Fluctuations in a chain of active particles

Prashant Singh
ICTS-TIFR, Bangalore, India

P Singh and A Kundu J. Phys. A (54) 305001 (2021)

APS Satellite meeting, Bangalore
(18th March 2022)

Active Matter

Every constituent is driven. Violation of detailed balance / time-reversal symmetry at the local scale.
(Examples: Bacteria, Janus particles, vibrating granules....)

X

Active Matter

Every constituent is driven. Violation of detailed balance / time-reversal symmetry at the local scale.
(Examples: Bacteria, Janus particles, vibrating granules....)

Question: What are the ramifications of activity on the spatiotemporal properties of the particle?

Harmonic chain of active particles

$$
\frac{d x_{\alpha}}{d t}=-K\left(2 x_{\alpha}-x_{\alpha+1}-x_{\alpha-1}\right)+F_{\alpha}^{\mathrm{a}}(t)
$$

Effect of interaction and activity on the properties of a tagged particle?

Harmonic chain of active particles

Three models of active particles
(1) run and tumble particle $F_{\alpha}^{a}(t)=v_{0} \sigma_{\alpha}(t)$
(2) active Brownian particle $F_{\alpha}^{a}(t)=v_{0} \cos \theta_{\alpha} \quad \dot{\theta_{\alpha}}=\sqrt{2 D_{r}} \zeta_{\alpha}(t)$
(3) active Ornstein Uhlenbeck $F_{\alpha}^{a}(t)=\lambda_{\alpha}(t)$

$$
\dot{\lambda_{\alpha}}=-\gamma \lambda_{\alpha}+\sqrt{2 D} \eta_{\alpha}(t)
$$

Harmonic chain of active particles

Three models of active particles

Let us analyze the variance of position of tagged particle

- Compare for different models
\longrightarrow Compare with diffusion

Harmonic chain of active particles

$\tau_{A} \rightarrow$ activity timescale
Non-interacting case $K=0$

$$
\begin{array}{rlrl}
\left\langle x^{2}(t)\right\rangle_{c} & \sim t^{b}, & \text { for } t \ll \tau_{A} \\
& \sim t, \quad \text { for } t \gg \tau_{A}
\end{array}
$$

Harmonic chain of active particles

Three timescales when interacting
(i) interaction timescale $\tau_{K}=1 / K$
(ii) activity timescale τ_{A}
(iii) finite system size $\tau_{N} \sim N^{2}$

$\begin{array}{lll}\tau_{K} & \tau_{A} & \tau_{N}\end{array}$

We focus in the regime $\tau_{K} \ll \tau_{A} \ll \tau_{N}$

Results on variance

$$
\begin{gathered}
\left\langle x_{\alpha}^{2}(t)\right\rangle_{c} \sim\left\{\begin{array}{ll}
t^{\mathrm{b}} & \text { for } t \ll \tau_{K} \\
t^{a}, & \text { for } \tau_{K} \ll t \ll \tau_{A} \\
t^{1 / 2}, & \text { for } \tau_{A} \ll t \ll \tau_{N} \\
t, & \text { for } t \gg \tau_{N}
\end{array}, \text { where } a= \begin{cases}3 / 2 & \text { for RTP } \\
7 / 2 & \text { for ABP } \\
5 / 2 & \text { for AOUP }\end{cases} \right. \\
\left\langle x_{\alpha}^{2}(t)\right\rangle_{c} \sim t^{t^{b}} \quad t^{a} \quad t^{1 / 2} t
\end{gathered}
$$

Results on variance

$$
\begin{aligned}
&\left\langle x_{\alpha}^{2}(t)\right\rangle_{c} \sim\left\{\begin{array}{ll}
t^{\mathrm{b}} & \text { for } t \ll \tau_{K} \\
t^{a}, & \text { for } \tau_{K} \ll t \ll \tau_{A} \\
t^{1 / 2} & \text { for } \tau_{A} \ll t \ll \tau_{N} \\
t, & \text { for } t \gg \tau_{N}
\end{array}, \text { where } a= \begin{cases}3 / 2 & \text { for RTP } \\
7 / 2 & \text { for ABP } \\
5 / 2 & \text { for AOUP }\end{cases} \right. \\
&\left\langle x_{\alpha}^{2}(t)\right\rangle_{c} \sim t^{b}: \begin{array}{l}
t^{a} \\
T_{K} \quad T_{A} \quad T_{N}
\end{array}
\end{aligned}
$$

Crossover from t^{a} to \sqrt{t}

Crossover from \sqrt{t} to t

Correlation in the positions

$$
\begin{array}{lllll}
x_{\alpha-2} & x_{\alpha-1} & x_{\alpha} & x_{\alpha+1} & x_{\alpha+2}
\end{array}
$$

$$
\left\langle x_{0}(t) x_{\beta}(t)\right\rangle_{c}^{R T P} \simeq \frac{v_{0}^{2}}{\pi} \sqrt{\frac{2 t^{3}}{K}} \Omega^{R T}\left(\frac{\beta}{\sqrt{2 K t}}\right),
$$

$$
\left\langle x_{0}(t) x_{\beta}(t)\right\rangle_{c}^{R T P} \simeq D_{R} \sqrt{\frac{2 t}{\pi K}} \mathcal{C}\left(\frac{\beta}{\sqrt{2 K t}}\right), \quad t \gg \tau_{A}
$$

$$
t \ll \tau_{A}
$$

Correlation in the positions

Conclusion

P Singh and A Kundu J. Phys. A 54 (30) 305001 (2021)

