Multiple and efficient pathways for anisotropic photoluminescence modulation in soft nanocomposites

Adv. Opt. Mater. 2019, 7, 1801408 *Crystals.* 2019, 9, 378 *Chem. Photo. Chem.* 2020, 4, 413

Pragnya Satapathy CeNS Bengaluru

Outline

Introduction to Soft Nano composites
Motivation
Anisotropic emission
Emission modulation
Fast switchable display devices

Liquid crystals

Classes of Liquid crystals and their applications

J. W. Goodby et al. Angew. Chem., Int. Ed. 47(9), 2754–2787 (2008).

Nano materials in Liquid crystals

Nematic Liquid Crystals

 \Box Anisotropic refractive index (n_e and n_o)

Anisotropic permittivity

□Orientational ordering

Stimuli responsive (easily tunable)

Nano materials?

Multifunctional properties to the soft materials
 Enhancing the inherent liquid crystalline properties
 Transferring the orientational/positional ordering to Nanomaterials (Macroscopically)
 Easily tuning the Nanomaterials property by changing LC properties

Liquid crystal displays

5

https://www.wepc.com/tips/ips-vs-led-monitor-difference/

https://doi.org/10.1016/j.mattod.2020.04.032

Motivation

- □To make LCs self emissive (Removing the backlight)
- Transferring the structural anisotropy of the LCs to the emission
- characteristics (Removing the polarisers)
- □Making a highly emissive, fast switchable emissive display device

Materials

Liquid Crystal

4-pentylphenyl 2-chloro-4-(4-pentyl benzoyloxy) benzoate or PCPBB

Phase sequence : Nematic (N) 123.9°C Isotropic (I)

- Having structural anisotropy
- Can be switched with external field
- Dual frequency material

CsPbBr₃ Perovskite QCs

Isotropic structuresHighly emissive

J. Phys. Chem. C 2018, 122, 13399-13406

TEM image of the CsPbBr3 cuboids with an average edge length of 13.7 ± 3.1 nm

Liquid Crystal + QCs

Optical microscopy PL microscopy

Absorption and emission spectra of QCs and LC+QCs composite

Switchable emission

Possible reason for X-Z anisotropy

The self-assembled QCs behave like miniature bar polarizer and attenuates incident electric fields polarized orthogonal to the long axis and diminishes A_{y}

Possible reasons of anisotropic absorption and emission

The total absorption A can be represented as

$$A = \phi_1 n_{QC} + \phi_2 n_{LC} \qquad A_X = \phi_1 n_{QC} + \phi_2 n_e$$

 ϕ_1 and ϕ_2 are prefactors n_{QC} and n_{LC} are the refractive indices of QCs and the LC **n** >**n**

$$A_Y = \phi_3 n_{QC} + \phi_2 n_o$$

$$A_Z = \phi_1 n_{QC} + \phi_2 n_o$$

Photoisomerization (PI)

Photo-driven shape transformation

- J. Hu et al. Smart Mater. Struct. 2012, 21 (Smart textiles)
- A. Raman et al. New J. Chem. 2018, 42, 9300 (Biosensing)
- J. Garcia-Amorós et al. J. Mater. Chem. C 2014, 2, 474 (Photochromic switches)
- H. Shahsavan, L. Yu, A. Jákli, B. Zhao, Soft Matter 2017, 13, 8006 (actuator)

S. K. Prasad, P. L. Madhuri, P. Satapathy, C. V Yelamaggad, Appl. Phys. Lett. 2018, 112, 253701 (Memory device)

Photoisomerization

Isothermally driven photo modulation due to photoisomerization ? (Motivation)

Ltrans-cis photoisomerization decreases the orientational ordering isothermally

Decrease in ordering can reduce the emission

Emission can be modulated isothermally by PI process

Spatially addressable PL modulation

Host LC

Guest azo molecule

EPH

Materials

C₆H₁₃COO OC_2H_5 N=N-

4.5% of EPH in E7 \Box I to N at 58.3 °C

Gradient controlled QDs

E. Jang, S. Jun, L. Pu, Chem. Commun. 2003, 2964

¹⁸

Polarizing optical microscopic observations

PI phenomena in X₃ is pictorially evidenced from the POM images (birefringence images)
 The presence of QDs can be clearly visualized by removing one of the polarizers
 There is no such self-assemblies of QDs as seen for CsPbBr3 QC systems

UV-Vis Absorption

□1 and 2 are the excitonic peaks of QDs

□Excitation of samples at a wavelength near the second absorption band of QDs (~ 532 nm) to stay away from the *cis* absorption.

Photoluminescent measurements

PI driven photomodulation

An exponential was fitted to PL recoveries through TBR and with field
Time scales for relaxation ~678 s (TBR) and ~ 104 (with field)
6 times faster recovery
A fatigue free PL switching with faster recovery due to the field

Effect of polymer in LC+QD

5 wt% of Poly(methyl methacrylate) PMMA

Effect of polymer on PL

Summary

Dual anisotropic optical characteristics from structurally isotropic QDs

- □Fast-switchable display device
- Actinic light modulated PL devices
- DEnhancing base PL by incorporating polymers

Acknowledgement

Organizing committee, APS March meeting 2022 Host (ICTS, TIFR)

- Dr. S. Krishna Prasad (Supervisor), CeNS
- Dr. Pralay K. Santra, CeNS
- Dr. C.V. Yellammagad, CeNS