82ms)18,23. The number of
Rydberg atoms in each sample obeys Poisson statistics, with 0.6 atoms
per sample on average. The atomic states jgæ and jeæ with principal
quantum numbers 50 and 51 are the 0 and 1 states of a qubit slightly
off-resonant with cavity C (atom–cavity detuning d/2p5 245 kHz).
The qubit coherence undergoes in C a light-induced phase shift linear
in the photon number (phase-shift per photon w05 0.256p). This
phase shift is measured by a Ramsey interferometer (R1 and R2).
Detecting each atomic sample in D provides partial information about
the number of photons in C.
Each iteration of the feedback loop12 consists of a sample detection

by the detector D, a cavity field state estimation by the controller K and
a field translation performed by the actuator S (Fig. 1). In each itera-
tion, K first updates its estimation of the field density operatorr on the
basis of the detection outcome, and corrects this estimation by taking
into account the effect of cavity relaxation at finite temperature during
the iteration time Ta. It then computes the amplitude a of the trans-
lation described by the operator D(a)5 exp(aa{2 a*a) (here a is the
photon annihilation operator, { and * denote Hermitian and complex
conjugate, respectively). Because the initial and target density opera-
tors are real, we restrict the translations to real values of a. The field
translation minimizes a proper ‘distance’ d(rt, D(a)rD(2a)) (defined
below) between the displaced state and the target state rt5 jntæÆntj.
Finally, at the end of each feedback loop iteration, K calculates the
translated field’s state, which is to be used at the beginning of the next
iteration. Note that this quantum state estimation, performed on a
single quantum trajectory, cannot be obtained from the measurement
data only. It also incorporates all available information on the state
preparation, displacements and relaxation.

1Laboratoire Kastler Brossel, ENS, UPMC–Paris 6, CNRS, 24 rue Lhomond, 75005 Paris, France. 2Centre Automatique et Systèmes, Mathématiques et Systèmes, Mines ParisTech, 60 Boulevard Saint-
Michel, 75272Paris Cedex 6, France. 3INRIA Paris-Rocquencourt, Domainede Voluceau, BP105, 78153Le ChesnayCedex, France. 4Collège de France, 11 placeMarcelinBerthelot, 75231Paris Cedex 05,
France.
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Figure 1 | Scheme of the quantum feedback set-up. An atomic Ramsey
interferometer (auxiliary cavities R1 and R2) sandwiches the superconducting
Fabry–Perot cavity C resonant at 51GHz and cooled to 0.8K (the mean
number of blackbody photons is 0.05). The pulsed classical source S9 induces
p/2 pulses resonant with the | gæR | eæ transition in R1 and R2 (with relative
phase wr) on the velocity-selected (250m s21) Rydberg atom qubits (purple
circles) prepared by laser excitation (blue arrow) from a rubidium atomic beam

(green arrow) in B. The field-ionization detector D measures the qubits in the
e/g basis with a 35% detection efficiency and an error rate of a few per cent
(Supplementary Methods). The actuator S feeds cavity C by diffraction on the
mirror edges. The controller K (a CPU-based ADwin Pro-II system) collects
information fromD to determine the real translation amplitude a applied by S.
It sets the S-pulse duration through a PIN diode switch A (63-ms pulse for
|a | 5 0.1) as well as a 180u phase-shifter W controlling the sign of a.
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Figure 2 | Individual quantum feedback trajectories. Two feedback runs
lasting 164ms (2,000 loop iterations) stabilizing |nt5 2æ (left column) and
|nt5 3æ (right column). The phase-shift per photon, w05 0.256p, allows
controller K to discriminate n values between 0 and 7. For nt5 2, the Ramsey
phase is wr520.44 rad, corresponding to nearly equal e and g detection
probabilities when n5 2. For nt5 3, two Ramsey phases wr,1520.44 rad and
wr,2521.24 rad are alternatively used, corresponding to equal e and g
probabilities when n5 2 and n5 3, respectively. a, Sequences of qubit

detection outcomes. The detection results are shown as blue downward bars for
g and red upward bars for e. Two-atom detections in the same state appear as
double-length bars. b, Estimated distance between the target and the actual
state. c, Applied a-corrections (shown on a log scale as sgn(a)log |a | ). d, Photon
number probabilities estimated by K: P(n5 nt) is in green, P(n, nt) in red,
P(n. nt) in blue. e, Field density operators r in the Fock-state basis estimated
by K at four different times marked by arrows.
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interferometer (auxiliary cavities R1 and R2) sandwiches the superconducting
Fabry–Perot cavity C resonant at 51GHz and cooled to 0.8K (the mean
number of blackbody photons is 0.05). The pulsed classical source S9 induces
p/2 pulses resonant with the | gæR | eæ transition in R1 and R2 (with relative
phase wr) on the velocity-selected (250m s21) Rydberg atom qubits (purple
circles) prepared by laser excitation (blue arrow) from a rubidium atomic beam

(green arrow) in B. The field-ionization detector D measures the qubits in the
e/g basis with a 35% detection efficiency and an error rate of a few per cent
(Supplementary Methods). The actuator S feeds cavity C by diffraction on the
mirror edges. The controller K (a CPU-based ADwin Pro-II system) collects
information fromD to determine the real translation amplitude a applied by S.
It sets the S-pulse duration through a PIN diode switch A (63-ms pulse for
|a | 5 0.1) as well as a 180u phase-shifter W controlling the sign of a.
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Figure 2 | Individual quantum feedback trajectories. Two feedback runs
lasting 164ms (2,000 loop iterations) stabilizing |nt5 2æ (left column) and
|nt5 3æ (right column). The phase-shift per photon, w05 0.256p, allows
controller K to discriminate n values between 0 and 7. For nt5 2, the Ramsey
phase is wr520.44 rad, corresponding to nearly equal e and g detection
probabilities when n5 2. For nt5 3, two Ramsey phases wr,1520.44 rad and
wr,2521.24 rad are alternatively used, corresponding to equal e and g
probabilities when n5 2 and n5 3, respectively. a, Sequences of qubit

detection outcomes. The detection results are shown as blue downward bars for
g and red upward bars for e. Two-atom detections in the same state appear as
double-length bars. b, Estimated distance between the target and the actual
state. c, Applied a-corrections (shown on a log scale as sgn(a)log |a | ). d, Photon
number probabilities estimated by K: P(n5 nt) is in green, P(n, nt) in red,
P(n. nt) in blue. e, Field density operators r in the Fock-state basis estimated
by K at four different times marked by arrows.
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The obvious reason to combine
measurement and control is feedback,
to purposefully change the average
system evolution.

Non-trivial even classically.

cf. adaptive measurement —
controlling future measurements on
the basis of the results of past ones, to
obtain better data, leaving the
average system evolution unchanged.

Classically, a non-problem if
measurements can be perfect, but
non-trivial in the quantum case.
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Feedback loops are central to most classical control procedures. A
controller compares the signalmeasured by a sensor (systemoutput)
with the target value or set-point. It then adjusts an actuator (system
input) to stabilize the signal around the target value. Generalizing
this scheme to stabilize a micro-system’s quantum state relies on
quantum feedback1–3, which must overcome a fundamental dif-
ficulty: the sensor measurements cause a random back-action on
the system. An optimal compromise uses weak measurements4,5,
providing partial information withminimal perturbation. The con-
troller should include the effect of this perturbation in the computa-
tion of the actuator’s operation, which brings the incrementally
perturbed state closer to the target. Although some aspects of this
scenario have been experimentally demonstrated for the control of
quantum6–9 or classical10,11micro-system variables, continuous feed-
back loop operations that permanently stabilize quantum systems
around a target state have not yet been realized. Here we have imple-
mented such a real-time stabilizing quantum feedback scheme12 fol-
lowing a method inspired by ref. 13. It prepares on demand photon
number states (Fock states) of a microwave field in a superconduct-
ing cavity, and subsequently reverses the effects of decoherence-
induced field quantum jumps14–16. The sensor is a beam of atoms
crossing the cavity, which repeatedly performs weak quantum non-
demolitionmeasurements of the photon number14. The controller is
implemented in a real-time computer commanding the actuator,
which injects adjusted small classical fields into the cavity between
measurements.Themicrowave field is a quantumoscillatorusableas
a quantum memory17 or as a quantum bus swapping information
between atoms18. Our experiment demonstrates that active control
can generate non-classical states of this oscillator and combat their
decoherence15,16, and is a significant step towards the implementa-
tion of complex quantum information operations.
A Fock state with n photons is hard to generate and very fragile.

Prepared in a cavity of damping time Tc, it survives on average for
Tc/n before undergoing a quantum jump towards the jn2 1æ Fock state.
In contrast, classical Glauber states19, which are coherent superpositions
of Fock states with an average photon number !n and a Poisson photon
number probability distribution P(n)5 exp(2!n) (!nn/n!), are much
easier to prepare and more robust. Glauber states are easily obtained
by coupling the initially empty cavity to a classical field source for a fixed
amount of time. This operation amounts to the translation of the field in
its phase space from the vacuum(!n5 0 coherent state) to a final coherent
state having an amplitude a5
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with a mean photon number !n0.

After the source is switched off, the field remains in a coherent state with
an exponentially decaying amplitude, !n becoming !n(t)5 !n0exp(2t/Tc).
Experimentalmethods to prepare Fock states in a cavity C start from a

coherent state and exploit the coupling of the field to two-level
qubits14,20,21. A deterministic procedure feeds quanta one at a time into
the field initially in vacuum by swapping its energy with a qubit
periodically re-pumped into its excited state21. This method, which has

been generalized to synthesize arbitrary superpositions of Fock states22,
cannot counteract decoherence because it does not provide real time
information on the actual field stateinC. Fock states can also be prepared
by a quantum non-demolition (QND) measurement performed on an
initial coherent state with !n0? 0 (ref. 14). Atomic qubits probe the field
one at a time and the photon number is progressively pinned down to an
inherently randomvalue, theprobabilityP(n) for findingnbeingthevalue
corresponding to the initial coherent field. This QND method provides
real time information about the field statehistoryduring theprocess. This
information can be used for a deterministic steering of the field towards a
target Fock state jntæ, aswell as for detection and subsequent correction of
quantum jump events. We have performed a quantum feedback experi-
ment by combining the detection of successive atoms with field phase-
space translations of controlled amplitudes. We thus prepare Fock states
jntæ on demand and, on average, stabilize them by bringing the field back
into them after decoherence-induced quantum jumps.
The experiment is performed in a superconducting cavity C with

Tc5 65ms cooled to 0.8K (see Fig. 1 and SupplementaryMethods). It
is initially fed by the source Swhichprepares a coherent statewith a real
amplitude at5

ffiffiffiffi
nt

p
. The quantum sensors are circular Rydberg atoms

prepared in B at regular time intervals (Ta5 82ms)18,23. The number of
Rydberg atoms in each sample obeys Poisson statistics, with 0.6 atoms
per sample on average. The atomic states jgæ and jeæ with principal
quantum numbers 50 and 51 are the 0 and 1 states of a qubit slightly
off-resonant with cavity C (atom–cavity detuning d/2p5 245 kHz).
The qubit coherence undergoes in C a light-induced phase shift linear
in the photon number (phase-shift per photon w05 0.256p). This
phase shift is measured by a Ramsey interferometer (R1 and R2).
Detecting each atomic sample in D provides partial information about
the number of photons in C.
Each iteration of the feedback loop12 consists of a sample detection

by the detector D, a cavity field state estimation by the controller K and
a field translation performed by the actuator S (Fig. 1). In each itera-
tion, K first updates its estimation of the field density operatorr on the
basis of the detection outcome, and corrects this estimation by taking
into account the effect of cavity relaxation at finite temperature during
the iteration time Ta. It then computes the amplitude a of the trans-
lation described by the operator D(a)5 exp(aa{2 a*a) (here a is the
photon annihilation operator, { and * denote Hermitian and complex
conjugate, respectively). Because the initial and target density opera-
tors are real, we restrict the translations to real values of a. The field
translation minimizes a proper ‘distance’ d(rt, D(a)rD(2a)) (defined
below) between the displaced state and the target state rt5 jntæÆntj.
Finally, at the end of each feedback loop iteration, K calculates the
translated field’s state, which is to be used at the beginning of the next
iteration. Note that this quantum state estimation, performed on a
single quantum trajectory, cannot be obtained from the measurement
data only. It also incorporates all available information on the state
preparation, displacements and relaxation.

1Laboratoire Kastler Brossel, ENS, UPMC–Paris 6, CNRS, 24 rue Lhomond, 75005 Paris, France. 2Centre Automatique et Systèmes, Mathématiques et Systèmes, Mines ParisTech, 60 Boulevard Saint-
Michel, 75272Paris Cedex 6, France. 3INRIA Paris-Rocquencourt, Domainede Voluceau, BP105, 78153Le ChesnayCedex, France. 4Collège de France, 11 placeMarcelinBerthelot, 75231Paris Cedex 05,
France.
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Figure 1 | Scheme of the quantum feedback set-up. An atomic Ramsey
interferometer (auxiliary cavities R1 and R2) sandwiches the superconducting
Fabry–Perot cavity C resonant at 51GHz and cooled to 0.8K (the mean
number of blackbody photons is 0.05). The pulsed classical source S9 induces
p/2 pulses resonant with the | gæR | eæ transition in R1 and R2 (with relative
phase wr) on the velocity-selected (250m s21) Rydberg atom qubits (purple
circles) prepared by laser excitation (blue arrow) from a rubidium atomic beam

(green arrow) in B. The field-ionization detector D measures the qubits in the
e/g basis with a 35% detection efficiency and an error rate of a few per cent
(Supplementary Methods). The actuator S feeds cavity C by diffraction on the
mirror edges. The controller K (a CPU-based ADwin Pro-II system) collects
information fromD to determine the real translation amplitude a applied by S.
It sets the S-pulse duration through a PIN diode switch A (63-ms pulse for
|a | 5 0.1) as well as a 180u phase-shifter W controlling the sign of a.
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Figure 2 | Individual quantum feedback trajectories. Two feedback runs
lasting 164ms (2,000 loop iterations) stabilizing |nt5 2æ (left column) and
|nt5 3æ (right column). The phase-shift per photon, w05 0.256p, allows
controller K to discriminate n values between 0 and 7. For nt5 2, the Ramsey
phase is wr520.44 rad, corresponding to nearly equal e and g detection
probabilities when n5 2. For nt5 3, two Ramsey phases wr,1520.44 rad and
wr,2521.24 rad are alternatively used, corresponding to equal e and g
probabilities when n5 2 and n5 3, respectively. a, Sequences of qubit

detection outcomes. The detection results are shown as blue downward bars for
g and red upward bars for e. Two-atom detections in the same state appear as
double-length bars. b, Estimated distance between the target and the actual
state. c, Applied a-corrections (shown on a log scale as sgn(a)log |a | ). d, Photon
number probabilities estimated by K: P(n5 nt) is in green, P(n, nt) in red,
P(n. nt) in blue. e, Field density operators r in the Fock-state basis estimated
by K at four different times marked by arrows.
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interferometer (auxiliary cavities R1 and R2) sandwiches the superconducting
Fabry–Perot cavity C resonant at 51GHz and cooled to 0.8K (the mean
number of blackbody photons is 0.05). The pulsed classical source S9 induces
p/2 pulses resonant with the | gæR | eæ transition in R1 and R2 (with relative
phase wr) on the velocity-selected (250m s21) Rydberg atom qubits (purple
circles) prepared by laser excitation (blue arrow) from a rubidium atomic beam

(green arrow) in B. The field-ionization detector D measures the qubits in the
e/g basis with a 35% detection efficiency and an error rate of a few per cent
(Supplementary Methods). The actuator S feeds cavity C by diffraction on the
mirror edges. The controller K (a CPU-based ADwin Pro-II system) collects
information fromD to determine the real translation amplitude a applied by S.
It sets the S-pulse duration through a PIN diode switch A (63-ms pulse for
|a | 5 0.1) as well as a 180u phase-shifter W controlling the sign of a.
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Figure 2 | Individual quantum feedback trajectories. Two feedback runs
lasting 164ms (2,000 loop iterations) stabilizing |nt5 2æ (left column) and
|nt5 3æ (right column). The phase-shift per photon, w05 0.256p, allows
controller K to discriminate n values between 0 and 7. For nt5 2, the Ramsey
phase is wr520.44 rad, corresponding to nearly equal e and g detection
probabilities when n5 2. For nt5 3, two Ramsey phases wr,1520.44 rad and
wr,2521.24 rad are alternatively used, corresponding to equal e and g
probabilities when n5 2 and n5 3, respectively. a, Sequences of qubit

detection outcomes. The detection results are shown as blue downward bars for
g and red upward bars for e. Two-atom detections in the same state appear as
double-length bars. b, Estimated distance between the target and the actual
state. c, Applied a-corrections (shown on a log scale as sgn(a)log |a | ). d, Photon
number probabilities estimated by K: P(n5 nt) is in green, P(n, nt) in red,
P(n. nt) in blue. e, Field density operators r in the Fock-state basis estimated
by K at four different times marked by arrows.
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The obvious reason to combine
measurement and control is feedback,
to purposefully change the average
system evolution.

Non-trivial even classically.

cf. adaptive measurement —
controlling future measurements on
the basis of the results of past ones, to
obtain better data, leaving the
average system evolution unchanged.

Classically, a non-problem if
measurements can be perfect, but
non-trivial in the quantum case.
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Formally Defining Adaptive Measurements

General Quantum Measurements

For simplicity, restrict to efficient measurements (those that take pure
states to pure states).

A measurement M is described by a set
{
(r, M̂r) : r

}
of outcomes and

measurement operators.

The unnormalized state conditioned on outcome r is ρ̃′r = M̂rρM̂†
r .

The probability for result r is Pr = Tr[ρ̃′r] = Tr[ρM̂†
r M̂r].

The only other restriction on M is
∑

r M̂†
r M̂r = I.

The unconditioned post-measurement state is ρ′ = T ρ, where
T • =

∑
r M̂r • M̂†

r is a CPTP map.

A measurement is called complete if ∀ r M̂r = Ûrπ̂r, where π̂r is a
rank-one projector.
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Formally Defining Adaptive Measurements

Adaptive Measurements

For a complete measurement, ρ̃′r = MrρM†
r ∝ UrπrU

†
r , is determined

solely by r.
=⇒ later measurements give no more information about ρ.

For incomplete measurements, making a second measurement may yield
more information. And so on ....
If the experimenter has:

1 The ability to perform a sequence {Mn} of incomplete measurements.
2 Restrictions on the class of each measurement,
3 But still with some choice as to what measurement to make at step n

then the optimal choice for the second measurement will depend in
general on the result of the first measurement, and so on.

Making this so realizes an adaptive measurement.

If the restrictions on Mn includes that T n is fixed, then the protocol is
purely an adaptive measurement, as ρN = T N · · · T 1ρ0.
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Adaptive Measurements for Profit Doing some things better

Adaptive Homodyne on Coherent StatesAdaptive homodyne measurement

Φ
digital
signal
processor

Local oscillator

Signal
ϕ1

ϕ2

ϕ3

theory: H. M. Wiseman, PRL 75, 4587 (1995).

…variance within 1% of optimal phase 

measurement for about 10 photons ! 

1 single-shot estimation of a fixed phase
Theory [HMW, PRL (1995)]:
predicted improvement offered by adaptive
measurement in V (i.e., MSE):

50% reduction in V(ϕ).

Expt [Armen et al., PRL (2002)]:
measured 40% reduction in V .

2 continuous tracking of a diffusing phase
Theory [Berry & HMW, PRA (2002)]:
predicted improvement

30% reduction in V(ϕ).

Expt [Wheatley et al., PRL (2010)]:
measured 20% reduction in V .
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Adaptive Measurements for Profit Doing some things better

Adaptive Single-photon Multipass Interferometry

p

Processor

√2
1

√2
1
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×
N

10 30 100 300

Number of resources, N

SQL, experimental data
SQL, numeric calculation
QPEA, experimental data
QPEA, analytic calculation
NAMP, experimental data
NAMP, numeric calculation
GQPEA M = 6, experimental data
GQPEA M = 6, numeric calculation
Heisenberg limit, analytic calculation

Fix N = # photon-passes.

Theory and Expt [Higgins, Berry,
Bartlett, HMW & Pryde, Nature (2007);
NJP (2009)].

Heisenberg limit:

V ≈ 10/N2

Best known nonadaptive scheme (2009)

V ≈ 20/N2.

Best known adaptive scheme (2007)

V ≈ 15/N2.
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Adaptive Measurements for Profit Doing some things much better

Adaptive Homodyne Tracking on Squeezed States
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Allow arbitrary squeezing on a coherent
beam, on which is imprinted a diffusing
phase which is continuously tracked.

Theory [Berry & HMW, PRA (2006,
Erratum 2013)]:

Vheterodyne = O((N/κ)−1/2)

Vadaptive = O((N/κ)−2/3)

Here κ = diffusion rate, N = photon flux
(including flux due to squeezing).

Expt [Yonezawa et al., Science (2012)]:
measured 15% reduction in V below the
coherent-state-limit (for given N ), at
optimal degree of squeezing.
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Adaptive Measurements for Profit Doing some things perfectly

Helstrom-Limited Nonorthogonal State Discrimination

H. M. Wiseman, PRACQSYS, July 2007 7. Geremia’s Dolinar Receiver Experiment 27
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Number Of Copies, N

Globally Optimal Meast (Analytic)
Globally Optimal Meast (Experiment)
Majority Vote Meast (Analytic)
Majority Vote Meast (Experiment)
Fully Biased Meast (Analytic)
Fully Biased Meast (Experiment)

1 single-shot discrimination of |α⟩, |0⟩
with minimal (Helstrom) error.

Restricting to photon counting and
displacement, adaptive displace-
ment is necessary & sufficient.
Theory: Dolinar, IBM (1973)
Expt: Cook, Martin & Geremia,
Nature (2007).

2 Helstrom-limit discrim. of n-qubit
product states |θ⟩⊗n, |−θ⟩⊗n.

Restricting to single-qubit
operations, adaptive measurements
is necessary & sufficient.
Theory: Acìn et al., PRA (2005)
Expt: Higgins et al., PRL (2009).
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Adaptive Measurements for Profit Doing some things perfectly

Heisenberg-Limited Interferometry using Multiphoton
Entanglement and Multipasses
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Fix the total number of photon-passes N.

Theory [HMW et al., IEEE (2009),
based on Griffiths and Niu, PRL (1996)]:

Asymptotically achieves VHL = π2/N2.

For N = 3:

Vadaptive = VHL ≈ 0.53

Vnonadaptive ≈ 0.65

Expt [Daryanoosh, Slussarenko, Berry,
HMW, Pryde, Nature Comms. (2018)]:

Vadaptive ≈ 0.55

Wiseman (Griffith) Adaptive Measurements ICTS, Bangalore, 2025 13 / 46



Adaptive Measurements for Profit Doing some things perfectly

Perfect Phase Measurement in {|0⟩, |1⟩} subspace

Aim: projection onto canonical phase
states |φ⟩ = (|0⟩+ eiφ|1⟩)/

√
2, using

only homodyne measurement.

Theory [HMW, PRL (1995)]:

2π Prnd-homodyne(φ) = 0.80|⟨φ|ψ⟩|2 + 0.20

2π Pheterodyne(φ) = 0.88|⟨φ|ψ⟩|2 + 0.12

2π Padaptive(φ) = 1.00|⟨φ|ψ⟩|2 + 0.00.

Experiment [Martin, Livingston,
Hacohen-Gourgy, HMW & Siddiqi,
Nature Phys. (2020)]:
measured 15% reduction in V below the
measured heterodyne limit.
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Adaptive Measurements for Profit Doing some things uniquely

Measurement-Based Quantum Computing

Theory: Raussendorf and Briegel, PRL (2001).

Experiment: Prevedel et al. (Vienna), Nature (2007).

Industry: Ψ-Quantum, Xanadu, others.
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Adaptive Measurements for Profit Doing some things uniquely

Tracking an Open Quantum System
with a Finite Classical Memory
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Theory: Karasik and HMW, PRL (2011); ibid. PRA (2011).
Warszawski and HMW, NJP (2019); ibid., Quantum (2019).

But this is for Pleasure ...
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How Big a Brain does it take to Track an Open Quantum System? Quantum Jumps: The Old Quantum Theory

The First Quantum Dynamics (Einstein, 1917)
On the quantum theory of Radiation
A. Einstein, Phys. Z. 18, 121 (1917). P(Zm, t + dt|Zn, t) = κmndt

κmn = (Nn
m + 1)An

m for εm > εn

κmn = Nn
mAn

m for εm < εn

Nmn = NPlanck(εm − εn)

Classical master equation:

ṗm =
∑

n

κmn(pn − pm).

Ergodic (unique steady state):

lim
t→∞

pn(t) = pBoltzmann(εn)
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How Big a Brain does it take to Track an Open Quantum System? Quantum Jumps: The Old Quantum Theory

Bohr’s and Einstein’s Quantum Jumps

“The passing of the systems between different stationary states ... cannot be treated

[using] ordinary mechanics ... [and] is followed by the emission of a homogeneous

radiation, for which [∆E = hν]. [This] is in obvious contrast to the ordinary ideas

of electrodynamics, but appears necessary in order to account for the experimental

facts. (Bohr, 1913).

“The weakness of the theory [is] that it leaves the moment and direction of the

elementary processes to ‘chance’.” (Einstein, 1917).

The transitions may be stochastic, but they correspond to physical
events: absorption from, or emission into, the radiation bath.

Thus the state Zn of the atom at any time is knowable in principle by
monitoring the bath.

If the atom can be approximated as having finitely many (D) levels, then
a finite (D-state) classical memory is all that is required to keep track of
the atomic state.
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How Big a Brain does it take to Track an Open Quantum System? Quantum Jumps: The Modern Understanding

Unravelling Quantum Master Equations
If we ignore the bath then even if both system and bath are initially pure,
the system state will decohere:

|Ψ(0)⟩ = |ϕ(0)⟩env ⊗ |ψ(0)⟩sys → |Ψ(t)⟩ = exp
(
−iĤtott

)
|Ψ(0)⟩

(pure) |ψ(0)⟩sys → ρsys(t) = Trenv[|Ψ(t)⟩⟨Ψ(t)|] (mixed)

If the Born-Markov approximation is valid, ρsys(t) obeys a master
equation of the Lindblad form:

ρ̇(t) = Lρ(t) ≡ [−iĤ, ρ] +
∑L

ℓ=1D[ĉℓ]ρ.

If it is valid then it is also the case that the bath can be measured
repeatedly, on a time scale which is short compared to the interesting
system evolution, without invalidating the master equation.
This is called monitoring the system. If the monitoring is perfect, then
this produces a stochastic pure conditioned system state |ψc(t)⟩:

E[|ψc(t)⟩⟨ψc(t)|] = ρ(t) = exp(Lt)|ψ(0)⟩⟨ψ(0)|.
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How Big a Brain does it take to Track an Open Quantum System? Quantum Jumps: The Modern Understanding

Rediscovering quantum jumps
Consider the master equation with a single decoherence channel:

ρ(t + dt) = ρ(t)− i[Ĥ, ρ(t)]dt + [ĉρ(t)ĉ† − 1
2 ĉ†ĉρ(t)− 1

2ρ(t)ĉ
†ĉ]dt.

If ρ(t) = |ψ(t)⟩⟨ψ(t)| then this can be rewritten to O(dt) as

P0(dt)|ψ0(t + dt)⟩⟨ψ0(t + dt)|+ P1(dt)|ψ1(t + dt)⟩⟨ψ1(t + dt)|,

where
|ψ0(t + dt)⟩ =

(
1 − iĤdt − 1

2 ĉ†ĉdt
)
|ψ(t)⟩/

√
P0(dt)

|ψ1(t + dt)⟩ =
√

dt ĉ|ψ(t)⟩/
√

P1(dt)

P1(dt) = 1 − P0(dt) = ⟨ψ(t)|ĉ†
√

dt
√

dt ĉ|ψ(t)⟩

P1(dt) = O(dt) =⇒ “1” events are non-null “detections”.

|ψ0(t + dt)⟩ ≈|ψ(t)⟩ (no detection =⇒ smooth evolution)

|ψ1(t + dt)⟩ ≈/ |ψ(t)⟩ (detection =⇒ quantum jump).
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How Big a Brain does it take to Track an Open Quantum System? Quantum Jumps: The Modern Understanding

General Properties of Conditional Evolution
Unlike the quantum jumps in Einstein’s thermal equilibrium model,

1 The post-jump |ψ1(t + dt)⟩ depends on the pre-jump |ψ(t)⟩
2 Jumps don’t take you to an orthogonal state: ⟨ψ1(t + dt)|ψ(t)⟩ ≠ 0
3 Even with no jump, you don’t stay fixed: |ψ0(t + dt)⟩ ≠ |ψ(t)⟩
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0.5

−1

−0.5

0

0.5

1 In general, the long-time conditioned state |ψc(t)⟩
explores some manifold within Hilbert space, so

ρss =

∫
dµss(ϕ)|ϕ⟩⟨ϕ|.

Thus, even for a D-dimensional Hilbert space, a classical memory of infinite
size would be required to keep track of which |ϕ⟩ pertains.

Question
Can we control the way the system jumps (without changing the average
evolution), so that it is restricted to finitely many states?

Wiseman (Griffith) Adaptive Measurements ICTS, Bangalore, 2025 24 / 46



How Big a Brain does it take to Track an Open Quantum System? Quantum Jumps: The Modern Understanding

General Properties of Conditional Evolution
Unlike the quantum jumps in Einstein’s thermal equilibrium model,

1 The post-jump |ψ1(t + dt)⟩ depends on the pre-jump |ψ(t)⟩
2 Jumps don’t take you to an orthogonal state: ⟨ψ1(t + dt)|ψ(t)⟩ ≠ 0
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Adaptive Monitoring

Because the dynamics is Markovian, the average system dynamics
ρ̇ = Lρ is unchanged by any processing of the system output fields prior
to detection (it is just a change of basis).

In quantum optics terms, we can put the output fields through a passive
interferometer, also introducing local oscillator fields.

To attain all possible
unravellings, it is
necessary to process the
output fields adaptively.
That is, the monitoring
scheme chosen at time t is
determined by the record
prior to time t.
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Not all Ensembles are Physically Realizable
Restrict to ergodic master equations: ρss = limt→∞ eLtρ(0).

We say that an ensemble {|ϕk⟩}K
k=1 represents ρss iff

∃ positive weights {℘k} such that ρss =
∑K

k=1℘k|ϕk⟩⟨ϕk|.

We say that an ensemble {|ϕk⟩}K
k=1 is physically realizable (PR) in

steady-state if there exists a way (which could be adaptive) to monitor
the bath such that, for all long times t, |ψc(t)⟩ = |ϕk⟩ for some k.

Theorem (Wiseman & Vaccaro, PRL (2001)): the ensemble {|ϕk⟩}K
k=1 is

physically realizable in s.s. iff there exists κjk > 0:

L|ϕj⟩⟨ϕj| =
∑

k

κjk (|ϕk⟩⟨ϕk| − |ϕj⟩⟨ϕj|) .

For a typical L, many ensembles {|ϕk⟩}K
k=1 that represent ρss are not PR.

In particular, for a typical master equation, the K = D diagonal ensemble
ρss|ϕk⟩ = ℘k|ϕk⟩ is not a PRE.
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The Key Question (Wiseman & Karasik, PRL, 2011)
Recap: For a D-dim system with Markovian ergodic evolution ρ̇ = Lρ,
an ensemble {|ϕk⟩}K

k=1 is PR in s.s. if there exist rates κjk > 0:

∀j L|ϕj⟩⟨ϕj| =
K∑

k=1

κjk (|ϕk⟩⟨ϕk| − |ϕj⟩⟨ϕj|) .

Question
Given L, what is Kmin, the smallest possible K? How big a brain is needed
to keep track of the pure state of an open quantum system?

The number of unknown real parameters is K(2D − 2) for the states, and
K2 − K for the rates, giving K(2D + K − 3) in total.
The number of real constraints is K(D2 − 1), since both sides are
automatically Hermitian and traceless.
Thus for K − 1 ≥ (D − 1)2 we expect there will be solutions.
This type of problem scales badly (NP-complete) with D, and very
difficult even for small D. We begin by considering D = 2.
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How Big a Brain does it take to Track an Open Quantum System? For a qubit, a two-state classical memory is all it takes ...

The Bloch Representation
For a qubit we use the Bloch or SU(2) representation,

ρ = 1
2 (I + xσ̂x + yσ̂y + zσ̂z) .

Then defining r = (x, y, z)⊤, ρ̇ = Lρ becomes

ṙ = Ar + b,

where we require A to be Hurwitz so that rss = −A−1b.

We seek a PR ensemble {rk}K
k=1. That is K2 − K rates κjk > 0 and K

3-vectors rk satisfying

∀k rk · rk = 1

∀j Arj + b =

K∑
k=1

κjk(rk − rj).

This is 4K quadratic equations in K2 + 2K unknowns. Solutions may
exist for K ≥ 2 but for arbitrary K it is still NP-complete.
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Two-State Jumping (K = 2)

For K = 2 the dynamical constraints imply

A(r1 − r2) = −(κ12 + κ21)(r1 − r2).

Lemma If A is 3 × 3 and Hurwitz then it has at least one real, negative
eigenvalue. That is, ∃u : Au = −λu, λ < 0.

Theorem There always exists a two-state jumping solution

r1 = rss + ε1u
r2 = rss − ε2u

κ12 = ℘2|λ| ; ℘2 =
ε1

ε1 + ε2

κ21 = ℘1|λ| ; ℘1 =
ε2

ε1 + ε2

This hold regardless of the number of jump operators {ĉl}L
l=1.
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Example: Resonance Fluorescence
Lρ = D[

σ̂x−iσ̂y
2 ]ρ− i[Ω2 σ̂x, ρ]

W=1

y

x

z

∀ Ω, rss is the x = 0 plane and

A

 1
0
0

 = −1
2

 1
0
0

 .

Thus there is a symmetric solution

r± = rss ± ϵ

 1
0
0

 .

For |Ω| < 0.25, other K = 2
ensembles exist.

And also K = 3 ensembles.
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Stability. (Karasik & Wiseman, PRA, 2011.)

We have analytically proven the mean square
stability of all the K = 2 and K = 3 schemes
presented. That is,

lim
t→∞

Expected
[
|⟨ψc(t)|ϕk(t)⟩|2

]
= 1,

with k(t) a function of the record alone.

However, some of these schemes have
deterministically unstable stages.

Even those that are piecewise determin-
istically stable can suffer a drop in fidelity
upon a jump.

Proving the stability of all finite-K schemes
for an arbitrary system is an open problem.
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Revisiting the Counting Argument

Recall: finding a PRE means solving the “Wiseman–Vaccaro equation”

∀j L|ϕj⟩⟨ϕj| =
K∑

k=1

κjk (|ϕk⟩⟨ϕk| − |ϕj⟩⟨ϕj|) .

for an ensemble {|ϕk⟩}K
k=1 and positive rates {κjk}.

Karasik–Wiseman: Kmin = (D − 1)2 + 1 to expect solutions.

Warszawsiki & HMW, Quantum (2019) revisited this, but now taking
into account the number L of Lindblad operators.

By a much more complicated parameter-counting argument, we claim
that, iff L < D − 1, there is a correction to Karasik–Wiseman:

Kmin = (D − 1)2 + 1 + (2D − 2L − 1) .

Note that still (D − 1)2 + 1 ≤ Kmin ≤ D2 − 1.

But if L has dynamical symmetries, this may reduce Kmin.
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How Big a Brain does it take to Track an Open Quantum System? A Fuller Answer

Questions we posed

Q1 Are there MEs for which K > D is provably necessary for a PRE?

Q2 Is an ensemble size of K = (D − 1)2 + 1 (as suggested by
Karasik–Wiseman) provably inadequate for some systems?

Q3 Does the refined parameter counting heuristic reliably predict whether
PREs are feasible for a ME of a given form?
Q3a Does the heuristic accurately predict the impossibility of PREs when the

number of parameters is less than the number of constraints? (i.e. for
ensembles smaller than the determined threshold?)

Q3b Does the heuristic accurately predict the possibility of PREs when the
number of parameters is equal to the number of constraints?

Q3c Does the heuristic accurately predict the necessity of PREs when the
number of parameters is equal to the number of constraints?
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Answer 1

Q1 Are there MEs for which K > D is provably necessary for a PRE?

Yes.

Hence open quantum systems can be harder to track than open
classical systems.
Our investigation was done for a random selection of 20 MEs in D = 3.

For each of these MEs, we obtained a computational proof that K = D
PREs cannot exist.

This was in the form of a Hilbert Nullstellensatz certificate of
infeasibility for the equations governing PREs1.

This was expected from the Karasik–Wiseman argument that
K ≥ (D − 1)2 + 1 is required.

1taking up to 2.5 days of cluster computation each
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Answer 2

Q2 Is an ensemble size of K = (D − 1)2 + 1 (as suggested by
Karasik–Wiseman) provably inadequate for some systems?

Yes.

Our investigation was carried out for a random selection of 10 MEs in
D = 3 with L = 1 Lindblad.

For each of these MEs, we obtained a computational proof (Hilbert
Nullstellensatz) that PREs with K = 5 cannot exist.

This is as expected from Warszawski–Wiseman’s refined parameter
counting argument, which says that, in this case, Kmin = 8, in contrast to
Karasik–Wiseman’s Kmin = 5.

Hence our refined parameter counting argument is supported.
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Answer 3

Q3 Does the refined (Warszawsi–Wiseman) parameter counting heuristic
reliably predict whether PREs are feasible for a ME of a given form?

It seems that way.

Q3a The non-existence of PREs when K < Kmin is supported (Q2).

Q3b To look for PREs when K = Kmin beyond D = 2 we have to simplify our
system by introducing symmetry.

Restricting to re3its, our argument says Kmin = 4 (which is < 5).

From 80 randomly selected MEs, we found K = 4 PREs for 6 of them,
using extended polynomial homotopy continuation methods.

Q3c We were able to find PREs in 100% of cases with K > Kmin.

But we were restricted to D = 2, because the difficulty of finding PREs
scales ∼ exp(D4).

Hence our refined parameter counting argument is supported.
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Conclusion Summary and Questions

Adaptive Measurements for Profit

Adaptive measurements comprise a form of measurement-based control,
which is distinct from feedback and which has no analogue classically
for perfect measurements.

They have countless quantum applications, and many experimental
demonstrations, including

Phase estimation
static phase for fixed mean photon number n̄ (coherent or squeezed)

static phase for fixed maximum photon number n (especially n = 1)

dynamic (diffusing) phase for fixed photon flux over diffusion rate N/κ
(coherent or squeezed)

static interferometric phase for fixed photon-passes M (single photon or
entangled)

State discrimination of a fixed number of non-orthogonal states.

Measurement-based quantum computing.
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Conclusion Summary and Questions

Adaptive Monitoring for Pleasure

In semiclassical models (e.g. Einstein’s) a D-level open quantum system
jumps between the D levels. That is, an observer can keep track of the
state using a K-state classical memory with K = D.

For a general ergodic Markovian open quantum system:
With a generic monitoring scheme, it is necessary to store real numbers
(i.e. the classical memory size K → ∞).

By allowing for all possible (in particular, adaptive) monitoring schemes, a
finite K should always be sufficient.

But by a counting argument, typically Kmin = O(D2).

For D = 2 (a qubit), K = 2 (one classical bit) is always sufficient.

For D = 3 we have proven that K = 3 is insufficient in general.
=⇒ To keep track of an open quantum system you need a bigger

brain than you would for an open classical system of the same size.
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Conclusion Summary and Questions

Any Questions?

e.g. Given a physically realizable ensemble, can you explicitly construct the
(adaptive) monitoring scheme that realizes it?

e.g. Does this generalize to discrete-time evolution (CP-maps)?

e.g. What does it mean to consider all adaptive monitorings?

e.g. What about the Schrödinger-HJW theorem?

e.g. Do these finite-state PREs by adaptive unravellings have any uses?
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The Controllable Parameters
The master equation ρ̇ =

∑L
l=1D[ĉl]ρ− C[iĤ]ρ is invariant under

{ĉl} → {ĉ′m} and Ĥ → Ĥ′,

ĉ′m =
∑L

l=1Smlĉl + βm , Ĥ′ = Ĥ − i
2
∑M

m=1
1
2(β

∗
mĉ′m − βmĉ′m

†).

Here S is a semi-unitary matrix i.e.
∑M

m=1S∗l′mSml = δl′,l.

Unravelling the master equation ρ̇ = Lρ as

ρ+ dρ = dt
M∑

m=1

J [ĉ′m]ρ+
(

1 − dtC[iĤ′ + 1
2
∑M

m=1ĉ′mĉ′m
†]
)
ρ

gives different conditional evolution, with the same average ρss.
In quantum optics, Sml describes an interferometer, while βm describes
adding local oscillators before detection.
For K-state jumping we need K of these: Sk

ml and βk
m, with k chosen

adaptively, and with M ≤ max{K − 1,L}.
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Keeping track is not the same as Finding

Schrödinger-HJW theorem: If ρss = Trbath[|Ψentangled⟩⟨Ψentangled|] then
for all pure state weighted ensembles (not necessarily orthogonal)

{℘b|ϕb⟩⟨ϕb|}B
b=1 such that ρss =

∑B
b=1℘b|ϕb⟩⟨ϕb|,

there exists a bath POVM {Êb}B
b=1 such that for

℘b|ϕb⟩⟨ϕb| = Trfield[|Ψentangled⟩⟨Ψentangled|Êb].

Does this mean that if one can attain all possible monitorings, one can
attain all possible ensembles representing ρss, including the diagonal one
ρss|ϕb⟩ = ℘b|ϕb⟩, b = 1 . . .D? No!
Monitoring means keeping track of the state |ψc(t)⟩ for all t.

The Schrödinger-HJW theorem applies to finding the system to be in a
state |ϕb⟩ at one particular long-time t.
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The Quantum Optical Theory of Radiation
Master equation in the Interaction Frame:

ρ̇ =
∑D

n,m=1κmn
{
J [|εn⟩⟨εm|]− C[1

2 |εm⟩⟨εm|]
}
ρ.

where J [â]ρ ≡ âρâ† , C[b̂]ρ ≡ b̂ρ− ρb̂†

=⇒ ρss =
∑D

m=1 pBoltzmann(εm)|εm⟩⟨εm|, where ⟨εm|εn⟩ = 0.

Say ρ(t) = |εo⟩⟨εo|. Then

ρ(t + dt) = ρ(t) + dtρ̇(t)

=

D∑
n,m=1

κmndtJ [|εn⟩⟨εm|]ρ(t) +
[
1 −

∑D
n,m=1κmndtC[ 1

2 |εm⟩⟨εm|]
]
ρ(t)

=

D∑
n=1

κondt|εn⟩⟨εn|+
[
1 −

∑D
n=1κondt

]
|εo⟩⟨εo|

=

D∑
n=1

dPjump(o → n)|εn⟩⟨εn|+
[
1 −

∑D
n=1dPjump(o → n)

]
|εo⟩⟨εo|.
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