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Modular curves

• Let N be a positive integer and Γ ⊂ PSL2(Z) be a level-N
congruence subgroup.

• Let X (Γ) be the associated modular curve over some number
field K .

• Example: One example of level-N congruence subgroup of
PSL2(Z) is

Γ0(N) :=

{(
a b
c d

)
∈ PSL2(Z) | c ≡ 0 (mod N)

}
.

Its associated modular curve is X0(N) and we consider K = Q.
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Intersection numbers on arithmetic surfaces

• Let gN be the genus of the modular curve X0(N).
• For gN > 1 there exist a minimal regular model X0(N)/Z for the

modular curve X0(N)/Q.
• X0(N) is an arithmetic surface over Spec(Z), i.e., it is a scheme

of dimension 2 with a proper flat morphism
f : X0(N) → Spec(Z).

• For given two hermitian line bundle L,M on an arithmetic
surface X , Arakelov (1974) defined the intersection number
L.M ∈ R.

• Let ωX0(N) be the relative dualizing sheaf on X0(N). Arakelov
defined a metric ∥ · ∥Ar on ωX0(N). Arakelov self-intersection
number of ωX0(N) is given by ω2

X0(N) = ωX0(N).ωX0(N) ∈ R, where
ωX0(N) = (ωX0(N), ∥ · ∥Ar).
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Arakelov self-intersection number

• Arakelov self-intersection number of the relative dualizing
sheaf ωX0(N) can be written as

ω2
X0(N) = Σ

X0(N)
geom + Σ

X0(N)
anal .

• Σ
X0(N)
geom (geometric part) encodes the finite intersection of

divisors coming from the cusps 0 and ∞.
• Σ

X0(N)
anal (analytic part) is given in terms of the canonical

(Arakelov) Green’s function Gcan(0,∞).
• ω2

X0(N) is independent of the number field K if the minimal
regular model X0(N) is semi-stable over OK .
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Preliminaries

• Let µhyp(z) be the (1,1)-form corresponding to the hyperbolic
metric on X0(N). Locally, on X0(N), it is

µhyp(z) =
i
2
· dz ∧ dz
Im(z)2 .

• Let ∆hyp be the hyperbolic Laplacian on X0(N). Locally on
X0(N), it is

∆hyp,z = −y2
(

∂2

∂x2 +
∂2

∂y2

)
= −4y2

(
∂2

∂z∂z

)
.

• For any smooth function f on X0(N), we have

∆hyp,z(f )µhyp(z) = −4πdzdc
z (f ),

where dz =
(
∂z + ∂z

)
and dc

z =
(
∂z − ∂z

)
/(4πi).
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Canonical Green’s function

• The (1,1)-form µcan(z) corresponding to the canonical metric
on X0(N) is

µcan(z) =
i

2gN

gN∑
j=1

∣∣fj(z)∣∣2 dz ∧ dz,

where {f1, . . . , fgN} denote an orthonormal basis of S2(Γ0(N)).
• Let Gcan(z,w) be the canonical Green’s function for X0(N).

Away from the diagonal it is characterized by the differential
equation

dzdc
z Gcan(z,w) + δw (z) = µcan(z)

with the nomalization
∫

X0(N) Gcan(z,w)µcan(z) = 0.
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Some useful results

• Let Dm (for m ∈ {0,∞}) be the Arakelov divisors orthogonal to
each V , where V are linear combinations of the irreducible
components of the special fiber of the regular model X0(N)
over Fp. Then

⟨Dm,Dm⟩ = −2[K : Q]
(

Néron-Tate height of O(Dm)
)
,

where ⟨, ⟩ denote the intersection product (Faltings 1984).
• In 1998, Michel-Ullmo proved the following

hNT (O(Dm)) = O
(
logN (τ(N))2), m ∈ {0,∞}

where K = Q, and τ(N) :=
∑
d |N

1.
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Introduction Preliminaries Main results

Main Theorem
Theorem 1 ( –, A. von Pippich)
Let N be an positive integer, then as N → ∞ we have

2gN(1 − gN)Gcan(0,∞) = 2gN logN + o(gN logN),

where Gcan(0,∞) is the canonical Green’s function for X0(N).

• Our motivation to prove this theorem:

Σ
X0(N)
anal = 2gN(1 − gN)Gcan(0,∞)

.• In 1997-1998, Abbes-Ullmo and Michel-Ullmo proved this for
square-free N.

• In 2020, Banerjee-Borah-Chaudhuri proved this for N = p2 with
a prime p.
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• In 2020, Banerjee-Borah-Chaudhuri proved this for N = p2 with
a prime p.
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Main Theorem

Theorem 2 (D. Banerjee, C. Chaudhuri, – )
Let p be a prime and r = 3, 4. The Arakelov self-intersection
number of the relative dualizing sheaf of X0(pr ) satisfies

ω2
X0(pr ) = 3gpr log(pr ) + o(gpr log p) as p → ∞,

where X0(pr ) is the minimal regular model of X0(pr ) over Q.

• There is an explicit description of the regular model for X0(N)
which was given by B. Edixhoven (1990).

• The special fiber of the regular model X0(pr ) over Fp depends
on the parity of p mod 12, these are p ≡ 1 mod 12, p ≡ 5 mod 12,
p ≡ 7 mod 12, and p ≡ 11 mod 12.
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Proof of Theorem 2

• By using the Faltings-Hriljac theorem one can show:

ω2
X0(pr ) = 2gpr (1 − gpr )Gcan(0,∞) + Σ

X0(pr )
geom

where Σ
X0(pr )
geom = 1

gpr −1

(
gpr ⟨V0.V∞⟩ − V 2

0 +V 2
∞

2

)
+ h with

h = O(log p).

• Vm are linear combination of the irreducible components of
the special fiber of the minimal regular model X0(pr ) over Fp.

• As p → ∞ we prove the following

1
gpr − 1

(
gpr ⟨V0.V∞⟩ −

V 2
0 + V 2

∞
2

)
= gpr log(pr ) + o(gpr log p).
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Special fibers of Edixhoven’s regular models

• For r = 3, the special fibers of the regular model look like:

• For r = 4, the special fibers of the regular model look like:
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Intersection matrix
• We calculate intersection matrices of the special fibers of the

regular models

, e.g, when p ≡ 11 mod 12, and r = 4, we get

C4,0 C0,4 C3,1 C1,3 C2,2 E F

C4,0 − p4−p3+10
12

p−11
12

p3−p2−10
12

p−11
12

p−11
12 1 1

C0,4
p−11

12 − p4−p3+10
12

p−11
12

p3−p2−10
12

p−11
12 1 1

C3,1
p3−p2−10

12
p−11

12 − p2+5
6

p−11
12

p−11
12 1 1

C1,3
p−11

12
p3−p2−10

12
p−11

12 − p2+5
6

p−11
12 1 1

C2,2
p−11

12
p−11

12
p−11

12
p−11

12 −1 1 1

E 1 1 1 1 1 −2 0

F 1 1 1 1 1 0 −3.

• In this case the regular model is not minimal.
• After successive blow downs we obtain the minimal regular

model.
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Intersection matrix for X0(pr)

• When p ≡ 11 mod 12, and r = 4, the intersection matrix of the
special fibers of the minimal regular model:

C′
4,0 C′

0,4 C′
3,1 C′

1,3

C′
4,0 − 2p4−2p3−p2+2p−1

24
p2−1

24
2p3−p2−2p+1

24
p2−1

24

C′
0,4

p2−1
24 − 2p4−2p3−p2+2p−1

24
p2−1

24
2p3−p2−2p+1

24

C′
3,1

2p3−p2−2p+1
24

p2−1
24 − 3p2+2p−1

24
p2−1

24

C′
1,3

p2−1
24

2p3−p2−2p+1
24

p2−1
24 − 3p2+2p−1

24 .

• From this intersection matrix we explicitly compute Vm which
are linear combinations of all the irreducible components of
the special fiber of the minimal regular model.
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