Positivity Constraints on EFT - 1 ITTS's school in Bangalore 15-19/04/2024

We have seen in $L 3$ that positivity bounds follow by S-matrix principles encoding causality lanolytiaity and unitarty.
On the other hand we have seen in L2 that subluminelitylcamplity enforces also non-triniel bound on the size of Wilson coefficients, can we obtain the some using S-metrix ayument? Yes!

- Positivity a Theory of Moments -

Let's work again first in the simplest case: forward scattering of massless scala, assuming weakly coupled UV -completions
(1) $M(s, f, u)=c_{2}\left(\frac{s^{2}+t^{2}+u^{2}}{2}+c_{3} s t u+c_{4}\left(\frac{s^{2}+t^{2}+u^{2}}{2}\right)^{2}+\ldots\right.$ and define our dispersive observables "the arcs

(2)

$$
a_{n}(s) \equiv \oint_{n} \frac{d s^{\prime}}{2 \pi i} \frac{1}{s^{\prime}}, \frac{M\left(s^{\prime}\right)}{s^{n+2}}
$$

The ARES

$$
M\left(s^{\prime}\right) \equiv M(t-\infty)
$$ at $t=0$

where $n \geqslant 0$ to ensure convergence at $s^{\prime} \rightarrow \infty$ according to Froissart The (2) provides an IR-representation of the Wilson weffisients (the sunvire in the forward limit)

$$
\begin{equation*}
a_{n}(s)=c_{n+2} \text { if } n \in \text { even } \tag{3}
\end{equation*}
$$

(h) tree-level. If loop

IR-represectation Wilson coeffic. non-linge $m_{e}, a_{n} \nRightarrow c_{n}$

On the other hand, anolyticity allows a UV-representation
(4) $\quad a_{n}(s)=\frac{2}{\pi} \int_{s}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\operatorname{Im} M(s)}{s^{(n+2}}=\frac{1}{s^{n+2}} \frac{2}{\pi} \int_{0}^{1} \frac{d x}{x} x^{n+2} \operatorname{Im} M(s / x)$
the records them in terms of moments of a positive measure thanks to unitanity:
(5) $\quad a_{n}(s) \cdot s^{n+2}=\int_{0}^{1} d x \mu(x) x^{n} \equiv\left\langle x^{n}\right\rangle$
($n \in$ even)

$$
\Rightarrow c_{n+2} s^{n+2}=\left\langle x^{n}\right\rangle=\mu_{n}
$$

$$
\mu(x) \equiv x \operatorname{Im} \mu(s / x) \geqslant 0
$$

IR - Repredentefion

Remarks:

- The measure $\mu(x)$ hes support on $(0,1) \subset \mathbb{R}$
- As long en one is beppy with tree-level statements, ie. neglecting codcubable IR-loops, the can just ret $s=M^{2}$ if $U V$ theory weakly coupled). That is, we assume couplings sufficiently small that we can moke a trustitorthy argument to the desired n (i.e. $n \leqslant \frac{\log g x^{2} / 1 / \pi^{2}}{\log S / n^{2}}$ for fixed couplings $g_{x}^{2} \sim c_{n}$ end fixed s / m^{2}).

Notice the $x<1 \Rightarrow x^{n+2}<x^{n+1}<x^{n} \quad$ i.e.
(6) $\mu_{n+2}<\mu_{n+1}<\mu_{n}$ arcs one monotonically deneesing (7) $\quad c_{n+4} s^{\Downarrow+4}<c_{n+2} s^{n+2} \Rightarrow \frac{c_{n+4}}{c_{n+2}} s^{2}<1 \quad \begin{array}{ll}n \geqslant 0 \\ \text { even }\end{array}$

Which is basically an upper bound on haw large can be taken, i.e. a statement on the cutoff M^{2} :
(8) $M^{4}<C_{n+2} / C_{n+4}$ upper bound catoff!

Remark:

- the $c_{n}{ }^{\prime}$'s in (1) are dimensionful: if resuding them in units of $M, C_{n}=g_{n} \frac{M^{2 n}}{}$, one gets that (7) is equivalent to
(9) $M(s)=g_{<1}^{g_{2} s^{2}}(1+\underbrace{g_{4}}_{<1}\left(\frac{g_{2}\left(\frac{s}{M^{2}}\right.}{}\right)^{2}+\underbrace{\left(\frac{g_{6}}{g_{2}}\right)\left(\frac{s}{M^{2}}\right)^{4}}_{<1}+\ldots)$
\Rightarrow Supensoft ruled out! (for Wilson coefficients that survive in \uparrow (Ace. theory running footer then E^{4}) Mils) for $t \rightarrow 0$)
Despite there would be a symmetry to realize it, nemely $\pi \rightarrow \pi+\frac{1}{n!} C_{\mu_{1} \ldots \mu_{n}} x^{\mu_{1} \ldots \mu_{n}}$
- From $(8) \rightarrow$ no matter haw small the coupling, $M \ll 1$, the cutoff is (bounded by) two consecintive Wilson coefficients
(io) $\quad M(s)=\sum_{\uparrow_{10^{-13}} s^{2}\left(1+\frac{s^{2}}{M^{2}}+\cdots\right)}$
L_{0} still cemplitude breaks at $s=M^{2}$
Compere it with: ${ }_{2}^{1}=\frac{g_{4}^{2}}{S-M^{2}}=-\frac{g_{*}^{2}}{M^{2}}\left(1+S / M^{2}-\left(\frac{S}{M^{2}}\right)^{2}+\ldots\right)$

Now that we Know the Wilson coefficients are moments we con say much more.
For instance, we cen define a scaler product on the space of (real) polynomials on $(0,1)$:
(11) $\left\langle p_{1}(x) \mid p_{2}(x)\right\rangle=\int_{0}^{1} p_{1}(x) p_{2}(y) d \mu$
(12) Conchy-Schwert $\left|\left\langle x^{n} \mid x^{m}\right\rangle\right|^{2} \leqslant\left\langle x^{n} \mid x^{n}\right\rangle\left\langle x^{m} \mid x^{m}\right\rangle$ ${\left.\overline{\left(c_{n+m+2} s^{n+m+2}\right.}\right)^{2} \quad c_{c_{n+2}} s^{n+2} \underbrace{}_{c_{2 m+2}} s^{2 m+2} .}^{c^{n}}$
(13)

$$
C_{n+m+2}^{2} \leqslant C_{2 n+2} C_{2 m+2} \quad n, m=\text { even }
$$

Simplest Non-Linear Bound
Exemple:
(14) $C_{4}^{2} \leqslant C_{2} C_{6} \quad(n=0, m=2) \Rightarrow C_{6 / C_{2}} \geqslant\left(C_{4} / C_{2}\right)^{2}$
which together with (8), $C_{4} M^{4}<C_{2}$ and $C_{6} M^{4}<C_{4}<\frac{C_{2}}{M^{4}}$
(15)

(to be contrasted with just $c_{i} \geqslant 0$ that soul allowed all first quadrant)

In our collaboration, 2011.00037, we refer to (5) as "the banarn plot"

Genera Strategy
given positive measure $d \mu(x)$ in $(0,1)$ we con test it against positive polynomids $P_{n}(x)$ of order M to get veletions among the first $M+1$ moments:
(16) $\int_{0}^{1} d \mu(x) \frac{\sum_{\left.P_{M}(x)\right\rangle 0}^{M} g_{n} x^{n}}{\sum_{0}} \Rightarrow \sum_{n} g_{n}\left\langle x^{n}\right\rangle \geqslant 0 \Rightarrow \sum_{n} g_{n} c_{n+2} s^{n+2} \geqslant 0$
so the varying g_{n} (while Keeping $p_{M}>0$ /we reduce the allowed spore of $c_{n+2} \cdot \downarrow$

Positivity Bounds \Leftrightarrow Space of Positive Polynom. in I $=10,1$)
This is a problem of alyebraic geometry: find positive polyn. in domain D defined by other polynomials $Q_{j}>0$:
(in our case $Q_{1}=x \quad Q_{2}=1-x \quad Q_{1}>0 \quad Q_{2}>0 \quad$ define $D=F=(0,1)$
Solution "Sum of square theorem" (Schmuedgen 1991)

$$
P(x) \geqslant 0 \text { in } D=\left\{x \in \mathbb{R}^{n} / Q_{i}(x) \geq 0\right\}
$$

(17) $\quad P(x)=\sum_{i, .} Q_{i}(x) Q_{i n}(x) \frac{\uparrow}{Q_{i}(x)}$

Example: $\left\{\begin{array}{c}\left.P_{2 M}(x) \geqslant 0 \quad \text { in } 10,1\right)=\{x / x>0 \\ 1-x>0\end{array}\right\}$
(19) $\int d \mu 1=\mu_{\text {positivity }}^{\mu_{0}>0, \int d \mu x^{n}=\mu_{n} \geqslant 0, \quad \int d_{\mu}} \underbrace{x-(1-x)=\mu_{n}-\mu_{n+t} \geqslant 0}_{\text {mondoniaity }}$
(20) $\int d \mu \underbrace{x^{2 n} g_{2 n}}_{\text {square }})^{2} \geqslant 0 \Leftrightarrow g_{2 n} g_{2 m} \mu_{2 n+2 m} \geqslant 0 \forall g_{2 n}, g_{2 m}$
(21) Henkel $(H)_{n m_{1}}=\mu_{2 n+2 m}=C_{2 n+2 m+2} S^{2 n+2 m+2}$ positive definite
(22) $\left(\begin{array}{ll}\mu_{0} & \mu_{2} \\ \mu_{2} & \mu_{4}\end{array}\right) \geqslant 0 \Rightarrow c_{2} \cdot C_{6} \geqslant c_{4}^{2}$
in egreenent with (4).
Using (18) one gonenates all bounds, but if one restarts to the first 3 Wilson coefficients, we opteined the optime l bounds obveody.

Whet about the Wilson coefficients thee are in front to powers of t^{n} ? Con we constrain them? You bet!

- Finite - t Positivity Bounds -

Let's assume the amplitude is s-amolytic for fixed finite t, typically it hos been proven rigorously for $-\mu_{L}^{2}<t<\mu_{R}^{2}$ with $\mu_{R}^{2} \sim o(1) m^{2}$ (e.e. $4 m^{2}$ exactly for identical particles) and $\mu_{L} \sim o(100) m^{2}$. (In fact, for $t<0$ maximally anelyficty assumes $-t>s$ for scattering the lightest stet particles; we will not need this much, but in grouty is required...)

With this enelgticity, we con define finite-t arcs centered at the cossing symmetric paint $s_{x}=2 m^{2}-t / I_{m \rightarrow 0}=-t / 2$ $\left(s_{x}^{s u-c o s i s i n g}-s_{x}-t+4 m^{2}=s_{x}\right)$ of radius $s+t / 2$, to land at $s^{\prime}=s$:
(23) $\quad a_{n}(s, t)=\frac{1}{2 \pi i} \oint \frac{M\left(s^{\prime}, t\right)}{s^{n+2}} \frac{d s^{\prime}}{s^{\prime}}$

These provide IR-representation of limeen combinations of Wilson weff.
IR-representetion - $t<0$
(24)

$$
a_{n}(s, t)=\left\{\begin{array}{ll}
n=0, & c_{2}-c_{3} t+3 c_{4} t^{2}-2 c_{5} t^{3}+\ldots \\
n=1, & 2 c_{4} t-2 c_{5} t^{2}+\ldots \\
n=2, & c_{4}-c_{5} t+\ldots
\end{array} \quad\right. \text { (ヶodd venish) }
$$

Agein, enelyticity provides a U-representation:
(25) $\quad a_{n}(s, t)=\frac{1}{\pi}\left(\int_{s}^{\infty} \frac{d s^{\prime}}{s^{\prime} n+3}+\int_{-\infty}^{-s-t} \frac{d s^{\prime}}{s^{1 n+3}}\right) \frac{M(s+i \varepsilon, t)-M(s-i \varepsilon, t)}{2 i}$

$$
\begin{aligned}
& \left.=\underset{s \rightarrow-s-t \text { in } 2^{\circ} \text { int }}{ } \frac{1}{\pi} \int_{S}^{\infty} d s^{\prime} \operatorname{Im} M / s^{\prime}, t\right)\left(\frac{1}{s^{n+3}}+(-1)^{n} \frac{1}{\left(s^{\prime}+t^{n+3}\right.}\right) \\
& +\operatorname{carssing} M(s, t)=M(-s-t, t)
\end{aligned}
$$

1) Putial Weve Exp.
(26) $\quad \begin{aligned} & a_{n}(s, t)=\frac{1}{\pi} \sum_{e}(2 l+1) \int_{s}^{\infty} d s^{\prime} \frac{I_{m} a_{e}\left(s^{\prime}\right)}{\geqslant 0} P_{e}\left(1+\frac{2 t}{s^{1}}\right)\left(\frac{1}{s^{1++3}}+(-1)^{n} \frac{1}{\left(s^{\prime}+t^{n+3}\right.}\right) \\ & \text { Pantid waves }\end{aligned}$ whe the legendre polynomids, puass whet?, one polynomid in $2 t / 5$ of order l : $P_{l}(1+2 t / s)=\sum_{q}^{l} \alpha_{q}(2 t / s)^{q}$ with Krown $\alpha_{q}(l)$

Remantt: $P_{e}(1+2 t / s)$ can now be negative, but we know the function! We knaw haw negetive it can get.
2 stretegies:
(a) integrete both sides of (26) with suitobly consturcted functions $f_{e}(t)$ such thet
(27)

$$
\int_{-s}^{0} d t f_{e}(t) P_{e}\left(1+2 t / s^{\prime}\right)(\ldots) \geqslant 0 \quad \forall e, \forall s^{\prime}>s
$$

this is typically done numericedly (-g.g.2102,08951), exept in eitond himit (2211.00085)
(b) defines a 2D-moment problem with regract to

Q positire meanure $d \mu(x, e) \propto \operatorname{Im} a_{l}(s / x)$ in
(28)

$$
\underset{x}{(0,1) \otimes} \underset{x}{ }(0,2,6,12, \ldots\}_{j^{2}=(l e+1)}^{6}=\operatorname{suppost} \text { of } d \mu\left(x, j^{2}\right)
$$

no that expenoling (26) in t
(29) $\quad a_{n}(s, t) s^{n+2}=\Sigma_{J^{2}} \int_{0}^{1} d \mu(x, s) x^{n}\left(\beta_{n m n}\left(\sigma^{2}\right)^{n}(t / s x)^{m}\right)$
for intemce

$$
a_{0}(s, t) s^{2}=\oint_{0}^{1} s^{2} d \mu(x, s)\left[1-\left(\frac{3}{2}-J^{2}\right) t / s x+\frac{\left(\frac{\left.\sigma^{2}-2\right)}{}\right)\left(s^{2}-6\right)}{4}\left(\frac{t}{s} x\right)^{2}+\ldots\right]
$$

(30)

$$
\begin{aligned}
& a_{1}(s, t) s^{3}=\oint_{0}^{\prime} J^{2} d \mu(x, s) x\left[2 \frac{t}{s} x+2\left(J^{2}-5 / 2\right)(t / s x)^{2}+\ldots\right] \\
& a_{2}(s, t) s^{4}=\oint_{0}^{\prime} J^{2} d \mu(x, s) x^{2}\left[1+\left(J^{2}-5 / 2\right)\left(\frac{t}{s} x\right)+\ldots\right]
\end{aligned}
$$

Now, we sue that (30) means the ans one linear combinations of $2 D$-moments:

$$
a_{0}(s, t) s^{2}=\mu_{0,0}-\frac{t}{s}\left(\frac{3}{2} \mu_{1,0}-\mu_{1,1}\right)+\cdots=s^{2}\left(c_{2}-c_{3} t+3 c_{4} t^{2}+\ldots\right)
$$

(3)

$$
\begin{aligned}
& a_{1}(s, t) s^{3}=2 t / s \mu_{2,0}+2(t / s)^{2}\left(-\frac{5}{2} \mu_{3,0}+\mu_{3,2}\right)+\ldots=s^{3}\left(2 c_{4} t-2 c_{5} t_{t \ldots . .}^{2}\right) \\
& a_{2}(s, t) s^{4}=\mu_{2,0}+(t / s)\left(-5 / 2 \mu_{3,0}+\mu_{2,1}\right)+\ldots=s^{4}\left(c_{4}-c_{5} t+\ldots\right)
\end{aligned}
$$

when in the lest equality we uncol the IR repro. (24): matching both sides in powers of t / s gives the desiocd relations among $2 D$-moments end Wilson a efficients.
(32) $\quad c_{2} s^{2}=\mu_{0,0} \quad c_{3} s^{3}=+{ }_{2}^{3} \mu_{1,0}-\mu_{1,1} \quad c_{4} s^{4}=\mu_{2,0}$

From this immedietely follows that $c_{3} s^{3}<\frac{3}{2} \mu_{1,0}<\frac{3}{2} \mu_{0,0}$ sine moments one positive and still monotonic
in the first index $\left(x \in(0,1) \Rightarrow x^{n+1}<x^{n} \Rightarrow \mu_{n+1} ; \mu_{n, j}\right)$
(33)
$c_{3} s^{3}<\frac{3}{2} c_{2} s^{2} \quad G o l i l e o n$ Bounded Above

Can we also bound it below? Since $c_{3} s^{3}=+32 \mu_{1,0}-\mu_{1,1}>-\mu_{1,1} \rightarrow$ need to bound μ_{11} (notice we don't here monotonicity in the second index become J^{2} runs aver infinite venge). We con bound μ_{11} wing full s-t-u massing, which gives $c_{4} \alpha \frac{\partial^{2} a_{01}}{\partial t_{0}}{ }_{t=0}$ and $c_{4}=a_{21} l_{t=0} 2$
(34) $\quad \frac{c_{4}}{4} \underbrace{\left(s^{2}+t^{2}+u^{2}\right)^{2}}_{\text {fixed by hossing }} \rightarrow C_{4}\left(s^{4}+\ldots+3 s^{2} t^{2}+\ldots\right)$
ill selacted by "4 subthactions" selected
(35) $\quad 12 C_{4} s_{(32)}^{4}=12 \mu_{2,0} \stackrel{31) \operatorname{or}(34)}{=} \mu_{2,2}-8 \mu_{2,1}+12 \mu_{2,0}$

Providing a sum-rule among moments, Kinown as
(36)

$$
\mu_{2,2}=8 \mu_{2,1} \quad \frac{\text { Null constroint }}{\text { simplest example of }}
$$

Now, together with the simplest Henkel metrix constroint ($\begin{aligned} & \text { takingy } J^{2} \text { contin. } \\ & \text { on } \\ & \text { rigorows }\end{aligned}$ rigorous hat estoptinga)
(37) $£ d \mu\left(a+b \times J^{2}\right)^{2} \geqslant 0 \Rightarrow\left(\begin{array}{ll}\mu_{0,0} & \mu_{1,1} \\ \mu_{1,1} & \mu_{2,2}\end{array}\right) \geqslant 0 \Rightarrow \mu_{1,}^{2} \leqslant \mu_{0,0} \mu_{2,2}$ gires
(38) $\mu_{11}^{2}<8 \mu_{0,0} \mu_{2,1}<8 \mu_{0,0} \mu_{1,1} \Rightarrow \mu_{1,1}<8 \mu_{0,0}$
and therefore from (32)
(39)

$$
c_{3} s^{3}=+{ }_{2}^{3} \mu_{1,0}-\mu_{1,1}>-\mu_{11}>-8 \mu_{0,0}=-8 c_{2} s^{2}
$$

we extroct as well the lower bound $-8 c_{2} s^{2}<c_{3} s^{3}$:
(33)

$$
-8 C_{2} s^{2}<C_{3} s^{3}<\frac{3}{2} C_{2} s^{2}
$$

In phfoct egrament with the subluminalts arguments seen in L2.

Remark:

- The lower bound in (39) is not opting because we used only the information of first few moments. Using more moments, eeg. in longer Hewtel metrics, $-8 c_{2} \rightarrow-5.2 c_{2}$. In any case, Gelileon symmetry is forbidden by positivity! (Likewise no suparsoft theory too.)
- Method (a) around (27) gives the some result, but requires numerics. Method (a) is however superior when one cant expend around $t=0$, which happens in the presence of IR divergences (like in grants, where minimal coupling fives $M \sim-s^{2} / t$ for eloste nean-foumend scattering)
- Simple Approximate Method -

There is an approximate analytic method that allays to avoid all the gymnastic with moments in strategy (a) or functional in (b): we know the two sources of t-dependence in (26), e. g for $a_{0}(s, t)$
(40) $\left.\quad a_{0}(s, t)=\frac{1}{\pi} \sum_{l}(2 l+1) \int_{s}^{\infty} d s^{\prime} \operatorname{Im} a_{e}\left(s^{\prime}\right) \frac{P_{e}\left(1+2 t / s^{1}\right.}{P^{\downarrow} \mid \leqslant 1}\right) \frac{2}{s^{\prime 3}}\left[\left(1+\frac{1}{\left(1+t / s^{\prime}\right)^{3}}\right) \frac{1}{2}\right]$ where P_{e} is at worst as negative as $-1,\left|P_{e}\right| \leqslant 1$ and where the $[\cdots]$ is monotonic so that it is laps at $s^{\prime}=s$ i.e. $t / s \rightarrow t / s$
(41) $\left|a_{0}(s, t)\right| \leqslant \frac{1}{2}\left(1+\frac{1}{(1+t / s)^{3}}\right) \frac{1}{\pi} \sum_{e}(2 e+1) \int_{s}^{\infty} d s^{\prime} \operatorname{Im} \alpha_{e}\left(s^{\prime}\right)=\frac{1}{2}\left(1+\frac{1}{(1+t / s)^{3}}\right) a_{0}\left(s t_{0}\right)$
(42)

$$
\left|\frac{a_{0}(s, t)}{a_{0}(s, t=0)}\right| \leqslant \frac{1}{2}\left(1+\frac{1}{(1+t / s)^{3}}\right)
$$

Exact Bound "Non-forwond incs ca it grave Let's calculate the l.h.s. in the EFT approximately now: too fort with t"
(43) $\quad\left(1+\frac{c_{3}}{c_{2}} t+3 \frac{c_{4}}{c_{2}} t_{+}^{2} \cdots\right)^{2} \leqslant\left(\frac{1}{2}\left(1+\frac{1}{(1+t / s)^{3}}\right)\right)^{2} \quad L 4 / p / 2$
This allaus to immedietely cxcluate Golileon, reasoning by cortroobliction:
i) assume golileon is good ynumetry $\rightarrow \frac{c_{3}}{C_{2}} t \gg 1$
ii) within gelileon EFT, assume higher-a ore EFT control, $\left.\left.\right|_{4}\right|_{c_{3}} \mid \ll 1, \ldots$, $\Rightarrow(43)$ requires thet
(44) $\left(\frac{c_{3} t}{c_{2}}\right)^{2} \approx 1$ which controdthicts air assumptions.

Titcen be uned to dethmine the twbere theorg breeks dawn, i.e. the cutiff, solemetically $\left(1+\left(c_{t_{2}}\right)^{2}\right)^{2} \rightarrow 1 \sim 1$. Similer logic, more eccaurete, in 2304.02550]
(if ii) is reloxed, it remeius thue thet l.h.s of (43) is IR adculoble in EPT, and one cen repeat engument for the first unsuppraved an-coeffizient)

