Arakelov self-intersection numbers on modular curves

Priyanka Majumder

(Joint works with A. von Pippich, and with D. Banerjee, C. Chaudhuri)

Department of Mathematics

Outline

(1) Introduction

(2) Preliminaries

(3) Main results

Modular curves

- Let N be a positive integer and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{Z})$ be a level- N congruence subgroup.

Modular curves

- Let N be a positive integer and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{Z})$ be a level- N congruence subgroup.
- Let $X(\Gamma)$ be the associated modular curve over some number field K.

Modular curves

- Let N be a positive integer and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{Z})$ be a level- N congruence subgroup.
- Let $X(\Gamma)$ be the associated modular curve over some number field K.
- Example: One example of level- N congruence subgroup of $\operatorname{PSL}_{2}(\mathbb{Z})$ is

$$
\Gamma_{0}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

Modular curves

- Let N be a positive integer and $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{Z})$ be a level- N congruence subgroup.
- Let $X(\Gamma)$ be the associated modular curve over some number field K.
- Example: One example of level- N congruence subgroup of $\operatorname{PSL}_{2}(\mathbb{Z})$ is

$$
\Gamma_{0}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

Its associated modular curve is $X_{0}(N)$ and we consider $K=\mathbb{Q}$.

Intersection numbers on arithmetic surfaces

Intersection numbers on arithmetic surfaces

- Let g_{N} be the genus of the modular curve $X_{0}(N)$.

Intersection numbers on arithmetic surfaces

- Let g_{N} be the genus of the modular curve $X_{0}(N)$.
- For $g_{N}>1$ there exist a minimal regular model $\mathcal{X}_{0}(N) / \mathbb{Z}$ for the modular curve $X_{0}(N) / \mathbb{Q}$.

Intersection numbers on arithmetic surfaces

- Let g_{N} be the genus of the modular curve $X_{0}(N)$.
- For $g_{N}>1$ there exist a minimal regular model $\mathcal{X}_{0}(N) / \mathbb{Z}$ for the modular curve $X_{0}(N) / \mathbb{Q}$.
- $\mathcal{X}_{0}(N)$ is an arithmetic surface over $\operatorname{Spec}(\mathbb{Z})$, i.e., it is a scheme of dimension 2 with a proper flat morphism $f: \mathcal{X}_{0}(N) \rightarrow \operatorname{Spec}(\mathbb{Z})$.

Intersection numbers on arithmetic surfaces

- Let g_{N} be the genus of the modular curve $X_{0}(N)$.
- For $g_{N}>1$ there exist a minimal regular model $\mathcal{X}_{0}(N) / \mathbb{Z}$ for the modular curve $X_{0}(N) / \mathbb{Q}$.
- $\mathcal{X}_{0}(N)$ is an arithmetic surface over $\operatorname{Spec}(\mathbb{Z})$, i.e., it is a scheme of dimension 2 with a proper flat morphism $f: \mathcal{X}_{0}(N) \rightarrow \operatorname{Spec}(\mathbb{Z})$.
- For given two hermitian line bundle \bar{L}, \bar{M} on an arithmetic surface \mathcal{X}, Arakelov (1974) defined the intersection number $\bar{L} . \bar{M} \in \mathbb{R}$.

Intersection numbers on arithmetic surfaces

- Let g_{N} be the genus of the modular curve $X_{0}(N)$.
- For $g_{N}>1$ there exist a minimal regular model $\mathcal{X}_{0}(N) / \mathbb{Z}$ for the modular curve $X_{0}(N) / \mathbb{Q}$.
- $\mathcal{X}_{0}(N)$ is an arithmetic surface over $\operatorname{Spec}(\mathbb{Z})$, i.e., it is a scheme of dimension 2 with a proper flat morphism $f: \mathcal{X}_{0}(N) \rightarrow \operatorname{Spec}(\mathbb{Z})$.
- For given two hermitian line bundle \bar{L}, \bar{M} on an arithmetic surface \mathcal{X}, Arakelov (1974) defined the intersection number $\bar{L} . \bar{M} \in \mathbb{R}$.
- Let $\omega_{\mathcal{X}_{0}(N)}$ be the relative dualizing sheaf on $\mathcal{X}_{0}(N)$. Arakelov defined a metric $\|\cdot\|_{\mathrm{Ar}}$ on $\omega_{\mathcal{X}_{0}(N)}$. Arakelov self-intersection number of $\omega_{\mathcal{X}_{0}(N)}$ is given by $\bar{\omega}_{\mathcal{X}_{0}(N)}^{2}=\bar{\omega}_{\mathcal{X}_{0}(N)} \cdot \bar{\omega}_{\mathcal{X}_{0}(N)} \in \mathbb{R}$, where $\bar{\omega}_{\mathcal{X}_{0}(N)}=\left(\omega_{\mathcal{X}_{0}(N)},\|\cdot\|_{\text {Ar }}\right)$.

Arakelov self-intersection number

- Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\mathcal{X}_{0}(N)}$ can be written as

Arakelov self-intersection number

- Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\mathcal{X}_{0}(N)}$ can be written as

$$
\bar{\omega}_{\mathcal{X}_{0}(N)}^{2}=\sum_{\text {geom }}^{\mathcal{X}_{0}(N)}+\sum_{\text {anal }}^{\mathcal{X}_{0}(N)} .
$$

Arakelov self-intersection number

- Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\mathcal{X}_{0}(N)}$ can be written as

$$
\bar{\omega}_{\mathcal{X}_{0}(N)}^{2}=\sum_{\text {geom }}^{\mathcal{X}_{0}(N)}+\sum_{\text {anal }}^{\mathcal{X}_{0}(N)} .
$$

- $\Sigma_{\text {geom }}^{\mathcal{X}_{0}(N)}$ (geometric part) encodes the finite intersection of divisors coming from the cusps 0 and ∞.

Arakelov self-intersection number

- Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\mathcal{X}_{0}(N)}$ can be written as

$$
\bar{\omega}_{\mathcal{X}_{0}(N)}^{2}=\sum_{\text {geom }}^{\mathcal{X}_{0}(N)}+\sum_{\text {anal }}^{\mathcal{X}_{0}(N)} .
$$

- $\Sigma_{\text {geom }}^{\mathcal{X}_{0}(N)}$ (geometric part) encodes the finite intersection of divisors coming from the cusps 0 and ∞.
- $\Sigma_{\text {anal }}^{\mathcal{X}_{0}(N)}$ (analytic part) is given in terms of the canonical (Arakelov) Green's function $\mathcal{G}_{\mathrm{can}}(0, \infty)$.

Arakelov self-intersection number

- Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\mathcal{X}_{0}(N)}$ can be written as

$$
\bar{\omega}_{\mathcal{X}_{0}(N)}^{2}=\sum_{\text {geom }}^{\mathcal{X}_{0}(N)}+\sum_{\text {anal }}^{\mathcal{X}_{0}(N)}
$$

- $\Sigma_{\text {geom }}^{\mathcal{X}_{0}(N)}$ (geometric part) encodes the finite intersection of divisors coming from the cusps 0 and ∞.
- $\Sigma_{\text {anal }}^{\mathcal{X}_{0}(N)}$ (analytic part) is given in terms of the canonical (Arakelov) Green's function $\mathcal{G}_{\text {can }}(0, \infty)$.
- $\bar{\omega}_{\mathcal{X}_{0}(N)}^{2}$ is independent of the number field K if the minimal regular model $\mathcal{X}_{0}(N)$ is semi-stable over \mathcal{O}_{K}.

Preliminaries

Preliminaries

- Let $\mu_{\text {hyp }}(z)$ be the $(1,1)$-form corresponding to the hyperbolic metric on $X_{0}(N)$.

Preliminaries

- Let $\mu_{\text {hyp }}(z)$ be the $(1,1)$-form corresponding to the hyperbolic metric on $X_{0}(N)$. Locally, on $X_{0}(N)$, it is

$$
\mu_{\text {hyp }}(z)=\frac{i}{2} \cdot \frac{d z \wedge d \bar{z}}{\operatorname{Im}(z)^{2}}
$$

Preliminaries

- Let $\mu_{\text {hyp }}(z)$ be the $(1,1)$-form corresponding to the hyperbolic metric on $X_{0}(N)$. Locally, on $X_{0}(N)$, it is

$$
\mu_{\text {hyp }}(z)=\frac{i}{2} \cdot \frac{d z \wedge d \bar{z}}{\operatorname{Im}(z)^{2}}
$$

- Let $\Delta_{\text {hyp }}$ be the hyperbolic Laplacian on $X_{0}(N)$.

Preliminaries

- Let $\mu_{\text {hyp }}(z)$ be the $(1,1)$-form corresponding to the hyperbolic metric on $X_{0}(N)$. Locally, on $X_{0}(N)$, it is

$$
\mu_{\text {hyp }}(z)=\frac{i}{2} \cdot \frac{d z \wedge d \bar{z}}{\operatorname{lm}(z)^{2}}
$$

- Let $\Delta_{\text {hyp }}$ be the hyperbolic Laplacian on $X_{0}(N)$. Locally on $X_{0}(N)$, it is

$$
\Delta_{\mathrm{hyp}, z}=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)=-4 y^{2}\left(\frac{\partial^{2}}{\partial z \partial \bar{z}}\right)
$$

Preliminaries

- Let $\mu_{\text {hyp }}(z)$ be the $(1,1)$-form corresponding to the hyperbolic metric on $X_{0}(N)$. Locally, on $X_{0}(N)$, it is

$$
\mu_{\text {hyp }}(z)=\frac{i}{2} \cdot \frac{d z \wedge d \bar{z}}{\operatorname{lm}(z)^{2}}
$$

- Let $\Delta_{\text {hyp }}$ be the hyperbolic Laplacian on $X_{0}(N)$. Locally on $X_{0}(N)$, it is

$$
\Delta_{\mathrm{hyp}, z}=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)=-4 y^{2}\left(\frac{\partial^{2}}{\partial z \partial \bar{z}}\right)
$$

- For any smooth function f on $X_{0}(N)$, we have

$$
\Delta_{\text {hyp }, z}(f) \mu_{\text {hyp }}(z)=-4 \pi d_{z} d_{z}^{c}(f)
$$

Preliminaries

- Let $\mu_{\text {hyp }}(z)$ be the $(1,1)$-form corresponding to the hyperbolic metric on $X_{0}(N)$. Locally, on $X_{0}(N)$, it is

$$
\mu_{\text {hyp }}(z)=\frac{i}{2} \cdot \frac{d z \wedge d \bar{z}}{\operatorname{Im}(z)^{2}}
$$

- Let $\Delta_{\text {hyp }}$ be the hyperbolic Laplacian on $X_{0}(N)$. Locally on $X_{0}(N)$, it is

$$
\Delta_{\mathrm{hyp}, z}=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)=-4 y^{2}\left(\frac{\partial^{2}}{\partial z \partial \bar{z}}\right)
$$

- For any smooth function f on $X_{0}(N)$, we have

$$
\Delta_{\text {hyp }, z}(f) \mu_{\text {hyp }}(z)=-4 \pi d_{z} d_{z}^{C}(f)
$$

where $d_{z}=\left(\partial_{z}+\bar{\partial}_{z}\right)$ and $d_{z}^{c}=\left(\partial_{z}-\bar{\partial}_{z}\right) /(4 \pi i)$.

Canonical Green's function

- The $(1,1)$-form $\mu_{\text {can }}(z)$ corresponding to the canonical metric on $X_{0}(N)$ is

Canonical Green's function

- The $(1,1)$-form $\mu_{\text {can }}(z)$ corresponding to the canonical metric on $X_{0}(N)$ is

$$
\mu_{\text {can }}(z)=\frac{i}{2 g_{N}} \sum_{j=1}^{g_{N}}\left|f_{j}(z)\right|^{2} d z \wedge d \bar{z}
$$

where $\left\{f_{1}, \ldots, f_{g_{N}}\right\}$ denote an orthonormal basis of $S_{2}\left(\Gamma_{0}(N)\right)$.

Canonical Green's function

- The $(1,1)$-form $\mu_{\text {can }}(z)$ corresponding to the canonical metric on $X_{0}(N)$ is

$$
\mu_{\mathrm{can}}(z)=\frac{i}{2 g_{N}} \sum_{j=1}^{g_{N}}\left|f_{j}(z)\right|^{2} d z \wedge d \bar{z}
$$

where $\left\{f_{1}, \ldots, f_{g_{N}}\right\}$ denote an orthonormal basis of $S_{2}\left(\Gamma_{0}(N)\right)$.

- Let $\mathcal{G}_{\text {can }}(z, w)$ be the canonical Green's function for $X_{0}(N)$.

Canonical Green's function

- The $(1,1)$-form $\mu_{\text {can }}(z)$ corresponding to the canonical metric on $X_{0}(N)$ is

$$
\mu_{\text {can }}(z)=\frac{i}{2 g_{N}} \sum_{j=1}^{g_{N}}\left|f_{j}(z)\right|^{2} d z \wedge d \bar{z}
$$

where $\left\{f_{1}, \ldots, f_{g_{N}}\right\}$ denote an orthonormal basis of $S_{2}\left(\Gamma_{0}(N)\right)$.

- Let $\mathcal{G}_{\text {can }}(z, w)$ be the canonical Green's function for $X_{0}(N)$. Away from the diagonal it is characterized by the differential equation

$$
d_{z} d_{z}^{c} \mathcal{G}_{\mathrm{can}}(z, w)+\delta_{w}(z)=\mu_{\mathrm{can}}(z)
$$

with the nomalization $\int_{X_{0}(N)} \mathcal{G}_{\text {can }}(z, w) \mu_{\text {can }}(z)=0$.

Some useful results

Some useful results

- Let D_{m} (for $m \in\{0, \infty\}$) be the Arakelov divisors orthogonal to each V, where V are linear combinations of the irreducible components of the special fiber of the regular model $\mathcal{X}_{0}(N)$ over \mathbb{F}_{p}.

Some useful results

- Let D_{m} (for $m \in\{0, \infty\}$) be the Arakelov divisors orthogonal to each V, where V are linear combinations of the irreducible components of the special fiber of the regular model $\mathcal{X}_{0}(N)$ over \mathbb{F}_{p}. Then

$$
\left\langle D_{m}, D_{m}\right\rangle=-2[K: \mathbb{Q}]\left(\text { Néron-Tate height of } \mathcal{O}\left(D_{m}\right)\right),
$$

where \langle,$\rangle denote the intersection product (Faltings 1984).$

Some useful results

- Let D_{m} (for $m \in\{0, \infty\}$) be the Arakelov divisors orthogonal to each V, where V are linear combinations of the irreducible components of the special fiber of the regular model $\mathcal{X}_{0}(N)$ over \mathbb{F}_{p}. Then

$$
\left\langle D_{m}, D_{m}\right\rangle=-2[K: \mathbb{Q}]\left(\text { Néron-Tate height of } \mathcal{O}\left(D_{m}\right)\right),
$$

where \langle,$\rangle denote the intersection product (Faltings 1984).$

- In 1998, Michel-Ullmo proved the following

$$
h_{N T}\left(\mathcal{O}\left(D_{m}\right)\right)=O\left(\log N(\tau(N))^{2}\right), \quad m \in\{0, \infty\}
$$

where $K=\mathbb{Q}$, and $\tau(N):=\sum_{d \mid N} 1$.

Main Theorem

Theorem 1 (-, A. von Pippich)
Let N be an positive integer, then as $N \rightarrow \infty$ we have

$$
2 g_{N}\left(1-g_{N}\right) \mathcal{G}_{\mathrm{can}}(0, \infty)=2 g_{N} \log N+o\left(g_{N} \log N\right),
$$

where $\mathcal{G}_{\text {can }}(0, \infty)$ is the canonical Green's function for $X_{0}(N)$.

Main Theorem

Theorem 1 (-, A. von Pippich)

Let N be an positive integer, then as $N \rightarrow \infty$ we have

$$
2 g_{N}\left(1-g_{N}\right) \mathcal{G}_{\mathrm{can}}(0, \infty)=2 g_{N} \log N+o\left(g_{N} \log N\right),
$$

where $\mathcal{G}_{\text {can }}(0, \infty)$ is the canonical Green's function for $X_{0}(N)$.

- Our motivation to prove this theorem:

$$
\sum_{\text {anal }}^{\mathcal{X}_{0}(N)}=2 g_{N}\left(1-g_{N}\right) \mathcal{G}_{\mathrm{can}}(0, \infty)
$$

Main Theorem

Theorem 1 (-, A. von Pippich)

Let N be an positive integer, then as $N \rightarrow \infty$ we have

$$
2 g_{N}\left(1-g_{N}\right) \mathcal{G}_{\mathrm{can}}(0, \infty)=2 g_{N} \log N+o\left(g_{N} \log N\right),
$$

where $\mathcal{G}_{\text {can }}(0, \infty)$ is the canonical Green's function for $X_{0}(N)$.

- Our motivation to prove this theorem:

$$
\sum_{\text {anal }}^{\mathcal{X}_{0}(N)}=2 g_{N}\left(1-g_{N}\right) \mathcal{G}_{\text {can }}(0, \infty)
$$

- In 1997-1998, Abbes-Ullmo and Michel-Ullmo proved this for ṡquare-free N.

Main Theorem

Theorem 1 (-, A. von Pippich)

Let N be an positive integer, then as $N \rightarrow \infty$ we have

$$
2 g_{N}\left(1-g_{N}\right) \mathcal{G}_{\mathrm{can}}(0, \infty)=2 g_{N} \log N+o\left(g_{N} \log N\right),
$$

where $\mathcal{G}_{\text {can }}(0, \infty)$ is the canonical Green's function for $X_{0}(N)$.

- Our motivation to prove this theorem:

$$
\sum_{\text {anal }}^{\mathcal{X}_{0}(N)}=2 g_{N}\left(1-g_{N}\right) \mathcal{G}_{\text {can }}(0, \infty)
$$

- In 1997-1998, Abbes-Ullmo and Michel-Ullmo proved this for ṡquare-free N.
- In 2020, Banerjee-Borah-Chaudhuri proved this for $N=p^{2}$ with a prime p.

Main Theorem

Theorem 2 (D. Banerjee, C. Chaudhuri, -)

Let p be a prime and $r=3$, 4. The Arakelov self-intersection number of the relative dualizing sheaf of $\mathcal{X}_{0}\left(p^{r}\right)$ satisfies

$$
\bar{\omega}_{\mathcal{X}_{0}\left(p^{r}\right)}^{2}=3 g_{p^{r}} \log \left(p^{r}\right)+o\left(g_{p^{r}} \log p\right) \text { as } p \rightarrow \infty,
$$

where $\mathcal{X}_{0}\left(p^{r}\right)$ is the minimal regular model of $X_{0}\left(p^{r}\right)$ over \mathbb{Q}.

Main Theorem

Theorem 2 (D. Banerjee, C. Chaudhuri, -)

Let p be a prime and $r=3$, 4. The Arakelov self-intersection number of the relative dualizing sheaf of $\mathcal{X}_{0}\left(p^{r}\right)$ satisfies

$$
\bar{\omega}_{\mathcal{X}_{0}\left(p^{r}\right)}^{2}=3 g_{p^{r}} \log \left(p^{r}\right)+o\left(g_{p^{r}} \log p\right) \text { as } p \rightarrow \infty,
$$

where $\mathcal{X}_{0}\left(p^{r}\right)$ is the minimal regular model of $X_{0}\left(p^{r}\right)$ over \mathbb{Q}.

- There is an explicit description of the regular model for $X_{0}(N)$ which was given by B. Edixhoven (1990).

Main Theorem

Theorem 2 (D. Banerjee, C. Chaudhuri, -)

Let p be a prime and $r=3$, 4. The Arakelov self-intersection number of the relative dualizing sheaf of $\mathcal{X}_{0}\left(p^{r}\right)$ satisfies

$$
\bar{\omega}_{\mathcal{X}_{0}\left(p^{r}\right)}^{2}=3 g_{p^{r}} \log \left(p^{r}\right)+o\left(g_{p^{r}} \log p\right) \text { as } p \rightarrow \infty,
$$

where $\mathcal{X}_{0}\left(p^{r}\right)$ is the minimal regular model of $X_{0}\left(p^{r}\right)$ over \mathbb{Q}.

- There is an explicit description of the regular model for $X_{0}(N)$ which was given by B. Edixhoven (1990).
- The special fiber of the regular model $\mathcal{X}_{0}\left(p^{r}\right)$ over \mathbb{F}_{p} depends on the parity of $p \bmod 12$

Main Theorem

Theorem 2 (D. Banerjee, C. Chaudhuri, -)

Let p be a prime and $r=3$, 4. The Arakelov self-intersection number of the relative dualizing sheaf of $\mathcal{X}_{0}\left(p^{r}\right)$ satisfies

$$
\bar{\omega}_{\mathcal{X}_{0}\left(p^{r}\right)}^{2}=3 g_{p^{r}} \log \left(p^{r}\right)+o\left(g_{p^{r}} \log p\right) \text { as } p \rightarrow \infty,
$$

where $\mathcal{X}_{0}\left(p^{r}\right)$ is the minimal regular model of $X_{0}\left(p^{r}\right)$ over \mathbb{Q}.

- There is an explicit description of the regular model for $X_{0}(N)$ which was given by B. Edixhoven (1990).
- The special fiber of the regular model $\mathcal{X}_{0}\left(p^{r}\right)$ over \mathbb{F}_{p} depends on the parity of $p \bmod 12$, these are $p \equiv 1 \bmod 12, p \equiv 5 \bmod 12$, $p \equiv 7 \bmod 12$, and $p \equiv 11 \bmod 12$.

Proof of Theorem 2

Proof of Theorem 2

- By using the Faltings-Hriljac theorem one can show:

$$
\bar{\omega}_{\mathcal{X}_{0}\left(p^{r}\right)}^{2}=2 g_{p^{r}}\left(1-g_{p^{r}}\right) \mathcal{G}_{\mathrm{can}}(0, \infty)+\sum_{\text {geom }}^{\mathcal{X}_{0}\left(p^{r}\right)}
$$

where $\Sigma_{\text {geom }}^{\mathcal{X}_{0}\left(p^{r}\right)}=\frac{1}{g_{p^{r}-1}}\left(g_{p^{r}}\left\langle V_{0} \cdot V_{\infty}\right\rangle-\frac{V_{0}^{2}+V_{\infty}^{2}}{2}\right)+h$ with
$h=O(\log p)$.

Proof of Theorem 2

- By using the Faltings-Hriljac theorem one can show:

$$
\bar{\omega}_{\mathcal{X}_{0}\left(p^{r}\right)}^{2}=2 g_{p^{r}}\left(1-g_{p^{r}}\right) \mathcal{G}_{\mathrm{can}}(0, \infty)+\sum_{\text {geom }}^{\mathcal{X}_{0}\left(p^{r}\right)}
$$

where $\Sigma_{\text {geom }}^{\mathcal{X}_{0}\left(p^{r}\right)}=\frac{1}{g_{p^{r}-1}}\left(g_{p^{r}}\left\langle V_{0} \cdot V_{\infty}\right\rangle-\frac{V_{0}^{2}+V_{\infty}^{2}}{2}\right)+h$ with
$h=O(\log p)$.

- V_{m} are linear combination of the irreducible components of the special fiber of the minimal regular model $\mathcal{X}_{0}\left(p^{r}\right)$ over \mathbb{F}_{p}.

Proof of Theorem 2

- By using the Faltings-Hriljac theorem one can show:

$$
\bar{\omega}_{\mathcal{X}_{0}\left(p^{r}\right)}^{2}=2 g_{p^{r}}\left(1-g_{p^{r}}\right) \mathcal{G}_{\mathrm{can}}(0, \infty)+\Sigma_{\text {geom }}^{\mathcal{X}_{0}\left(p^{r}\right)}
$$

where $\sum_{\text {geom }}^{\mathcal{X}_{0}\left(p^{r}\right)}=\frac{1}{g_{p^{r}-1}}\left(g_{p^{r}}\left\langle V_{0} \cdot V_{\infty}\right\rangle-\frac{V_{0}^{2}+V_{\infty}^{2}}{2}\right)+h$ with $h=O(\log p)$.

- V_{m} are linear combination of the irreducible components of the special fiber of the minimal regular model $\mathcal{X}_{0}\left(p^{r}\right)$ over \mathbb{F}_{p}.
- As $p \rightarrow \infty$ we prove the following

$$
\frac{1}{g_{p^{r}}-1}\left(g_{p^{r}}\left\langle V_{0} \cdot V_{\infty}\right\rangle-\frac{V_{0}^{2}+V_{\infty}^{2}}{2}\right)=g_{p^{r}} \log \left(p^{r}\right)+o\left(g_{p^{r}} \log p\right)
$$

Special fibers of Edixhoven's regular models

Special fibers of Edixhoven's regular models

- For $r=3$, the special fibers of the regular model look like:

Special fibers of Edixhoven's regular models

- For $r=3$, the special fibers of the regular model look like:

- For $r=4$, the special fibers of the regular model look like:

Intersection matrix

- We calculate intersection matrices of the special fibers of the regular models

Intersection matrix

- We calculate intersection matrices of the special fibers of the regular models, e.g, when $p \equiv 11 \bmod 12$, and $r=4$, we get

	$C_{4,0}$	$C_{0,4}$	$C_{3,1}$	$C_{1,3}$	$C_{2,2}$	E	F
$C_{4,0}$	$-\frac{p^{4}-p^{3}+10}{12}$	$\frac{p-11}{12}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	1	1
$C_{0,4}$	$\frac{p-11}{12}$	$-\frac{p^{4}-p^{3}+10}{12}$	$\frac{p-11}{12}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	1	1
$C_{3,1}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	$-\frac{p^{2}+5}{6}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	1	1
$C_{1,3}$	$\frac{p-11}{12}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	$-\frac{p^{2}+5}{6}$	$\frac{p-11}{12}$	1	1
$C_{2,2}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	-1	1	1
E	1	1	1	1	1	-2	0
F	1	1	1	1	1	0	-3.

Intersection matrix

- We calculate intersection matrices of the special fibers of the regular models, e.g, when $p \equiv 11 \bmod 12$, and $r=4$, we get

	$C_{4,0}$	$C_{0,4}$	$C_{3,1}$	$C_{1,3}$	$C_{2,2}$	E	F
$C_{4,0}$	$-\frac{p^{4}-p^{3}+10}{12}$	$\frac{p-11}{12}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	1	1
$C_{0,4}$	$\frac{p-11}{12}$	$-\frac{p^{4}-p^{3}+10}{12}$	$\frac{p-11}{12}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	1	1
$C_{3,1}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	$-\frac{p^{2}+5}{6}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	1	1
$C_{1,3}$	$\frac{p-11}{12}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	$-\frac{p^{2}+5}{6}$	$\frac{p-11}{12}$	1	1
$C_{2,2}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	-1	1	1
E	1	1	1	1	1	-2	0
F	1	1	1	1	1	0	-3.

- In this case the regular model is not minimal.

Intersection matrix

- We calculate intersection matrices of the special fibers of the regular models, e.g, when $p \equiv 11 \bmod 12$, and $r=4$, we get

	$C_{4,0}$	$C_{0,4}$	$C_{3,1}$	$C_{1,3}$	$C_{2,2}$	E	F
$C_{4,0}$	$-\frac{p^{4}-p^{3}+10}{12}$	$\frac{p-11}{12}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	1	1
$C_{0,4}$	$\frac{p-11}{12}$	$-\frac{p^{4}-p^{3}+10}{12}$	$\frac{p-11}{12}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	1	1
$C_{3,1}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	$-\frac{p^{2}+5}{6}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	1	1
$C_{1,3}$	$\frac{p-11}{12}$	$\frac{p^{3}-p^{2}-10}{12}$	$\frac{p-11}{12}$	$-\frac{p^{2}+5}{6}$	$\frac{p-11}{12}$	1	1
$C_{2,2}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	-1	1	1
E	1	1	1	1	1	-2	0
F	1	1	1	1	1	0	-3.

- In this case the regular model is not minimal.
- After successive blow downs we obtain the minimal regular model.

Intersection matrix for $\mathcal{X}_{0}\left(p^{r}\right)$

- When $p \equiv 11 \bmod 12$, and $r=4$, the intersection matrix of the special fibers of the minimal regular model:

	$C_{4,0}^{\prime}$	$C_{0,4}^{\prime}$	$C_{3,1}^{\prime}$	$C_{1,3}^{\prime}$
$C_{4,0}^{\prime}$	$-\frac{2 p^{4}-2 p^{3}-p^{2}+2 p-1}{24}$	$\frac{p^{2}-1}{24}$	$\frac{2 p^{3}-p^{2}-2 p+1}{24}$	$\frac{p^{2}-1}{24}$
$C_{0,4}^{\prime}$	$\frac{p^{2}-1}{24}$	$-\frac{2 p^{4}-2 p^{3}-p^{2}+2 p-1}{24}$	$\frac{p^{2}-1}{24}$	$\frac{2 p^{3}-p^{2}-2 p+1}{24}$
$C_{3,1}^{\prime}$	$\frac{2 p^{3}-p^{2}-2 p+1}{24}$	$\frac{p^{2}-1}{24}$	$-\frac{3 p^{2}+2 p-1}{24}$	$\frac{p^{2}-1}{24}$
$C_{1,3}^{\prime}$	$\frac{p^{2}-1}{24}$	$\frac{2 p^{3}-p^{2}-2 p+1}{24}$	$\frac{p^{2}-1}{24}$	$-\frac{3 p^{2}+2 p-1}{24}$.

Intersection matrix for $\mathcal{X}_{0}\left(p^{r}\right)$

- When $p \equiv 11 \bmod 12$, and $r=4$, the intersection matrix of the special fibers of the minimal regular model:

	$C_{4,0}^{\prime}$	$C_{0,4}^{\prime}$	$C_{3,1}^{\prime}$	$C_{1,3}^{\prime}$
$C_{4,0}^{\prime}$	$-\frac{2 p^{4}-2 p^{3}-p^{2}+2 p-1}{24}$	$\frac{p^{2}-1}{24}$	$\frac{2 p^{3}-p^{2}-2 p+1}{24}$	$\frac{p^{2}-1}{24}$
$C_{0,4}^{\prime}$	$\frac{p^{2}-1}{24}$	$-\frac{2 p^{4}-2 p^{3}-p^{2}+2 p-1}{24}$	$\frac{p^{2}-1}{24}$	$\frac{2 p^{3}-p^{2}-2 p+1}{24}$
$C_{3,1}^{\prime}$	$\frac{2 p^{3}-p^{2}-2 p+1}{24}$	$\frac{p^{2}-1}{24}$	$-\frac{3 p^{2}+2 p-1}{24}$	$\frac{p^{2}-1}{24}$
$C_{1,3}^{\prime}$	$\frac{p^{2}-1}{24}$	$\frac{2 p^{3}-p^{2}-2 p+1}{24}$	$\frac{p^{2}-1}{24}$	$-\frac{3 p^{2}+2 p-1}{24}$.

- From this intersection matrix we explicitly compute V_{m} which are linear combinations of all the irreducible components of the special fiber of the minimal regular model.

References

(1) P. Majumder and A.-M. von Pippich, Bounds for canonical Green's functions at cusps, (arxiv.org/abs/2210.04452).
(2) D. Banerjee, C. Chaudhuri and P. Majumder, The intersection matrices of $X_{0}\left(p^{r}\right)$ and some applications, (arxiv.org/abs/2210.08866).

References

(1) P. Majumder and A.-M. von Pippich, Bounds for canonical Green's functions at cusps, (arxiv.org/abs/2210.04452).
(2) D. Banerjee, C. Chaudhuri and P. Majumder, The intersection matrices of $X_{0}\left(p^{r}\right)$ and some applications, (arxiv.org/abs/2210.08866).

Thank you for your attention!

