Arakelov self-intersection numbers on modular curves

Priyanka Majumder

(Joint works with A. von Pippich, and with D. Banerjee, C. Chaudhuri)

Department of Mathematics

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 1/15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショヘ

Introduction

Preliminaries

8 Main results

Rational points on modular curves

ICTS Bangalore

Modular curves

Let *N* be a positive integer and Γ ⊂ PSL₂(ℤ) be a level-*N* congruence subgroup.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Modular curves

- Let *N* be a positive integer and $\Gamma \subset PSL_2(\mathbb{Z})$ be a level-*N* congruence subgroup.
- Let *X*(Γ) be the associated modular curve over some number field *K*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショヘ

Modular curves

- Let *N* be a positive integer and $\Gamma \subset PSL_2(\mathbb{Z})$ be a level-*N* congruence subgroup.
- Let *X*(Γ) be the associated modular curve over some number field *K*.
- **Example:** One example of level-*N* congruence subgroup of $PSL_2(\mathbb{Z})$ is

$$\Gamma_0(N) := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \mathrm{PSL}_2(\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}.$$

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 3/15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショヘ

Modular curves

- Let *N* be a positive integer and $\Gamma \subset PSL_2(\mathbb{Z})$ be a level-*N* congruence subgroup.
- Let *X*(Γ) be the associated modular curve over some number field *K*.
- **Example:** One example of level-*N* congruence subgroup of $PSL_2(\mathbb{Z})$ is

$$\Gamma_0(N) := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \mathrm{PSL}_2(\mathbb{Z}) \mid c \equiv 0 \ (\mathrm{mod} \ N) \right\}.$$

Its associated modular curve is $X_0(N)$ and we consider $K = \mathbb{Q}$.

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 4/15

Introc	luc	tion
000		

Let g_N be the genus of the modular curve $X_0(N)$. •

< □ > < A > >

Introd	uction
000	

- Let g_N be the genus of the modular curve $X_0(N)$.
- For g_N > 1 there exist a minimal regular model X₀(N)/ℤ for the modular curve X₀(N)/ℚ.

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q Q

Introduction	
000	

- Let g_N be the genus of the modular curve $X_0(N)$.
- For g_N > 1 there exist a minimal regular model X₀(N)/ℤ for the modular curve X₀(N)/ℚ.
- *X*₀(*N*) is an arithmetic surface over Spec(ℤ), i.e., it is a scheme of dimension 2 with a proper flat morphism
 f : *X*₀(*N*) → Spec(ℤ).

くロト (母) (ヨト (ヨト) (の)

Introduction	
000	

- Let g_N be the genus of the modular curve $X_0(N)$.
- For g_N > 1 there exist a minimal regular model X₀(N)/ℤ for the modular curve X₀(N)/ℚ.
- *X*₀(*N*) is an arithmetic surface over Spec(ℤ), i.e., it is a scheme of dimension 2 with a proper flat morphism
 f : *X*₀(*N*) → Spec(ℤ).
- For given two hermitian line bundle $\overline{L}, \overline{M}$ on an arithmetic surface \mathcal{X} , **Arakelov** (1974) defined the intersection number $\overline{L}.\overline{M} \in \mathbb{R}$.

くロト (母) (ヨト (ヨト) (の)

- Let g_N be the genus of the modular curve $X_0(N)$.
- For g_N > 1 there exist a minimal regular model X₀(N)/ℤ for the modular curve X₀(N)/ℚ.
- *X*₀(*N*) is an arithmetic surface over Spec(ℤ), i.e., it is a scheme of dimension 2 with a proper flat morphism
 f : *X*₀(*N*) → Spec(ℤ).
- For given two hermitian line bundle $\overline{L}, \overline{M}$ on an arithmetic surface \mathcal{X} , **Arakelov** (1974) defined the intersection number $\overline{L}.\overline{M} \in \mathbb{R}$.
- Let $\omega_{\mathcal{X}_0(N)}$ be the relative dualizing sheaf on $\mathcal{X}_0(N)$. Arakelov defined a metric $\|\cdot\|_{\mathrm{Ar}}$ on $\omega_{\mathcal{X}_0(N)}$. Arakelov self-intersection number of $\omega_{\mathcal{X}_0(N)}$ is given by $\overline{\omega}_{\mathcal{X}_0(N)}^2 = \overline{\omega}_{\mathcal{X}_0(N)}.\overline{\omega}_{\mathcal{X}_0(N)} \in \mathbb{R}$, where $\overline{\omega}_{\mathcal{X}_0(N)} = (\omega_{\mathcal{X}_0(N)}, \|\cdot\|_{\mathrm{Ar}})$.

Rational points on modular curves

Sept. 22, 2023

Main results

Arakelov self-intersection number

• Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\chi_0(N)}$ can be written as

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショヘ

Main results

Arakelov self-intersection number

• Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\chi_0(N)}$ can be written as

$$\overline{\omega}_{\mathcal{X}_0(N)}^2 = \Sigma_{\text{geom}}^{\mathcal{X}_0(N)} + \Sigma_{\text{anal}}^{\mathcal{X}_0(N)}.$$

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 5/15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショヘ

Arakelov self-intersection number

• Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\chi_0(N)}$ can be written as

$$\overline{\omega}_{\mathcal{X}_0(N)}^2 = \Sigma_{\text{geom}}^{\mathcal{X}_0(N)} + \Sigma_{\text{anal}}^{\mathcal{X}_0(N)}.$$

• $\Sigma_{\text{geom}}^{\chi_0(N)}$ (geometric part) encodes the finite intersection of divisors coming from the cusps 0 and ∞ .

A ∃ ► A ∃ ► ∃ ∃

Arakelov self-intersection number

• Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\chi_0(N)}$ can be written as

$$\overline{\omega}_{\mathcal{X}_0(N)}^2 = \Sigma_{\text{geom}}^{\mathcal{X}_0(N)} + \Sigma_{\text{anal}}^{\mathcal{X}_0(N)}.$$

- $\Sigma_{\text{geom}}^{\chi_0(N)}$ (geometric part) encodes the finite intersection of divisors coming from the cusps 0 and ∞ .
- $\Sigma_{\text{anal}}^{\mathcal{X}_0(N)}$ (analytic part) is given in terms of the canonical (Arakelov) Green's function $\mathcal{G}_{\text{can}}(0,\infty)$.

◆□▶ ◆冊▶ ◆ヨ▶ ◆ヨト ショー のへの

Arakelov self-intersection number

• Arakelov self-intersection number of the relative dualizing sheaf $\omega_{\chi_0(N)}$ can be written as

$$\overline{\omega}_{\mathcal{X}_0(N)}^2 = \Sigma_{\text{geom}}^{\mathcal{X}_0(N)} + \Sigma_{\text{anal}}^{\mathcal{X}_0(N)}.$$

- $\Sigma_{\text{geom}}^{\chi_0(N)}$ (geometric part) encodes the finite intersection of divisors coming from the cusps 0 and ∞ .
- $\Sigma_{anal}^{\mathcal{X}_0(N)}$ (analytic part) is given in terms of the canonical (Arakelov) Green's function $\mathcal{G}_{can}(0,\infty)$.
- $\overline{\omega}^2_{\chi_0(N)}$ is independent of the number field *K* if the minimal regular model $\chi_0(N)$ is semi-stable over \mathcal{O}_K .

Rational points on modular curves

Preliminaries

Rational points on modular curves

ICTS Bangalore

< □ ▶ < @ ▶ < E ▶ < E ▶ E = 이 Q @ Sept. 22, 2023 6/15

			ei.	

Let μ_{hyp}(z) be the (1, 1)-form corresponding to the hyperbolic metric on X₀(N).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショヘ

• Let $\mu_{hyp}(z)$ be the (1, 1)-form corresponding to the hyperbolic metric on $X_0(N)$. Locally, on $X_0(N)$, it is

$$\mu_{\mathsf{hyp}}(z) = rac{i}{2} \cdot rac{dz \wedge d\overline{z}}{\mathsf{Im}(z)^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショヘ

			÷i		

• Let $\mu_{hyp}(z)$ be the (1, 1)-form corresponding to the hyperbolic metric on $X_0(N)$. Locally, on $X_0(N)$, it is

$$\mu_{\mathsf{hyp}}(z) = rac{i}{2} \cdot rac{dz \wedge d\overline{z}}{\mathsf{Im}(z)^2}.$$

• Let Δ_{hyp} be the hyperbolic Laplacian on $X_0(N)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

Let μ_{hyp}(z) be the (1, 1)-form corresponding to the hyperbolic metric on X₀(N). Locally, on X₀(N), it is

$$\mu_{\mathsf{hyp}}(z) = rac{i}{2} \cdot rac{dz \wedge d\overline{z}}{\mathsf{Im}(z)^2}.$$

• Let Δ_{hyp} be the hyperbolic Laplacian on $X_0(N)$. Locally on $X_0(N)$, it is $\Delta_{\text{hyp},z} = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) = -4y^2 \left(\frac{\partial^2}{\partial z \partial \overline{z}} \right).$

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 6/15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

• Let $\mu_{hyp}(z)$ be the (1, 1)-form corresponding to the hyperbolic metric on $X_0(N)$. Locally, on $X_0(N)$, it is

$$\mu_{\mathsf{hyp}}(z) = rac{i}{2} \cdot rac{dz \wedge d\overline{z}}{\mathsf{Im}(z)^2}.$$

- Let Δ_{hyp} be the hyperbolic Laplacian on $X_0(N)$. Locally on $X_0(N)$, it is $\Delta_{\text{hyp},z} = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) = -4y^2 \left(\frac{\partial^2}{\partial z \partial \overline{z}} \right).$
- For any smooth function f on $X_0(N)$, we have

$$\Delta_{\mathrm{hyp},z}(f)\,\mu_{\mathrm{hyp}}(z) = -4\pi d_z d_z^c(f),$$

Rational points on modular curves

ICTS Bangalore

Let μ_{hyp}(z) be the (1, 1)-form corresponding to the hyperbolic metric on X₀(N). Locally, on X₀(N), it is

$$\mu_{\mathsf{hyp}}(z) = rac{i}{2} \cdot rac{dz \wedge d\overline{z}}{\mathsf{Im}(z)^2}.$$

- Let Δ_{hyp} be the hyperbolic Laplacian on $X_0(N)$. Locally on $X_0(N)$, it is $\Delta_{\text{hyp},z} = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) = -4y^2 \left(\frac{\partial^2}{\partial z \partial \overline{z}} \right).$
- For any smooth function *f* on *X*₀(*N*), we have

$$\Delta_{\mathrm{hyp},z}(f)\,\mu_{\mathrm{hyp}}(z)=-4\pi d_z d_z^c(f),$$

where $d_z = (\partial_z + \overline{\partial}_z)$ and $d_z^c = (\partial_z - \overline{\partial}_z) / (4\pi i)$.

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023

 The (1, 1)-form μ_{can}(z) corresponding to the canonical metric on X₀(N) is

Rational points on modular curves

ICTS Bangalore

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• The (1, 1)-form $\mu_{can}(z)$ corresponding to the canonical metric on $X_0(N)$ is $\mu_{can}(z) = -\frac{i}{2} \sum_{i=1}^{g_N} |f_i(z)|^2 dz \wedge d\overline{z}$

$$\mu_{\mathsf{can}}(z) = rac{1}{2g_{\mathsf{N}}}\sum_{j=1}^{\infty} \left|f_{j}(z)
ight|^{2} dz \wedge d\overline{z},$$

where $\{f_1, \ldots, f_{g_N}\}$ denote an orthonormal basis of $S_2(\Gamma_0(N))$.

Rational points on modular curves

ICTS Bangalore

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

• The (1, 1)-form $\mu_{can}(z)$ corresponding to the canonical metric on $X_0(N)$ is

$$\mu_{\mathsf{can}}(z) = \frac{i}{2g_{\mathsf{N}}} \sum_{j=1}^{\mathsf{on}} |f_j(z)|^2 \, dz \wedge d\overline{z},$$

where $\{f_1, \ldots, f_{g_N}\}$ denote an orthonormal basis of $S_2(\Gamma_0(N))$.

• Let $\mathcal{G}_{can}(z, w)$ be the canonical Green's function for $X_0(N)$.

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 7/15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

• The (1, 1)-form $\mu_{can}(z)$ corresponding to the canonical metric on $X_0(N)$ is

$$\mu_{\mathsf{can}}(z) = rac{i}{2g_{\mathsf{N}}} \sum_{j=1}^{g_{\mathsf{N}}} \left|f_{j}(z)\right|^{2} dz \wedge d\overline{z},$$

where $\{f_1, \ldots, f_{g_N}\}$ denote an orthonormal basis of $S_2(\Gamma_0(N))$.

• Let $\mathcal{G}_{can}(z, w)$ be the canonical Green's function for $X_0(N)$. Away from the diagonal it is characterized by the differential equation

$$d_z d_z^c \mathcal{G}_{can}(z, w) + \delta_w(z) = \mu_{can}(z)$$

with the nomalization $\int_{X_n(N)} \mathcal{G}_{can}(z, w) \mu_{can}(z) = 0.$

Rational points on modular curves

7/15

Main results

Some useful results

Rational points on modular curves

ICTS Bangalore

Some useful results

Let D_m (for m ∈ {0,∞}) be the Arakelov divisors orthogonal to each V, where V are linear combinations of the irreducible components of the special fiber of the regular model X₀(N) over F_p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

Some useful results

Let D_m (for m ∈ {0,∞}) be the Arakelov divisors orthogonal to each V, where V are linear combinations of the irreducible components of the special fiber of the regular model X₀(N) over 𝔽_p. Then

$$\langle D_m, D_m \rangle = -2[K : \mathbb{Q}] \Big(\text{Néron-Tate height of } \mathcal{O}(D_m) \Big),$$

where \langle,\rangle denote the intersection product (Faltings 1984).

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 8/15

<ロト < 同ト < 目と < 目と < 目と の Q Q

Some useful results

Let D_m (for m ∈ {0,∞}) be the Arakelov divisors orthogonal to each V, where V are linear combinations of the irreducible components of the special fiber of the regular model X₀(N) over 𝔽_p. Then

$$\langle D_m, D_m \rangle = -2[K : \mathbb{Q}] \Big(\text{Néron-Tate height of } \mathcal{O}(D_m) \Big),$$

where (,) denote the intersection product (Faltings 1984).
In 1998, Michel-Ullmo proved the following

$$h_{NT}\left(\mathcal{O}(D_m)
ight) = O\left(\log N\left(au(N)
ight)^2
ight), \quad m \in \{0,\infty\}$$

where
$$K = \mathbb{Q}$$
, and $\tau(N) := \sum_{d \mid N} 1$.

Rational points on modular curves

Sept. 22, 2023 8/15

<ロト < 同ト < 目と < 目と < 目と の Q Q

Theorem 1 (–, A. von Pippich)

Let *N* be an positive integer, then as $N \rightarrow \infty$ we have

$$2g_N(1-g_N)\mathcal{G}_{\operatorname{can}}(0,\infty)=2g_N\log N+o(g_N\log N),$$

where $\mathcal{G}_{can}(0,\infty)$ is the canonical Green's function for $X_0(N)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

Theorem 1 (–, A. von Pippich)

Let *N* be an positive integer, then as $N \rightarrow \infty$ we have

$$2g_N(1-g_N)\mathcal{G}_{\operatorname{can}}(0,\infty)=2g_N\log N+o(g_N\log N),$$

where $\mathcal{G}_{can}(0,\infty)$ is the canonical Green's function for $X_0(N)$.

• Our motivation to prove this theorem:

$$\Sigma_{\mathrm{anal}}^{\mathcal{X}_0(N)} = 2g_N(1-g_N)\,\mathcal{G}_{\mathrm{can}}(0,\infty)$$

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 9/15

<ロト < 同ト < 目と < 目と < 目と の Q Q

Theorem 1 (–, A. von Pippich)

Let *N* be an positive integer, then as $N \rightarrow \infty$ we have

$$2g_N(1-g_N)\mathcal{G}_{\operatorname{can}}(0,\infty)=2g_N\log N+o(g_N\log N),$$

where $\mathcal{G}_{can}(0,\infty)$ is the canonical Green's function for $X_0(N)$.

• Our motivation to prove this theorem:

$$\Sigma_{\mathrm{anal}}^{\mathcal{X}_0(N)} = 2g_N(1-g_N)\mathcal{G}_{\mathrm{can}}(0,\infty)$$

• In 1997-1998, Abbes-Ullmo and Michel-Ullmo proved this for square-free *N*.

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 9/15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

Theorem 1 (–, A. von Pippich)

Let *N* be an positive integer, then as $N \rightarrow \infty$ we have

$$2g_N(1-g_N)\mathcal{G}_{\operatorname{can}}(0,\infty)=2g_N\log N+o(g_N\log N),$$

where $\mathcal{G}_{can}(0,\infty)$ is the canonical Green's function for $X_0(N)$.

• Our motivation to prove this theorem:

$$\Sigma_{\mathrm{anal}}^{\mathcal{X}_0(N)} = 2g_N(1-g_N)\mathcal{G}_{\mathrm{can}}(0,\infty)$$

- In 1997-1998, Abbes-Ullmo and Michel-Ullmo proved this for square-free *N*.
- In 2020, Banerjee-Borah-Chaudhuri proved this for $N = p^2$ with a prime *p*.

Rational points on modular curves

ICTS Bangalore

< □ ▶ < ⓓ ▶ < 힅 ▶ < 힅 ▶ < 힅 ▶ < 힅 ■
 Sept. 22, 2023
 9/15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

10/15

Sept. 22, 2023

Main Theorem

Theorem 2 (D. Banerjee, C. Chaudhuri, –)

Let *p* be a prime and r = 3, 4. The Arakelov self-intersection number of the relative dualizing sheaf of $\mathcal{X}_0(p^r)$ satisfies

$$\overline{\omega}^2_{\mathcal{X}_0(p^r)} = 3g_{p^r}\log(p^r) + o(g_{p^r}\log p) \, \, ext{as} \, \, p o \infty,$$

where $\mathcal{X}_0(p^r)$ is the minimal regular model of $X_0(p^r)$ over \mathbb{Q} .

Rational points on modular curves

ICTS Bangalore

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

10/15

Sept. 22, 2023

Main Theorem

Theorem 2 (D. Banerjee, C. Chaudhuri, -)

Let *p* be a prime and r = 3, 4. The Arakelov self-intersection number of the relative dualizing sheaf of $\mathcal{X}_0(p^r)$ satisfies

$$\overline{\omega}^2_{\mathcal{X}_0(p^r)} = 3g_{p^r}\log(p^r) + o(g_{p^r}\log p) \text{ as } p \to \infty,$$

where $\mathcal{X}_0(p^r)$ is the minimal regular model of $X_0(p^r)$ over \mathbb{Q} .

• There is an explicit description of the regular model for $X_0(N)$ which was given by B. Edixhoven (1990).

Rational points on modular curves

ICTS Bangalore

Theorem 2 (D. Banerjee, C. Chaudhuri, -)

Let *p* be a prime and r = 3, 4. The Arakelov self-intersection number of the relative dualizing sheaf of $\mathcal{X}_0(p^r)$ satisfies

$$\overline{\omega}^2_{\mathcal{X}_0(p^r)} = 3g_{p^r}\log(p^r) + o(g_{p^r}\log p) \, \, ext{as} \, \, p o \infty,$$

where $\mathcal{X}_0(p^r)$ is the minimal regular model of $X_0(p^r)$ over \mathbb{Q} .

- There is an explicit description of the regular model for $X_0(N)$ which was given by B. Edixhoven (1990).
- The special fiber of the regular model $\mathcal{X}_0(p^r)$ over \mathbb{F}_p depends on the parity of $p \mod 12$

Rational points on modular curves

ICTS Bangalore

▲ □ ▶ ▲ ⓓ ▶ ▲ ▤ ▶ ▲ ▤ ▶ 볼 ■ ♡ Q (*
 Sept. 22, 2023
 10/15

Theorem 2 (D. Banerjee, C. Chaudhuri, –)

Let *p* be a prime and r = 3, 4. The Arakelov self-intersection number of the relative dualizing sheaf of $\mathcal{X}_0(p^r)$ satisfies

$$\overline{\omega}^2_{\mathcal{X}_0(p^r)} = 3g_{p^r}\log(p^r) + o(g_{p^r}\log p) \, \, ext{as} \, \, p o \infty,$$

where $\mathcal{X}_0(p^r)$ is the minimal regular model of $X_0(p^r)$ over \mathbb{Q} .

- There is an explicit description of the regular model for $X_0(N)$ which was given by B. Edixhoven (1990).
- The special fiber of the regular model X₀(p^r) over F_p depends on the parity of p mod 12, these are p ≡ 1 mod 12, p ≡ 5 mod 12, p ≡ 7 mod 12, and p ≡ 11 mod 12.

Rational points on modular curves

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Proof of Theorem 2

Rational points on modular curves

ICTS Bangalore

< □ ▶ < 团 ▶ < 필 ▶ < 필 ▶ 로 트 Sept. 22, 2023 11/15

Main results

◆□ > ◆母 > ◆臣 > ∢臣 > 臣目目 のへで

11/15

Sept. 22, 2023

Proof of Theorem 2

By using the Faltings-Hriljac theorem one can show:

$$\overline{\omega}_{\mathcal{X}_0(p^r)}^2 = 2g_{p^r}(1-g_{p^r})\mathcal{G}_{\mathrm{can}}(0,\infty) + \Sigma_{\mathrm{geom}}^{\mathcal{X}_0(p^r)}$$

where
$$\Sigma_{\text{geom}}^{\mathcal{X}_0(p^r)} = \frac{1}{g_{p^r}-1} \left(g_{p^r} \langle V_0, V_\infty \rangle - \frac{V_0^2 + V_\infty^2}{2} \right) + h$$
 with $h = O(\log p)$.

Rational points on modular curves

ICTS Bangalore

Main results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

11/15

Sept. 22, 2023

Proof of Theorem 2

By using the Faltings-Hriljac theorem one can show:

$$\overline{\omega}_{\mathcal{X}_0(p^r)}^2 = 2g_{p^r}(1-g_{p^r})\mathcal{G}_{\mathrm{can}}(0,\infty) + \Sigma_{\mathrm{geom}}^{\mathcal{X}_0(p^r)}$$

where
$$\Sigma_{\text{geom}}^{\mathcal{X}_0(p^r)} = \frac{1}{g_{p^r}-1} \left(g_{p^r} \langle V_0, V_\infty \rangle - \frac{V_0^2 + V_\infty^2}{2} \right) + h$$
 with $h = O(\log p)$.

V_m are linear combination of the irreducible components of the special fiber of the minimal regular model X₀(*p^r*) over 𝔽_{*p*}.

Rational points on modular curves

ICTS Bangalore

Main results

Proof of Theorem 2

By using the Faltings-Hriljac theorem one can show:

$$\overline{\omega}_{\mathcal{X}_0(\rho')}^2 = 2g_{
ho^r}(1-g_{
ho^r})\mathcal{G}_{\mathrm{can}}(0,\infty) + \Sigma_{\mathrm{geom}}^{\mathcal{X}_0(\rho')}$$

where
$$\Sigma_{\text{geom}}^{\mathcal{X}_0(p^r)} = \frac{1}{g_{p^r}-1} \left(g_{p^r} \langle V_0, V_\infty \rangle - \frac{V_0^2 + V_\infty^2}{2} \right) + h$$
 with $h = O(\log p)$.

- *V_m* are linear combination of the irreducible components of the special fiber of the minimal regular model *X*₀(*p^r*) over 𝔽_{*p*}.
- As $p \to \infty$ we prove the following

$$\frac{1}{g_{\rho^r}-1}\left(g_{\rho^r}\langle V_0,V_\infty\rangle-\frac{V_0^2+V_\infty^2}{2}\right)=g_{\rho^r}\log(\rho^r)+o(g_{\rho^r}\log\rho).$$

Rational points on modular curves

< □ ▶ < 큔 ▶ < 클 ▶ < 클 ▶ 로 말 ♥ 오. Sept. 22, 2023 11/15

Special fibers of Edixhoven's regular models

Rational points on modular curves

ICTS Bangalore

Main results

Special fibers of Edixhoven's regular models

• For r = 3, the special fibers of the regular model look like:

Rational points on modular curves

ICTS Bangalore

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

Main results

Special fibers of Edixhoven's regular models

• For r = 3, the special fibers of the regular model look like:

For r = 4, the special fibers of the regular model look like: •

< E

-

12/15

Intersection matrix

• We calculate intersection matrices of the special fibers of the regular models

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙

Main results 000000

Intersection matrix

1

 We calculate intersection matrices of the special fibers of the regular models , e.g, when $p \equiv 11 \mod 12$, and r = 4, we get

	C _{4,0}	C _{0,4}	C _{3,1}	C _{1,3}	C _{2,2}	Е	F
C _{4,0}	$-\frac{p^4-p^3+10}{12}$	<u>p-11</u> 12	$\frac{p^3 - p^2 - 10}{12}$	<u>p-11</u> 12	<u>p-11</u> 12	1	1
<i>C</i> _{0,4}	<u>p-11</u> 12	$-\frac{p^4-p^3+10}{12}$	<u>p-11</u> 12	$\frac{p^3 - p^2 - 10}{12}$	<u>p-11</u> 12	1	1
C _{3,1}	$\frac{p^3 - p^2 - 10}{12}$	<u>p-11</u> 12	$-\frac{p^2+5}{6}$	$\frac{p-11}{12}$	<u>p-11</u> 12	1	1
<i>C</i> _{1,3}	$\frac{p-11}{12}$	$\frac{p^3 - p^2 - 10}{12}$	$\frac{p-11}{12}$	$-\frac{p^2+5}{6}$	<u>p-11</u> 12	1	1
C _{2,2}	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	-1	1	1
Е	1	1	1	1	1	-2	0
F	1	1	1	1	1	0	-3.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー Sept. 22, 2023

13/15

Main results

Intersection matrix

Т

• We calculate intersection matrices of the special fibers of the regular models , e.g, when $p \equiv 11 \mod 12$, and r = 4, we get

	C _{4,0}	C _{0,4}	C _{3,1}	C _{1,3}	C _{2,2}	Е	F
C _{4,0}	$-\frac{p^4-p^3+10}{12}$	<u>p-11</u> 12	$\frac{p^3 - p^2 - 10}{12}$	<u>p-11</u> 12	<u>p-11</u> 12	1	1
C _{0,4}	<u>p-11</u> 12	$-\frac{p^4-p^3+10}{12}$	<u>p-11</u> 12	$\frac{p^3 - p^2 - 10}{12}$	<u>p-11</u> 12	1	1
C _{3,1}	$\frac{p^3 - p^2 - 10}{12}$	$\frac{p-11}{12}$	$-\frac{p^2+5}{6}$	$\frac{p-11}{12}$	<u>p-11</u> 12	1	1
C _{1,3}	$\frac{p-11}{12}$	$\frac{p^3 - p^2 - 10}{12}$	$\frac{p-11}{12}$	$-\frac{p^2+5}{6}$	<u>p-11</u> 12	1	1
C _{2,2}	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	-1	1	1
Е	1	1	1	1	1	-2	0
F	1	1	1	1	1	0	-3.

• In this case the regular model is not minimal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

Main results

Intersection matrix

÷.

• We calculate intersection matrices of the special fibers of the regular models , e.g, when $p \equiv 11 \mod 12$, and r = 4, we get

	C _{4,0}	C _{0,4}	C _{3,1}	C _{1,3}	C _{2,2}	Е	F
C _{4,0}	$-\frac{p^4-p^3+10}{12}$	<u>p-11</u> 12	$\frac{p^3 - p^2 - 10}{12}$	<u>p-11</u> 12	<u>p-11</u> 12	1	1
C _{0,4}	<u>p-11</u> 12	$-\frac{p^4-p^3+10}{12}$	<u>p-11</u> 12	$\frac{p^3 - p^2 - 10}{12}$	<u>p-11</u> 12	1	1
C _{3,1}	$\frac{p^3 - p^2 - 10}{12}$	$\frac{p-11}{12}$	$-\frac{p^2+5}{6}$	$\frac{p-11}{12}$	<u>p-11</u> 12	1	1
C _{1,3}	$\frac{p-11}{12}$	$\frac{p^3 - p^2 - 10}{12}$	$\frac{p-11}{12}$	$-\frac{p^2+5}{6}$	<u>p-11</u> 12	1	1
C _{2,2}	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	$\frac{p-11}{12}$	-1	1	1
E	1	1	1	1	1	-2	0
F	1	1	1	1	1	0	-3.

- In this case the regular model is not minimal.
- After successive blow downs we obtain the minimal regular model.

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 13/15

Intersection matrix for $\mathcal{X}_0(p^r)$

• When $p \equiv 11 \mod 12$, and r = 4, the intersection matrix of the special fibers of the minimal regular model:

Intersection matrix for $\mathcal{X}_0(p^r)$

• When $p \equiv 11 \mod 12$, and r = 4, the intersection matrix of the special fibers of the minimal regular model:

• From this intersection matrix we explicitly compute V_m which are linear combinations of all the irreducible components of the special fiber of the minimal regular model.

Rational points on modular curves

ICTS Bangalore

Sept. 22, 2023 14/15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

References

- 1 P. Majumder and A.-M. von Pippich, Bounds for canonical Green's functions at cusps, (arxiv.org/abs/2210.04452).
- 2 D. Banerjee, C. Chaudhuri and P. Majumder, The intersection matrices of $X_0(p^r)$ and some applications, (arxiv.org/abs/2210.08866).

ICTS Bangalore

References

- 1 P. Majumder and A.-M. von Pippich, Bounds for canonical Green's functions at cusps, (arxiv.org/abs/2210.04452).
- 2 D. Banerjee, C. Chaudhuri and P. Majumder, The intersection matrices of $X_0(p^r)$ and some applications, (arxiv.org/abs/2210.08866).

Thank you for your attention!

Rational points on modular curves

ICTS Bangalore

